Homework Set 6

1) A vertex cover in a hypergraph is a vertex subset that intersects each edge. Let \mathcal{H} be a hypergraph and $\tau(\mathcal{H})$ be the minimum size of a vertex cover of \mathcal{H} . Call \mathcal{H} critical if $\tau(\mathcal{H} - A) < \tau(\mathcal{H})$ for every $A \in E(\mathcal{H})$. Prove that if \mathcal{H} is a critical *r*-uniform hypergraph, and $\tau(\mathcal{H}) = s + 1$, then

$$\mathcal{H} \le \binom{r+s}{r}.$$

2) Let $\mathcal{F} \subseteq 2^{[n]}$ be a maximal family with the property that if $A, B \in \mathcal{F}$, then $A \cup B \neq [n]$. Prove that \mathcal{F} is an ideal and that $|\mathcal{F}| = 2^{n-1}$. Recall that an ideal is a family \mathcal{I} with the property that whenever $A \in \mathcal{I}$ and $B \subseteq A$, then also $B \in \mathcal{I}$.

3) Prove the following extension of the Erdős-Ko-Rado Theorem: If $1 \leq r < n/2$ and \mathcal{F} is an intersecting sperner family of subsets of $\binom{[n]}{\leq r}$, then $|\mathcal{F}| \leq \binom{n-1}{r-1}$.

4) Prove the following extension of the Erdős-Ko-Rado Theorem: Families \mathcal{F} and \mathcal{G} are cross intersecting if $A \cap B \neq \emptyset$ for all $A \in \mathcal{F}$ and $B \in \mathcal{G}$. Let k, l, n be positive integers with $k + l \leq n$. Let $\mathcal{F} \subseteq {\binom{[n]}{k}}$ and $\mathcal{G} \subseteq {\binom{[n]}{l}}$ be cross intersecting. Then either $|\mathcal{F}| < {\binom{n-1}{k-1}}$ or $|\mathcal{G}| \leq {\binom{n-1}{l-1}}$.

Hint: Consider the complements of one of the families and use the Kruskal Katona theorem like we did to prove EKR in class.