Homework 3

1) Let $[S, T]$ and $\left[S^{\prime}, T^{\prime}\right]$ be source/sink cuts in a network.
a) Prove that $c\left(S \cup S^{\prime}, T \cap T^{\prime}\right)+c\left(S \cap S^{\prime}, T \cup T^{\prime}\right) \leq c(S, T)+c\left(S^{\prime}, T^{\prime}\right)$.
b) Suppose that $[S, T]$ and $\left[S^{\prime}, T^{\prime}\right]$ are minimum cuts. Show that no edge between $S-S^{\prime}$ and $S^{\prime}-S$ has positive capacity.
2) Find a circular ternary sequence of length 27 so that each possible ternary ordered triple occurs as three consecutive positions of the sequence.
3) Determine $N\left(C_{2 n}\right)$, the minimum length of vectors with entries from $\{0,1, *\}$ that provide an addressing for $C_{2 n}$.
4) Determine $f(x)=\sum_{n=1}^{x} \mu(n)\lfloor x / n\rfloor$ for all positive integers x.
5) Let $M(n, k)$ be the maximum possible value of the permanent of an n by $n 0-1$ matrix with exactly k 's in each row and column.
a) Prove that $M(n, k) \geq k!$.
b) Prove that $M(k)=\lim _{n \rightarrow \infty} M(n, k)^{1 / n}=(k!)^{1 / k}$.
