Homework 4

1) Suppose that f is a function from \mathbf{N} to \mathbf{N} such that $f(a+b) \geq f(a)+f(b)$. Prove that $\lim _{n \rightarrow \infty} f(n) / n$ exists (possibly ∞).
2) Problem 11D
3) Problem 11E
4) Prove that for all odd $k>1$, there exists $r_{0}=r_{0}(k)$ such that for every even $r>r_{0}$, every r-regular graph contains a k-regular subgraph. You may assume that the prime numbers occur frequently.
5) Prove that the Bell number satisfies the equation

$$
B(n)=\frac{1}{e} \sum_{k=0}^{\infty} \frac{k^{n}}{k!} .
$$

