Homework 6

1) Prove that there is a constant $c>0$ such that every graph on n vertices and at least $\mathrm{cn}^{3 / 2}$ edges contains a subset S of 10 vertices such that every pair of vertices in S has at least 10 common neighbors. Hint: Dependent Random Choice
2) Prove Ruzsa's Lemma: For every three sets U, V, W we have

$$
|U||V-W| \leq|U+V||U+W| .
$$

3) Solve Problem 38A (page 540) using the proof of Baranyai's theorem presented in class.
4) Prove the $(6,3)$ theorem from the induced matching lemma. I.e. prove that for every $\epsilon>0$ there exists n_{0} such that for $n>n_{0}$, every 3 -uniform hypergraph H on n vertices in which every six points span at most three edges satisfies $|E(H)|<\epsilon n^{2}$. You may use the induced matching lemma: that in an n by n bipartite graph comprising n induced matchings, the total number of edges is at most γn^{2} (here $\gamma>0$ is fixed and n is large).
