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Abstract

We prove that the maximum number of edges in a k-uniform hypergraph on n vertices
containing no 2-regular subhypergraph is

(
n−1
k−1

)
if k ≥ 4 is even and n is sufficiently large.

Equality holds only if all edges contain a specific vertex v. For odd k we conjecture that
this maximum is

(
n−1
k−1

)
+ bn−1

k c, with equality only for the hypergraph described above
plus a maximum matching omitting v.

1 Introduction

One of the most basic facts in combinatorics is that an acyclic graph on n vertices has at
most n − 1 edges, with equality only for trees. A natural generalization to hypergraphs (see
Berge [3] for more details) is obtained by defining a circuit to be a hypergraph consisting of
distinct vertices v1, v2, . . . , vk and distinct edges e1, . . . , ek such that vi ∈ ei for i = 1, 2 . . . , k,
vi+1 ∈ ei for i = 1, 2 . . . , k − 1, and v1 ∈ ek. Then a hypergraph H with no circuit satisfies

∑

e∈H

(|e| − 1) ≤ |V (H)| − 1.

In this paper, we consider a generalization to hypergraphs in a different direction. Since a
cycle is a 2-regular graph, we may ask for the maximum number of edges that a hypergraph
on n vertices can have without a 2-regular subgraph – i.e. a subhypergraph in which every
vertex has degree two. Throughout the paper, hypergraphs where all edges have size k are
called k-uniform hypergraphs or, simply, k-graphs. A star is a hypergraph in which there is
a vertex v such that all possible edges containing v are present and there are no other edges.
Our main result shows that stars are the extremal hypergraphs not containing a 2-regular
subgraph when k is even:

Theorem 1. For every even integer k > 2, there exists an integer nk such that for n ≥ nk, if
H is an n-vertex k-graph with no 2-regular subgraph, then |H| ≤ (

n−1
k−1

)
. Equality holds if and

only if H is a star.
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The non-uniform analog of this theorem, which is much simpler, is proved in Section 2. As one
might expect, the proof of Theorem 1 needs completely new techniques than the graph case.
The result is proved via the stability approach. Stability results were introduced in extremal
graph theory by Erdős and Simonovits [15] in the 60’s. The program of using stability to
prove exact results has been recently used with great success in extremal set theory (see
[5, 6, 7, 8, 9, 10, 11]). Perhaps the main difficulty in passing to an exact result when k is odd
is that stars are not extremal when k is odd: it is possible to add to a star on n vertices a
matching of size bn−1

k c, resulting in an n-vertex k-graph with no 2-regular subgraph with a
few more edges than a star. We conjecture that this “star-plus-matching” construction is the
unique extremal configuration when k is odd:

Conjecture 1. For every odd integer k ≥ 3, there exists an integer nk such that for n ≥ nk,
if H is an n-vertex k-graph with no 2-regular subgraph then |H| ≤ (

n−1
k−1

)
+ bn−1

k c. Equality
holds if and only if H is a star with center v together with a maximal matching omitting v.

Conjecture 1 is a weaker version of a conjecture due to Füredi, that for k > 3, a k-graph
containing no two pairs of disjoint sets with the same union has at most

(
n−1
k−1

)
+ bn−1

k c edges.
For odd k > 3, this implies Conjecture 1; in fact, a hypergraph consisting of two pairs of
disjoint edges with the same union is the smallest possible 2-regular k-graph when k is odd.
The question of determining the maximum number of edges fk(n) of a k-graph on n vertices
containing no two pairs of disjoint edges with the same union was originally raised by Erdős
(see [4]). This problem was studied by Frankl and Füredi [4], and the authors [12], who showed
that fk(n) < 3

(
n

k−1

)
. The best bounds are given in Pikhurko and the second author [13], where

it is shown that f3(n) < 13
9

(
n
2

)
and fk(n) < (1 + 2√

k
)
(

n
k−1

)
for all k.

