## Homework Set 7

1) Let $G$ be an $n$-vertex graph that contains no triangle. Prove that for every edge $u v$ of $G, d(u)+d(v) \leq n$. Sum this inequality over all edges to obtain another proof of Turáns theorem (for just $K_{3}$ ) that $\operatorname{ex}\left(n, K_{3}\right)=\left\lfloor n^{2} / 4\right\rfloor$ for $n \geq 3$. Hint: you will need to use the Cauchy-Schwarz inequality, or convexity of binomial coefficients.
2) Suppose that $(A, B)$ is an $\epsilon$-regular pair with density $d$. Suppose $A^{\prime} \subset A$ and $B^{\prime} \subset B$ such that $\left|A^{\prime}\right|=|A| / 2$ and $\left|B^{\prime}\right|=|B| / 2$. Is there a $\delta>0$ such that $\left(A^{\prime}, B^{\prime}\right)$ is a $\delta$-regular pair? If you answer yes, then give an explicit formula for $\delta$.
3) Let $P_{4}$ be the path with four vertices and three edges. Determine ex $\left(n, P_{4}\right)$ exactly for all $n$.
4) The wheel $W_{k}$ is the graph obtained from the cycle $C_{k}$ by adding a new vertex adjacent to all vertices of the cycle. Determine the asymptotics for $\operatorname{ex}\left(n, W_{k}\right)$ for all $k \geq 3$.
