Homework \#2 Solutions:

1) Define the multicolor Ramsey number $R_{k}(3)$ to be the minimum n such that no matter how the edges of K_{n} are colored with k colors, there is a monochromatic copy of K_{3}. Prove that

$$
R_{k}(3)-1 \leq 1+k\left(R_{k-1}(3)-1\right)
$$

Use this to prove the upper bound $R_{k}(3)<1+e k$!, where e is the (usual) base of the natural logarithm, i.e., $e=2.718$.. .

Sol: Let $N=2+k\left(R_{k-1}(3)-1\right)$, and suppose we have a k-coloring of $E\left(K_{n}\right)$. Pick a vertex v. By the pigeonhole principle, there is a color i and a set S of size $R_{k-1}(3)$ such that all v, S edges have color i. If color i appears anywhere within S, then we have a triangle in color i. Otherwise the edges within S are ($k-1$)-colored, and since $|S| \geq R_{k-1}(3)$, we conclude that S contains a monochromatic triangle in some other color.

We show by induction on k that $R_{k}(3) \leq 1+k!\left(\sum_{i=0}^{k} 1 / i!\right)<1+k!e$. The base case follows by $R(3,3) \leq 6$. For the induction step,

$$
R_{k}(3) \leq 2+k\left(R_{k-1}(3)-1\right) \leq 2+k\left((k-1)!\sum_{i=0}^{k-1} 1 / i!\right)=1+k!\sum_{i=0}^{k} 1 / i!
$$

2) Let $k=50, L=\{0,26,27\}$, and $\mathcal{F} \subseteq 2^{[n]}$ be an L-intersecting k-uniform family. Prove, using the uniform RW Theorem, that $m=|\mathcal{F}| \leq\binom{ n}{2}$.
Hint: For $A, B \in \mathcal{F}$, let $A \sim B$ if $A \cap B \neq \emptyset$. Prove that this is an equivalence relation. You may also use the easy fact that if $\sum_{i} n_{i}=n$, then $\sum_{i}\binom{n_{i}}{2} \leq\binom{ n}{2}$.

Sol: If $A \sim B$ and $B \sim C$, then both $|A \cap B|$ and $|B \cap C|$ are at least $26>|B| / 2$, so $|A \cap C|>0$. This implies that $A \sim C$. This relation divides the sets in \mathcal{F} into equivalence classes. Each equivalence class is a subfamily \mathcal{F}_{i} that is L^{\prime}-intersecting, where $L^{\prime}=\{26,27\}$. By the uniform RW-inequality, $\left|\mathcal{F}_{i}\right| \leq\binom{ n_{i}}{2}$, where $n_{i}=\left|\cup_{A \in \mathcal{F}_{i}} A\right|$. By definition of $\sim,\left(\cup_{A \in \mathcal{F}_{i}} A\right) \cap\left(\cup_{B \in \mathcal{F}_{j}} B\right)=\emptyset$, so $|\mathcal{F}| \leq \sum_{i}\binom{n_{i}}{2} \leq\binom{ n}{2}$.
3) Prove that in Nagy's coloring given in class, if $t \equiv 2$ or $3(\bmod 4)$, then there is no blue K_{r} for $r>t-2$.
Recall that in the coloring, the vertex set of K_{n} is $\binom{[t]}{3}$, and an edge is blue iff the endpoints intersect in a set of size zero or two.

Sol: Let C_{1}, \ldots, C_{r} be the vertex of a blue K_{r}. Put $C_{i} \sim C_{j}$ if $\left|C_{i} \cap C_{j}\right|=2$. Then it is easy to see that this defines an equivalence relation, since no two of these sets intersect in exactly one element. Each equivalence class is a subfamily \mathcal{F}_{i} that is 2 -intersecting. Let $A_{1}, \ldots, A_{m_{i}}$ be the sets in \mathcal{F}_{i}. We will show that either $m_{i}=1, A_{j} \cap A_{k}$ is the same set (of size two) for all j, k (this is called a sunflower), or \mathcal{F}_{i} consists of (at most four) 3 -subsets of a four element set.

Suppose that $m_{i}>1$ and that \mathcal{F}_{i} is not a sunflower. Let $A, B, C \in \mathcal{F}_{i}$ with $|A \cap B|=2$, and $C \cap A \neq A \cap B$. We may assume by symmetry that $A=123$ and $B=234$ and $C=124$. Then it is easy to see that the only choice for a fourth set $D \in \mathcal{F}_{i}$ is $D=134$.

Let $m_{i}=\left|\mathcal{F}_{i}\right|$, and $X_{i}=\cup_{A \in \mathcal{F}_{i}} A$ with $t_{i}=\left|X_{i}\right|$. By definition, $X_{i} \cap X_{j}=\emptyset$ for $i \neq j$. Clearly $m_{i} \leq t_{i}-2$ if \mathcal{F}_{i} is a sunflower, and $m_{i} \leq t_{i}$ otherwise. By the choice of t, there are at least two points that are in an X_{i} for which \mathcal{F}_{i} is a sunflower. This gives $m=\sum m_{i} \leq\left(\sum t_{i}\right)-2=t-2$.
4) We gave superpolynomial lower bounds in class for the Ramsey number $R(t, t)$ for infinitely many t. Prove the same lower bound for all t, namely, for any fixed $\epsilon>0$, there is a t_{0} such that for $t>t_{0}$ we have $R(t, t)>t^{(1-\epsilon) \omega(t)}$, where $\omega(t)=\ln t /(4 \ln \ln t)$.
Hint: As in class, let $n=p^{3}$. Now let p be the largest prime such that $2\binom{n}{p-1}<t$. You may use the following consequence of the Prime Number Theorem: for any $\delta>0$, there is a q_{0} such that, if $q>q_{0}$ is a prime, then the next largest prime $q^{\prime}>q$ has the property that $q^{\prime}<(1+\delta) q$. Use this to prove that for any $\delta^{\prime}>0$,