This paper is organized as follows. In the next section, we prove the non-uniform analog
of Theorem 1, that a collection of subsets of an n-element set with no 2-regular subsystem
has size at most 2n−1 with equality (for n ≥ 3) only for a star. In fact, the same proof
shows the nonuniform analogue of Füredi’s conjecture, that the maximum size of a collection
of nonempty subsets of [n] containing no two pairs of disjoint sets with the same union is
2n−1 + 1 (it is easy to see that there are many families achieving this bound, and hence there
is no simple characterization of equality).

In Section 3, we present two lemmas used to prove Theorem 1. The proof of Theorem 1 is
in Sections 4–6, and has three parts. First we shall show (see Section 4) that if H is an n-
vertex k-graph with no 2-regular subgraph, then |H| . (

n−1
k−1

)
. Using this result, we prove the

stability result (see Section 5), which says that if |H| ∼ (
n−1
k−1

)
then 4(H) ∼ (

n−1
k−1

)
. Finally,

we use this stability theorem to prove Theorem 1 in Section 6. The final section mentions
related open problems.

Terminology. A hypergraph is a family of subsets of a set of vertices, called edges. We
denote by |H| the number of edges in a hypergraph H. If H is a hypergraph, then V (H)
denotes the set of vertices. The degree of a vertex v, written d(v), is the number of edges
containing that vertex. A matching is a hypergraph in which every vertex has degree one
– such a hypergraph M consists of pairwise disjoint edges e1, e2, . . . , em for some m and
V (M) = e1 ∪ e2 ∪ · · · ∪ em. A k-graph is a hypergraph where all sets have size k, and a
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hypergraph is r-regular if all its vertices have degree r. We write
(
X
k

)
for the collection of

all k-sets of X. A star is a hypergraph on a vertex set X consisting of all possible edges
containing a fixed vertex of X. In the context of k-graphs, a star consists of all possible k-sets
containing a fixed vertex of X. For a hypergraph H, denote by 4(H) its maximum degree.
For v ∈ V (H), let H − {v} = {e ∈ H : v 6∈ e} and Hv = {e \ {v} : v ∈ e ∈ H}. If f, g : N→ R
are two functions then we write f(n) & g(n) to denote that f(n) ≥ g(n)h(n) for some function
h(n) such that lim infn→∞ h(n) = 1. This is an equivalent but more convenient way to write
f(n) ≥ (1 + o(1))g(n). In the case f(n) = (1 + o(1))g(n) we write f(n) ∼ g(n). If there is a
constant c > 0 such that f(n) ≥ cg(n) for all n, then we write f(n) À g(n). Throughout this
paper, k is always fixed relative to n.

2 Non-uniform hypergraphs

In this section, we prove the non-uniform analog of Theorem 1. We stipulate that edges of a
hypergraph are non-empty sets. A star on n vertices is a hypergraph consisting of all 2n−1

sets containing a fixed vertex.

Theorem 2. Let n ≥ 1 and let H be a hypergraph on n vertices containing no 2-regular
subgraph. Then |H| ≤ 2n−1. If n ≥ 3 and equality holds, then H is a star.

Proof. We remark that it is easy to obtain an upper bound 2n−1: if H has no 2-regular
subgraph, then H contains at most one complementary pair – a complementary pair consists
of the edge e and the edge V (H)\e. This shows |H| ≤ 2n−1 + 1, but if H contains both edges
of some complementary pair, then V (H) cannot be an edge of H, showing |H| ≤ 2n−1. For
the characterization of equality, we proceed by induction on n for n ≥ 3.

It is straightforward to check the case n = 3; we omit the details. Now we proceed to the
induction step. Let us assume that n ≥ 4 and H has size 2n−1 and no 2-regular subgraph.
We will show that H is a star, which proves Theorem 2. First we show that every vertex of
H, apart from at most one vertex, has degree exactly 2n−2. If there is a vertex v ∈ V (H)
with d(v) < 2n−2, then H − {v} has a 2-regular subgraph, by induction. So every vertex of
H has degree at least 2n−2. Pick a vertex x ∈ V (H). If x is contained in every set in H,
then H is a star with center x and all other vertices have degree 2n−2. We may therefore
assume that there exists an e ∈ H missing x. Assume that |e| = k where 1 ≤ k ≤ n. For each
subset f ⊂ V (H)\(e ∪ {x}), the number of edges in H containing x whose intersection with
V (H)\(e ∪ {x}) is f is at most 2k−1, for otherwise two of these edges have complementary
intersections in e and these together with e give a 2-regular subgraph, a contradiction. Hence
the number of edges containing x is at most 2n−k−12k−1 = 2n−2. So x has degree exactly
2n−2, in which case |H − {x}| = 2n−2. By induction, H − {x} is a star with center at some
vertex w. Suppose, for a contradiction, that there exist distinct edges e, f containing x but
not w. Then the edges

