Homework Set 5

1) Let $k=50, L=\{0,26,27\}$, and $\mathcal{F} \subseteq 2^{[n]}$ be an L-intersecting k-uniform family. Prove, using the uniform RW Theorem, that $m=|\mathcal{F}| \leq\binom{ n}{2}$.
Hint: For $A, B \in \mathcal{F}$, let $A \sim B$ if $A \cap B \neq \emptyset$. Prove that this is an equivalence relation. You may also use the easy fact that if $\sum_{i} n_{i}=n$, then $\sum_{i}\binom{n_{i}}{2} \leq\binom{ n}{2}$.
2) Prove that in Nagy's coloring given in class, if $t \equiv 2$ or $3(\bmod 4)$, then there is no blue K_{r} for $r>t-2$. Recall that in the coloring, the vertex set of K_{n} is $\binom{[t]}{3}$, and an edge is blue iff the endpoints intersect in a set of size zero or two.
3) We gave superpolynomial lower bounds in class for the Ramsey number $R(t, t)$ for infinitely many t. Prove the same lower bound for all t, namely, for any fixed $\epsilon>0$, there is a t_{0} such that for $t>t_{0}$ we have $R(t, t)>t^{(1-\epsilon) \omega(t)}$, where $\omega(t)=\ln t /(4 \ln \ln t)$.
Hint: As in class, let $n=p^{3}$. Now let p be the largest prime such that $2\binom{n}{p-1}<t$. You may use the following consequence of the Prime Number Theorem: for any $\delta>0$, there is a q_{0} such that, if $q>q_{0}$ is a prime, then the next largest prime $q^{\prime}>q$ has the property that $q^{\prime}<(1+\delta) q$. Use this to prove that for any $\delta^{\prime}>0$,

$$
\frac{\left(1-\delta^{\prime}\right) \ln t}{2 \ln \ln t}<p<\frac{\left(1+\delta^{\prime}\right) \ln t}{2 \ln \ln t}
$$

for sufficiently large t. Then use the estimates for binomial coefficients we have proved to complete the proof.
4) Let $K=\left\{k_{1}, k_{2}\right\}$ and $L=\left\{l_{1}, \ldots, l_{s}\right\}$ be two sets of nonnegative integers with $k_{i}>s-2$ for $i=1,2$. Let $\mathcal{F} \subseteq 2^{[n]}$ be an L-intersecting family with $|S| \in K$ for each $S \in \mathcal{F}$. Prove that

$$
m=|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}
$$

Hint: Proceed as in the proof of the uniform RW Theorem presented in class. Instead of the function $\left(\sum_{i} x_{i}-k\right)$, use a similar function, and slightly change the condition $|I| \leq s-1$,
Remark: This can be easily generalized to $K=\left\{k_{1}, \ldots, k_{r}\right\}$ (no need to do it), and then it provides a common proof of both the uniform and nonuniform RW Theorems (Alon-Babai-Suzuki 1991).

