Homework Set 1

1) Prove that $r(3 ; q)<q$!e +1 .
2) Prove or disprove: In every 3 -coloring of the points of the plane, there are two points at distance 1 with the same color.
3) Prove or disprove: In every 2-coloring of the points of the plane, there is a monochromatic regular triangle with side 1.
4) Let $k, r \geq 1$ be given. Prove that there is an $N(k, r)$ such that if $n \geq$ $N(k, r)$ and $[n]$ is k-colored, then we can find natural numbers a, d_{1}, \ldots, d_{r} such that all sums

$$
a+d_{i_{1}}+\cdots d_{i_{\nu}} \quad\left(1 \leq i_{1}<\cdots<i_{\nu} \leq r .0 \leq \nu \leq r\right)
$$

have the same color (and, of course, $a+d_{1}+\cdots+d_{r} \leq n$).
5) Prove Schur's theorem from class with x, y, z distinct.