e, f, {w} ∪ (e\f), {w} ∪ (f\e)
form a 2-regular subgraph of H, a contradiction. So at most one edge containing x does not
contain w. If such an edge e exists, then pick an edge f containing x and w – this is possible
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since x has degree 2n−2 ≥ 2. It follows that

e, f, e4f

is a 2-regular subgraph of H. So we have shown that all edges containing x must also contain
w. Therefore H is a star with center w.

3 Preliminary Lemmas

In this section, we present two lemmas which will be used in proving Theorem 1. The first
lemma involves matchings. If M1 and M2 are distinct matchings and V (M1) = V (M2), then
M14M2 is a hypergraph whose vertices all have degree two. This observation is the key point
of the following lemma.

Lemma 1. Let H be a k-graph on n vertices containing no 2-regular subgraph. Then |H| ≤
6n∆(k−1)/k or |H| < 2k4.

Proof. Let d = k|H|/n and suppose |H| ≥ 2k4. Then it is enough to prove that 4 ≥
(1/k)(d/6)k/(k−1) to prove the lemma, for this implies the second inequality in

|H| ≤ 6n

(
1
k

(
d

6

)k/(k−1)
)(k−1)/k

≤ 6n∆(k−1)/k.

Suppose, for a contradiction, that this is not true. We count matchings in H of size m =
b|H|/k4c to show that H contains a 2-regular subgraph. Note that m ≥ 2 since |H| ≥ 2k4.
For a lower bound on the number of matchings of size m, we may greedily pick disjoint edges
f1, f2, . . . , fm where at each step we exclude all edges that intersect previously chosen edges.
Since at each step we exclude at most k∆ new edges, the number of matchings of size m in
H is at least

1
m!

m−1∏

i=0

(|H| − k∆i) =
1
m!
|H|m

m−1∏

i=0

(
1− k4i

|H|
)
≥ 1

m!
|H|m

m−1∏

i=0

(
1− i

m

)
≥ (k4)m.

To complete the proof, we show that there exist distinct matchings M1, M2 of H such that⋃
f∈M1

f =
⋃

f∈M2
f . This suffices, since the edges in M14M2 form a 2-regular subgraph,

contradicting the fact that H has no 2-regular subgraph. First note that
(

n

mk

)
<

(
3n

mk

)mk

≤
(

6k4
d

)km

< (k4)m.

Here we used m ≥ dn/2k24 and then the assumed upper bound on 4. Since
(

n
mk

)
is the

number of sets of mk vertices of H, and there are more than (k4)m matchings of size m in
H, we find the two required distinct matchings M1,M2.

Our second lemma involves circuits in hypergraphs. A circuit is a hypergraph consisting of
distinct vertices v1, v2, . . . , vk and distinct edges e1, . . . , ek such that vi ∈ ei for i = 1, 2 . . . , k,
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vi+1 ∈ ei for i = 1, 2 . . . , k − 1, and v1 ∈ ek. We require the following lemma on 2-regular
subgraphs arising from circuits in hypergraphs of a certain bipartite structure:

Lemma 2. Let G be a k-graph and V (G) = A ∪ B, where A ∩ B = ∅, all edges e ∈ G have
|e∩A| = k−1, and every (k−1)-set in A lies in at least two edges of G. If G has no 2-regular
subgraph, then

|G| < 2|B|
(|A|+ k − 3

k − 2

)
.

