Homework Set 7

1) Let $d \geq 3$ be a constant and $\rho=p(n-1)$. Prove the following: If $\rho \ll n^{-1 / d}$ then $G(n, p)$ does not have a vertex of degree d almost surely and if $\rho \gg n^{-1 / d}$ then $G(n, p)$ has a vertex of degree d almost surely.
2) Let p be a prime congruent to $1 \bmod 4$ and G_{p} the graph with vertex set $G F(p)$ and $i j$ forming an edge iff $i-j$ is a quadratic residue $\bmod p$. Show that G_{p} is well-defined and the prove the following about G_{p} :
a) it is $(p-1) / 2$-regular
b) any two adjacent vertices have $(p-5) / 4$ common neighbors
c) any two nonadjacent vertices have $(p-1) / 4$ common neighbors
d) For any two vertices a, b, there are precisely $(p-1) / 4$ vertices $c \neq b$ joined to a and not joined to b.
3) Let B and C be disjoint sets of vertices in G_{p} defined above. Prove that

$$
\left|e(B, C)-\frac{1}{2}\right| B \| C| | \leq \frac{1}{2}|B|^{1 / 2}|C|^{1 / 2} p^{1 / 2} .
$$

4) Let $G=(V, E)$ be an (n, d, λ)-graph and $k \mid n$. Suppose that c is a k coloring of V so that each color appears precisely n / k times. Prove that there is a vertex of G which has a neighbor of each of the k colors, provided $k \lambda \leq d$.
