Homework #4 Solutions:

0) Continuation of 29.5 from previous homework. Show that
\[n + \lfloor \log n \rfloor \leq \chi_2(f) \leq n + 2\lfloor \log n \rfloor. \]

Sol: The problem is equivalent to showing that \(\lfloor \log n \rfloor \leq \chi(G) \leq 2\lfloor \log n \rfloor \), where \(G \) is the graph with vertex set \(V = ([n] \times [n]) - \{(i,i) : i \in [n]\} \) and vertex \((x,y)\) is adjacent to \((a,b)\) iff \(a = y \) or \(b = x \). For the upper bound, suppose first that \(n = 2^k \). Divide the square \(V \) into four equal parts in the natural way. Color the bottom left and top right subsquares inductively with the same set of colors. Give a single new color to the bottom right subsquare, and another one to the top left subsquare. This is a proper coloring and it uses 2 more colors than are needed for \(n = 2^k - 1 \). Thus we can color in total by \(2^k \) colors. In general, \(2^{k-1} < n \leq 2^k \), so we can color the larger square with side length \(2^k \) and restrict to \(V \).

For the upper bound, just focus on the portion of \(V \) above the diagonal. Let \(C_i \) be the \(i \)th column, and let \(S_i \) be the set of colors received by \(C_i \). Then \(S_i \neq S_j \) if \(i < j \), since the vertex \((i,j)\) is adjacent to all of \(S_j \). If we have a proper \(k \)-coloring, this immediately gives \(2^k \geq n \), since different rows receive distinct subsets of colors. In other words, \(k \geq \lfloor \log n \rfloor \).

1) 7.1

Sol: The projective plane of order \(s - 1 \) is a weak delta system with \(s^2 - s + 1 \) sets. It is not a sunflower since the number of sets containing a fixed point is \(s < s^2 - s + 1 \).

2) 7.2

Sol: Suppose \(A_1, \ldots, A_k \) is a sunflower. There must be a \(V_i \) where the \(A_i \)'s are pairwise disjoint, but \(|V_i| < k \).

3) 7.5

Sol: Copy the proof of Lemma 7.1 verbatim. The only difference is to do induction on \(k \) starting with \(k = 2 \). The base case is trivial, since any two sets have the required property.

4) 7.8

Sol: Suppose \(G^s \) has a clique of size larger than \(s!(k-1)^s \). By the sunflower lemma, we have a sunflower with \(k \) petals. In \(G \), the union of these \(k \) sets is at most \(sk \), and since they form a clique in \(G^s \), there is an edge of \(G \) between every two petals. Consequently, there is a subset of \(G \) of size at most \(ks \) that spans at least \(\binom{k}{2} \) edges, contradiction.

5) Suppose \(\mathcal{F} \subset \binom{[n]}{s} \) is an intersecting family. Show that \(\mathcal{F} \) can be augmented to an intersecting family of size \(2^n - 1 \).

Sol: We claim that for every set \(A \), we can add \(A \) or \([n] - A \) to \(\mathcal{F} \). For if \(A \) couldn't be added, then there is \(B \in \mathcal{F} \) such that \(A \cap B = \emptyset \). Similarly, there exists \(C \in \mathcal{F} \) such that \(([n] - A) \cap C = \emptyset \). But this means that \(B \cap C = \emptyset \), contradiction. Hence, we may keep adding sets to \(\mathcal{F} \) as long as a set and its complement remain. This means that we can augment \(|\mathcal{F}| \) to \(2^n - 1 \).