Proof. It is enough to show |G| < 2|B|(|A|−1
k−2

)
when k − 1 divides |A|, since we may always

add at most k − 2 points to A so that k − 1 divides |A|. Baranyai’s Theorem [2] states that
if s divides n, then the complete s-graph on n vertices can be partitioned into

(
n−1
s−1

)
perfect

matchings. Using this theorem with s = k − 1, we write
(

A

k − 1

)
= M1 ∪M2 ∪ · · · ∪M(|A|−1

k−2 )

where each M i is a matching and the matchings are edge-disjoint. For each matching M i =
{ei

1, . . . , e
i
a}, let Gi be the set of edges in G whose intersection with A is ei

j for some j. Let
f i

j be the set of vertices v ∈ B such that ei
j ∪ {v} ∈ Gi. Consider the hypergraph H i

j with
edges f i

j , j = 1, . . . , a. If H i
j contains a circuit with vertices v1, v2, . . . , vp, then G contains the

2-regular subgraph with edges

ei
1 ∪ {v1} ei

1 ∪ {v2} ei
2 ∪ {v2} ei

2 ∪ {v3} ei
p ∪ {vp} ei

p ∪ {v1}

which contradicts that G has no 2-regular subgraph. Consequently, H i
j has no circuit. It is

well-known that a hypergraph H with no circuit satisfies
∑

e∈H

(|e| − 1) ≤ (|V (H)| − 1). (1)

Since every (k − 1)-set in A lies in at least two edges of G, |f i
j | ≥ 2 for all i, j. Applying (1)

to H i
j , we therefore obtain

∑

j

|f i
j | ≤

∑

j

2(|f i
j | − 1) < 2|B|. (2)

Adding (2) over different i, j, we obtain

|G| =
∑

i

∑

j

|f i
j | ≤ 2|B|

(|A| − 1
k − 2

)
.

4 The Asymptotic Result

Theorem 3. Let k ≥ 3 and let H be an n-vertex k-graph with no 2-regular subgraph. Then

|H| −
(

n− 1
k − 1

)
¿ nk−1−1/11.
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Proof. We prove the following more precise statement: for all n > k100,

|H| <
⌊
(1 + cn−γ)

(
n− 1
k − 1

)⌋

where c = 4(k +1)! and γ = 1
11 . Define α = (k +1)/(3k−1) for k > 3 and α = 7/11 for k = 3.

Suppose, for a contradiction, that |H| is at least this upper bound for some H. By deleting
some edges, we may assume that |H| is equal to the stated upper bound. Let T denote the
set of vertices of H of degree at least D = nk−1−α, and set t = |T |. Then tD ≤ k|H| and,
since n > k100,

t < D−1k(1 + cn−γ)
(

n− 1
k − 1

)
< knα. (3)

Let Hi = {e ∈ H : |e ∩ T | = i} for i ≤ k, and define G = {e ∈ H1 : @f ∈ H1 : e \ T = f \ T}.
In particular, it is clear that |G| ≤ (

n−1
k−1

)
.

Claim 1. |Hi| <
{

6n1+(k−1)(k−1−α)/k for i = 0
|G|+ 2knk−2+α for i = 1

Proof. Since 4(H0) < D, by definition of T , the first bound follows from Lemma 1. For
the second bound, we apply Lemma 2 to H1\G with A = V (H)\T and B = T to obtain
|H1\G| < 2|T |(n+k−3

k−2

)
< 2tnk−2. The bound on |H1| now follows from (3).

Claim 2. |H\(H0 ∪H1)| <
{

k2nk−2+2α for k > 3
6(n1+α + n3α) for k = 3

Proof. For k > 3, by definition, every edge in H\(H0 ∪ H1) contains two vertices of T and
k − 2 vertices of V (H), so certainly |H\(H0 ∪H1)| ≤

(|T |
2

)
nk−2. Now apply (3). For k = 3,

observe that |H3| <
(|T |

3

)
. Furthermore, by Lemma 2, with A = T and B = V (H)\T ,

|H2| < 2|T |(n−|T |)+
(|T |

2

)
< 2tn. Here we note that there could be

(|T |
2

)
pairs in T contained

in only one triple of H2. Those contained in two triples or more are the ones to which Lemma
2 applies, giving the bound 2|T |(n− |T |) for those triples. Using (3) gives the claim.

