Homework Set 4

1) Let k < n be positive. Prove that $(n/k)^k < \binom{n}{k} < (ne/k)^k$.

2) Suppose that there are m red clubs R_1, \ldots, R_m , and m blue clubs B_1, \ldots, B_m in a town of n citizens. Assume that these clubs satisfy the following rules:

(i) $|R_i \cap B_i|$ is odd for every *i*

(ii) $|R_i \cap B_j|$ is even for every $i \neq j$.

Prove that $m \leq n$. Also find an example where m = n.

3) Let A be a $2n \times 2n$ matrix with zeros in the diagonal and ± 1 everywhere else. Prove that A is nonsingular (i.e. invertible) over the reals.

4) Construct a 2-distance set $S \subseteq \mathbf{R}^n$ of size n(n+1)/2. What are the two distances? Generalize this construction to obtain a large *s*-distance set in \mathbf{R}^n .

5) Give an elementary explicit construction (not using any results from class) showing that the Ramsey number $R(t,t) > (t-1)^2$.