$$
\frac{\left(1-\delta^{\prime}\right) \ln t}{2 \ln \ln t}<p<\frac{\left(1+\delta^{\prime}\right) \ln t}{2 \ln \ln t}
$$

for sufficiently large t. Then use the estimates for binomial coefficients we have proved to complete the proof.
Sol: Let q be the next largest prime after p. Then

$$
2\binom{p^{3}}{p-1}<t<2\binom{q^{3}}{q-1}
$$

Using standard estimates for binomial coefficients (see the similar calculations given in class), and the Prime Number Theorem, this yields

$$
(2-o(1)) p \log p<\log t<(2+o(1)) q \log q<(2+o(1)) p \log p
$$

This implies that $\log t \sim 2 p \log p$ and also that $\log \log t \sim \log p$. This yields

$$
p=(1+o(1))(\log t) /(2 \log p)=(1+o(1))(\log t) /(2 \log \log t)
$$

To prove the lower bound on $R(t, t)$, we construct a graph on $n=\binom{p^{3}}{p^{2}-1}$ vertices, with no clique or independent set of size $2\binom{p^{3}}{p-1}<t$. This was done in class. We only need to show that $n>t^{(1-\epsilon) \omega(t)}$. Lower bounding n and taking logs, this amounts to showing that $p^{2} \log p>(1-\epsilon) \log ^{2} t /(4 \log \log t)$. The bounds for p in terms of t derived above imply precisely this.
5) Let $K=\left\{k_{1}, k_{2}\right\}$ and $L=\left\{l_{1}, \ldots, l_{s}\right\}$ be two sets of nonnegative integers with $k_{i}>s-2$ for $i=1,2$. Let $\mathcal{F} \subseteq 2^{[n]}$ be an L-intersecting family with $|S| \in K$ for each $S \in \mathcal{F}$. Prove that

$$
m=|\mathcal{F}| \leq\binom{ n}{s}+\binom{n}{s-1}
$$

Hint: Proceed as in the proof of the uniform RW Theorem presented in class. Instead of the function $\left(\sum_{i} x_{i}-k\right)$, use the function $\left(\sum_{i} x_{i}-k_{1}\right)\left(\sum_{i} x_{i}-k_{2}\right)$, and instead of letting $|I| \leq s-1$, let $|I| \leq s-2$.
Remark: This can be easily generalized to $K=\left\{k_{1}, \ldots, k_{r}\right\}$ (no need to do it), and then it provides a common proof of both the uniform and nonuniform RW Theorems (Alon-Babai-Suzuki 1991).

Sol: We prove the more general version in the Remark. Recall the following Lemma proved in class

Lemma: Let $f: \Omega \rightarrow \mathbf{R}$. Assume that $f(I) \neq 0$ for any $|I| \leq r$. Then the set of functions $\left\{x_{I} f:|I| \leq r\right\}$ is linearly independent.
Proof: Order the subsets of $[n]$ such that $I<J$ implies that $|I| \leq|J|$. Then for $I, J \subseteq[n]$ with $|I|,|J| \leq r$ we have $x_{I}(J) f(J) \neq 0$ if $I=J$ and $=0$ if $J<I$. By the triangular criterion proved in class, we conclude that these functions are linearly independent.

Let $\mathcal{F}=\left\{A_{1}, \ldots, A_{m}\right\}$, where $\left|A_{i}\right| \leq\left|A_{i+1}\right|$ for all i, and define the polynomials

$$
f_{i}(x)=\prod_{k: l_{k}<\left|A_{i}\right|}\left(v_{i} \cdot x-l_{k}\right), \quad\left(x \in \mathbf{R}^{n}\right)
$$

where v_{i} is the incidence vector of A_{i}. Set

$$
f=\prod_{i=1}^{r}\left(\sum_{j=1}^{n} x_{j}-k_{i}\right) .
$$

Then the Lemma implies that the set of functions $\left\{x_{I} f:|I| \leq r\right\}$ is linearly independent. We next show that this set of functions together with the set $\left\{f_{i}: 1 \leq i \leq m\right\}$ is linearly independent. To prove this, suppose that

$$
\sum_{i=1}^{m} \lambda_{i} f_{i}+\sum_{|I| \leq s-r} \mu_{I} x_{I} f=0
$$

We first argue that each $\lambda_{i}=0$. If not, suppose that i_{0} is the smallest i for which $\lambda_{i_{0}} \neq 0$. Substituting $A_{i_{0}}$ above yields the contradiction $\lambda_{i_{0}}=0$. Now it follows the all the μ_{I} are zero by the Lemma.

We may assume that all these function are multilinear. Thus we have $m+\sum_{i=0}^{s-r}\binom{n}{i}$ linearly independent functions, each of which can be represented by polynomials of degree at most s. Consequently $m \leq \sum_{i=s-r+1}^{s}\binom{n}{i}$.