Now we complete the proof. By definition of α, the bounds in Claims 1 and 2 are all of order
at most nk−1−γ (the case i = 0 in Claim 1 needs a somewhat tedious calculation). Specifically,

|H\G| = |H0|+ |H1\G|+ |H\(H0 ∪H1)| < (6 + k2 + 2k)nk−1−γ < 4k2nk−1−γ . (4)

Using the bound |G| ≤ (
n−1
k−1

)
in (4), we obtain

|H| = |G|+ |H\G| <
(

n− 1
k − 1

)
+ 4k2nk−1−γ <

⌊
(1 + 4(k + 1)!n−γ)

(
n− 1
k − 1

)⌋
.

The constant c = 4(k+1)! appears here: we used the fact that 4k2nk−1−γ < 4(k+1)!n−γ
(
n−1
k−1

)

for n > k100. This contradiction completes the proof.
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5 Stability

Theorem 4. Let k ≥ 3 and let Hn be an n-vertex k-graph with no 2-regular subgraph. If
|Hn| ∼

(
n−1
k−1

)
, then 4(Hn) ∼ (

n−1
k−1

)
.

Proof. For simplicity of notation, we let H = Hn and omit the subscript n when dealing
with hypergraphs constructed from H. As in the proof of Theorem 3, let T denote the set of
vertices in H of degree at least nk−1−α, H1 = {e ∈ H : |e ∩ T | = 1} and G = {e ∈ H1 : @f ∈
H1 : e \ T = f \ T}. Define

G′ = {e \ T : e ∈ G}.
For each x ∈ T , let Gx = {e ∈ G′ : e ∪ {x} ∈ G}. Let v be a vertex such that |Gv| =
maxx∈T |Gx|. Note that all sets in G have size k, and all sets in G′ or any Gx have size k− 1.
By (4), |G′| = |G| ∼ |H| ∼ (

n−1
k−1

)
, so it suffices to prove that |Gv| ∼ |G′|. Suppose, for a

contradiction, that for some positive ε < 1
2 ,

|Gv| . (1− ε)|G′|. (5)

The strategy is to use (5) to derive a contradiction by finding edges e, e′ ∈ Gx and f, f ′ ∈ Gy,
for some x 6= y, such that |e ∩ f | = 1 = |e′ ∩ f ′|, e4f = e′4f ′ and e ∩ f 6= e′ ∩ f ′ (sometimes
the latter condition will be guaranteed by e ∩ e′ = ∅ = f ∩ f ′). For in this case, the edges

e ∪ {x} e′ ∪ {x} f ∪ {y} f ′ ∪ {y} (6)

form a 2-regular subgraph of H.

For any hypergraph F , define P (F ) = {{e, f} ⊂ F : |e∩f | = 1}. Define P1(G′) ⊂ P (G′) to be
the set of pairs {e, f} ∈ P (G′) such that e, f ∈ Gx for some x, and P2(G′) = P (G′)\P1(G′).

Claim 1. |P2(G′)| ≤ 1
2

(
t
2

)(
2k−4
k−2

)(
n−1
2k−4

)
.

Proof. Fix distinct vertices x, y ∈ T . We show that the number of {e, f} ∈ P2(G′) such that
e ∈ Gx and f ∈ Gy is at most 1

2

(
2k−4
k−2

)(
n−1
2k−4

)
. This completes the proof, since there are

(
t
2

)

choices for x and y.

Given a set S of size 2k − 4, let us count the number of pairs {e, f} ∈ P2(G′) with e4f = S

that satisfy e ∈ Gx and f ∈ Gy. Suppose that we have at least one such pair {e, f} with
e ∩ f = {z}. Any other such pair {e′, f ′} must also satisfy e′ ∩ f ′ = {z}, otherwise the four
edges e∪ {x}, e′ ∪ {x}, f ∪ {y}, f ′ ∪ {y} form a 2-regular subgraph. Hence the number of such
pairs is at most the number of (unordered) partitions of S into two sets of size k − 2, which
is (1/2)

(
2k−4
k−2

)
. The number of ways to choose S is at most

(
n−1
2k−4

)
. Putting this all together

we obtain the required bound in the claim.

