Homework #2 Solutions:

1) Define the multicolor Ramsey number Ry (3) to be the minimum n such that no matter
how the edges of K,, are colored with k colors, there is a monochromatic copy of K3. Prove
that

Rp(3) =1 <1+ k(Rp_1(3) —1).

Use this to prove the upper bound Rjy(3) < 1+ ek!, where e is the (usual) base of the
natural logarithm, i.e., e = 2.718.. .

Sol: Let N = 2+4k(Rk_1(3)—1), and suppose we have a k-coloring of F(K,). Pick a vertex
v. By the pigeonhole principle, there is a color i and a set S of size Ri_1(3) such that
all v, .S edges have color 7. If color ¢ appears anywhere within S, then we have a triangle
in color i. Otherwise the edges within S are (k — 1)-colored, and since |S| > Ri_1(3), we
conclude that S contains a monochromatic triangle in some other color.

We show by induction on k that Ry (3) <1+ k!(ZfZO 1/i!) < 1+ kle. The base case
follows by R(3,3) < 6. For the induction step,

k—1 k
Ri(3) <2+ k(Rp1(3)—1)<2+k ((k -y 1/@!) =14k 1/l
1=0 =0

2) Let k = 50, L = {0,26,27}, and F C 2[" be an L-intersecting k-uniform family. Prove,
using the uniform RW Theorem, that m = |F| < ().

Hint: For A,B € F,let A~ B if AN B # (). Prove that this is an equivalence relation.

You may also use the easy fact that if Y-, n; = n, then 3, (%) < (3).

Sol: If A ~ B and B ~ C, then both |[AN B| and |B N C| are at least 26 > |B|/2,
so |[ANC| > 0. This implies that A ~ C. This relation divides the sets in F into
equivalence classes. Each equivalence class is a subfamily F; that is L’-intersecting, where
L’ = {26,27}. By the uniform RW-inequality, |%;| < (7)), where n; = | Uacr, A|. By
definition of ~, (User, A) N (Uper,B) =0, so |F| < >, (”2’) < (’;)

3) Prove that in Nagy’s coloring given in class, if ¢t = 2 or 3 (mod 4), then there is no blue
K, forr >t —2.

Recall that in the coloring, the vertex set of K, is (
intersect in a set of size zero or two.

[?), and an edge is blue iff the endpoints

Sol: Let C1,...,C, be the vertex of a blue K,. Put C; ~ Cj if |C; N Cj| = 2. Then it is
easy to see that this defines an equivalence relation, since no two of these sets intersect in
exactly one element. Each equivalence class is a subfamily JF; that is 2-intersecting. Let
Ay, ..., Ay, be the sets in F;. We will show that either m; = 1, A; N Ay, is the same set (of
size two) for all j, k (this is called a sunflower), or F; consists of (at most four) 3-subsets
of a four element set.



Suppose that m; > 1 and that F; is not a sunflower. Let A, B,C' € F; with |[ANB| = 2,
and CNA # ANB. We may assume by symmetry that A = 123 and B = 234 and C' = 124.
Then it is easy to see that the only choice for a fourth set D € F; is D = 134.

Let m; = |F;|, and X; = Uaer, A with ¢t; = |X;|. By definition, X; N X; = ( for
1 # j. Clearly m; < t; — 2 if F; is a sunflower, and m; < t; otherwise. By the choice of
t, there are at least two points that are in an X; for which F; is a sunflower. This gives

4) We gave superpolynomial lower bounds in class for the Ramsey number R(t,t) for
infinitely many t. Prove the same lower bound for all ¢, namely, for any fixed € > 0, there
is a to such that for ¢ >ty we have R(t,t) > t(1=9)«®) where w(t) = Int/(4Inlnt).

Hint: As in class, let n = p3. Now let p be the largest prime such that 2(pf1) < t. You
may use the following consequence of the Prime Number Theorem: for any § > 0, there is
a qo such that, if ¢ > g is a prime, then the next largest prime ¢’ > ¢ has the property
that ¢' < (1+ d)q. Use this to prove that for any ¢’ > 0,

(1—-¢")Int <(1+5’)lnt
2lnlnt p 2Inlnt

for sufficiently large ¢t. Then use the estimates for binomial coefficients we have proved to
complete the proof.

Sol: Let ¢ be the next largest prime after p. Then

3 3

P q
2 <t<?2 .
(p—l) (q—l)

Using standard estimates for binomial coefficients (see the similar calculations given in
class), and the Prime Number Theorem, this yields

(2—o0(1))plogp < logt < (2+0o(1))qlogg < (24 o(1))plogp.
This implies that logt ~ 2plogp and also that loglogt ~ log p. This yields
p = (1+0(1))(logt)/(2log p) = (1 + o(1))(logt)/(2log log ).
p3
p2—1
3
with no clique or independent set of size 2(pp_ 1) < t. This was done in class. We only need

To prove the lower bound on R(t,t), we construct a graph on n = ( ) vertices,

to show that n > t(1=9)“(®) Lower bounding n and taking logs, this amounts to showing
that p?logp > (1 — €)log®t/(4loglogt). The bounds for p in terms of ¢ derived above
imply precisely this.

5) Let K = {k1,ko} and L = {l1,...,ls} be two sets of nonnegative integers with k; > s—2
for i = 1,2. Let F C 2["l be an L-intersecting family with |S| € K for each S € F. Prove

that
S s—1

2



Hint: Proceed as in the proof of the uniform RW Theorem presented in class. Instead of
the function (>, x; — k), use the function (>, x; — k1)(>_, i — k2), and instead of letting
Il <s—1,1let [I|] <s—2.

Remark: This can be easily generalized to K = {kq,...,k;} (no need to do it), and then
it provides a common proof of both the uniform and nonuniform RW Theorems (Alon-

Babai-Suzuki 1991).

Sol: We prove the more general version in the Remark. Recall the following Lemma proved
in class

Lemma: Let f: Q — R. Assume that f(I) # 0 for any |I| < r. Then the set of functions
{zrf :|I| <r} is linearly independent.

Proof: Order the subsets of [n] such that I < J implies that |I| < |J|. Then for I, J C [n]
with |I],|J] < r we have z;(J)f(J) # 0if [ = J and = 0 if J < I. By the triangular
criterion proved in class, we conclude that these functions are linearly independent.

Let F ={A1,...,An}, where |A;| < |A;41]| for all ¢, and define the polynomials

filz) = H (v - — ), (x € R™),

k: lk<|Ai|

where v; is the incidence vector of A;. Set

=11 2w~k
i=1 \j=1

Then the Lemma implies that the set of functions {x;f : |I| < r} is linearly independent.
We next show that this set of functions together with the set {f; : 1 < i < m} is linearly
independent. To prove this, suppose that

YoNfi+ > wwf=0.
i=1

[I|<s—r

We first argue that each \; = 0. If not, suppose that i¢ is the smallest ¢ for which \;, # 0.
Substituting A;, above yields the contradiction \;, = 0. Now it follows the all the p; are
zero by the Lemma.

We may assume that all these function are multilinear. Thus we have m + Y77 (7)
linearly independent functions, each of which can be represented by polynomials of degree

at most s. Consequently m < Zfzs_rﬂ (”)
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