Homework 2

1) Prove that a graph with n vertices and e edges has at least $\frac{e}{3n}(4e - n^2)$ triangles.

2) Let S = [mn] and suppose that S is partitioned into m sets A_1, \ldots, A_m each of size n. Suppose that B_1, \ldots, B_m is another partition of [mn] into sets of size n. Show that the sets A_i can be renumbered in such a way that $A_i \cap B_i \neq \emptyset$.

3) Let $\mathcal{A} \subset 2^{[n]}$ be an intersecting sperner family such that $A \cup B \neq [n]$ for every $A, B \in \mathcal{A}$. Prove that

$$|\mathcal{A}| \le \binom{n-1}{\lfloor n/2 \rfloor - 1}.$$

4) Let x_1, \ldots, x_n be a collection of reals numbers each at least 1. For $A \subset [n]$, let $x_A = \sum_{i \in A} x_i$. What is the maximum number of such sums that pairwise differ by less than one.

5) Let $n^2 + 1$ points be given in R^2 . Prove that there is a sequence of n + 1 points $(x_1, y_1), \ldots, (x_{n+1}, y_{n+1})$ for which $x_1 \leq \cdots \leq x_{n+1}$ and $y_1 \geq \cdots \geq y_{n+1}$, or a sequence of n + 1 points for which $x_1 \leq \cdots \leq x_{n+1}$ and $y_1 \leq \cdots \leq y_{n+1}$.