For the rest of the proof, let ψ(ε) = ((1 − ε)2 + ε2)1/2. For i ∈ {1, 2}, let Qi(G′) denote
the set of pairs {{e, f}, {e′, f ′}} such that {e, f}, {e′, f ′} ∈ Pi(G′), e ∩ e′ = ∅ = f ∩ f ′ and
e4f = e′4f ′. These are called type i quadrilaterals of G′. For x ∈ T , define Q1(Gx) to be
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the collection of pairs {{e, f}, {e′, f ′}} ∈ Q1(G′) such that {e, f, e′, f ′} ⊂ Gx. These are type
1 quadrilaterals of Gx. Let K be the complete (k − 1)-graph on V (G′). Recall that P (K) is
the number of pairs {e, f} ⊂ K such that |e ∩ f | = 1. So in the case that k = 2, when K is
the complete graph, this is just the number of paths of length two. More generally, we have

|P (K)| ∼ 1
2
(k − 1)

(
n− 1
k − 1

)(
n− 1
k − 2

)
. (7)

Claim 2. |P1(G′)| . ψ(ε) · |P (K)|.

Proof. Let {{e, f}, {e′, f ′}} ∈ Q1(G′). If e, f ∈ Gx and e′, f ′ ∈ Gy with x 6= y, then we
obtain a 2-regular subgraph similar to that in (6). We conclude that if e, f ∈ Gx, then also
e′, f ′ ∈ Gx. It follows that

|Q1(G′)| =
∑

x∈T

|Q1(Gx)|. (8)

For a pair {g, h} of disjoint sets of size k − 2 in V (G′), let p(g, h) denote the number of pairs
{e, f} ∈ P1(G′) with e\f = g and f\e = h. The number of such pairs {g, h} is at most

((
n−1
k−2

)

2

)
:= N.

Note also that the sum of p(g, h) over all {g, h} ⊂ V (G′) is exactly |P1(G′)|. By convexity of
binomial coefficients,

|Q1(G′)| =
∑

{g,h}

(
p(g, h)

2

)
&

(|P1(G′)|/N
2

)
·N ∼ |P1(G′)|2

(
n−1
k−2

)2 . (9)

The first equality is the hypergraph analog of the fact that the number of quadrilaterals in
a graph F is exactly

∑
u,v∈V (F )

(
p(u,v)

2

)
where p(u, v) is the number of paths of length two

from u to v in F . On the other hand, we observe that |Q1(Gx)| ≤ 1
2(k − 1)2

(|Gx|
2

)
, since if

we fix two disjoint edges, say e, e′ ∈ Gx, then the number of type 1 quadrilaterals of the form
{{e, f}, {e′, f ′}} is at most (k − 1)2. The same type 1 quadrilaterals are counted if we had
fixed the two disjoint edges f, f ′ ∈ Gx instead of e, e′, and this gives the additional factor of
2 in the observation. Therefore, by (8),

|Q1(G′)| ≤ 1
2
(k − 1)2

∑

x∈T

(|Gx|
2

)
.

By convexity, this sum is a maximum when |Gv| ∼ (1 − ε)|G′| and |Gw| ∼ ε|G′| for some
w 6= v, and the rest of the |Gx|s are zero. Therefore

|Q1(G′)| . 1
4
(k − 1)2ψ(ε)2|G′|2. (10)

Combining (9), (10), |G′| ∼ (
n−1
k−1

)
, and (7) we obtain

|P1(G′)| . ψ(ε) · 1
2
(k − 1)|G′|

(
n− 1
k − 2

)
. ψ(ε)|P (K)|.
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This proves Claim 2.

The next claim is intuitively obvious since |G′| ∼ |K| ∼ (
n−1
k−1

)
. We present a formal proof

below.

Claim 3. |P (G′)| ∼ |P (K)|.

Proof. We note that |P (K)| = n
((n−1

k−2)
2

)
, since we may choose any vertex and two disjoint

(k − 1)-sets containing it. Let dx be the number of sets in K\G′ which contain x ∈ V (G′).
Then

∑

x∈V (G′)

dx = (k − 1)|K\G′|.

Using this we obtain

|P (K)\P (G′)| ≤
∑

x∈V (G′)

(
dx

2

)
+

∑

x∈V (G′)

dx

((
n− 2
k − 2

)
− dx

)

= (k − 1)|K\G′|
(

n− 2
k − 2

)
− 1

2

∑

x∈V (G′)

d2
x −

1
2
(k − 1)|K\G′|. (11)

Now since |P (K)| is of order n2k−3, and |G′| ∼ |K|, we see that all terms in (11) are negligible
relative to |P (K)|, except possibly the sum of d2

x. We wish to find

max
∑

x∈V (G′)

d2
x if

∑

x∈V (G′)

dx = |K\G′|.

The maximum possible value of dx is
(
n−2
k−2

)
. For a maximum of the sum of squares, we let

(k − 1)|K\G′|(
n−2
k−2

)

of the dx take the value
(
n−2
k−2

)
, and the rest are zero (note that for a maximum, it is not

necessary that there exist a hypergraph K\G′ realizing these values of dx). Therefore

max
∑

x∈V (G′)

d2
x ≤ (k − 1)|K\G′|

(
n− 2
k − 2

)

and again this is negligible relative to |P (K)| since |K| ∼ |G′| and |P (K)| has order n2k−3.
This proves the claim.

We complete the proof of Theorem 4 for k > 3. By (3), t ≤ knα where α < 1
2 (this relies on

k > 3). Therefore Claims 1,2, and 3 imply that

|P (K)| ∼ |P (G′)| = |P1(G′)|+ |P2(G′)|
. ψ(ε)|P (K)|+

(
t

2

)(
2k − 4
k − 2

)(
n

2k − 4

)

∼ ψ(ε)|P (K)|. (12)
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However, ψ(ε) = ((1 − ε)2 + ε2)1/2 is bounded away from 1, so the above inequality is a
contradiction.

For k = 3, G′ is a graph and P (G′) is the set of paths of length two in G′. The problem with
the above arguments for k = 3 is that (3) only gives t ≤ 3n7/11, which is too large for (12) to
hold (since

(
t
2

)(
n

2k−4

)
has order n3+3/11). Therefore we go one step further, and count paths

of length three in G′ instead of paths of length two. Let P3(G′) be the number of paths of
length three in G′ with edges from three different Gxs. By Claims 2 and 3

|P2(G′)| = |P (G′)| − |P1(G′)| & (1− ψ(ε))|P (K)| À n3. (13)

As in Claim 1, if {{e, f}, {e′, f ′}} is a type 2 quadrilateral of G and e, e′ ∈ Gx and f, f ′ ∈ Gy,
then we obtain a 2-regular subgraph of H. So each type 2 quadrilateral contains edges from
at least three different Gxs, and these edges form a path of length three in G′. Consequently,
as in (9), the convexity of binomial coefficients and (13) give

|P3(G′)| ≥ 1
4
|Q2(G′)| ≥ 1

4

(|P2(G′)|/N
2

)
N À n4

since N =
(
n−1

2

)
. Let (A,B) be a random partition of V (G′), defined by placing a vertex in

A with probability 1
2 and in B with probability 1

2 , independently for each vertex of V (G′).
Let G∗ denote the graph consisting of all edges between A and B. Then the expected value
of |P3(G∗)| is exactly 1

8 |P3(G′)|, so there is a partition of G′ for which

|P3(G∗)| ≥ 1
8
|P3(G′)| À n4. (14)

Let e1e2e3 and f1f2f3 be two paths in G∗ with the same pair of endpoints. Suppose ei ∈ Gj(i)

and fi ∈ Gh(i) where {j(1), j(2), j(3)} = {h(1), h(2), h(3)}. Since G∗ is bipartite, amongst
these edges there is a cycle C of length four or six containing exactly zero or two edges from
each Gj(i), i = 1, 2, 3. It is easily checked that the unique edges of H ′ which contain the edges
of C form a 2-regular subgraph of H, which is a contradiction. We conclude that at most

(
t
3

)

paths of length three in G∗ with edges in different Gis have the same pair of endpoints. It
follows that

|P3(G∗)| ≤
(

t

3

)(
n

2

)
¿ n4− 1

11

using (3). This contradicts (14), and completes the proof of Theorem 4.

6 The Exact Result

In this section we prove Theorem 1. Our main tools are the asymptotic and stability result.
Let H be an n-vertex k-graph containing no 2-regular subgraph, where k ≥ 4 is even, and
suppose |H| =

(
n−1
k−1

)
. Let ε = 1

100k4k . By Theorem 4, for large enough n, there is a vertex
v ∈ V (H) such that

|H − {v}| ≤ εnk−1. (15)
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Let H∗ = H − {v}. To complete the proof, we show |H∗| = 0. Suppose, for a contradiction,
that |H∗| > 0. For |e| = k − 2, let dv(e) be the number of sets in Hv containing e. Let

s = n− k + 1− 2k|H∗|(
n−1
k−2

) .

Claim 1. There are pairwise disjoint (k−2)-sets e1, e2, . . . , ek ⊂ V (H)\{v} such that dv(ei) ≥
s for each i ∈ {1, 2, . . . , k}.

Proof. Let F be the family of (k − 2)-sets in V (Hv) whose degree is at least s, and let F c be
the rest of the (k − 2)-sets in V (Hv). Then

(k − 1)|Hv| =
∑

e

dv(e) ≤ |F |(n− k + 1) + |F c|s.

where the sum is over e ⊂ V (Hv) of size k − 2. As |F |+ |F c| = (
n−1
k−2

)
, this implies

2k|H∗||F |(
n−1
k−2

) ≥ (k − 1)|Hv| − s

(
n− 1
k − 2

)
= 2k|H∗| − (k − 1)|H∗|

since |H∗| =
(
n−1
k−1

) − |Hv|. Hence |F | ≥ (
1− k−1

2k

) (
n−1
k−2

)
> 1

2

(
n−1
k−2

)
. Let {e1, e2, . . . , el} be a

maximum matching in F . If l < k, then all other sets of F have an element within e1 ∪ e2 ∪
· · · ∪ el, which implies (since we may take n large enough) that

|F | ≤ (k − 1)(k − 2)
(

n− 1
k − 3

)
< k2

(
n− 1
k − 3

)
<

1
2

(
n− 1
k − 2

)
.

This contradiction shows that l ≥ k and the claim is proved.

Let W = {w ∈ V (Hv) | ∃i : ei ∪ {v, w} 6∈ H}. By Claim 1, |W | < k(n− s). By adding points
arbitrarily to W , we may assume that |W | = dk(n − s)e. Define, for each i ∈ {0, 1, . . . , k},
Hi = {e ∈ H∗ : |e ∩W | = i} and let G = H0 ∪H1 ∪ · · · ∪Hk−2. Note that the Hi partition
H∗.

Claim 2. |Hk−1| ≤
( |W |
k−1

)
.

Proof. Suppose there exists a (k − 1)-set e ⊂ W and elements y, z 6∈ W such that e ∪ {y}, e ∪
{z} ∈ Hk−1. Since |e| = k − 1, by Claim 1 and the definition of W there exists i such that
ei ∩ e = ∅ and ei ∪ {v, y}, ei ∪ {v, z} ∈ H. Together with e ∪ {y} and e ∪ {z}, this yields a
2-regular subgraph in H. This contradiction implies that we may count sets in Hk−1 by their
intersection with W to obtain |Hk−1| ≤

( |W |
k−1

)
.

Claim 3. |H∗| ≥ (
n−k−1
k/2−1

)
.

Proof. Since |H∗| ≥ 1, there exists e ∈ H∗. Let e′ be a k
2 -subset of e. Now for each choice of a

(k
2 − 1)-set f ⊂ V (Hv)\e, one of the sets f ∪ e′ ∪ {v} or f ∪ (e\e′)∪ {v} must be missing from

H, otherwise these two sets together with e form a 2-regular subgraph of H. Consequently,
|H∗| ≥ (

n−k−1
k/2−1

)
.

Claim 4. |G| > 99
100 |H∗|.
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Proof. We show |Hk−1|+|Hk| < 1
100 |H∗|. By Theorem 3, there is a smallest integer n0 = n0(k)

such every k-graph on n vertices with no 2-regular subgraph and with n > n0 has at most
2
(
n0−1
k−1

)
edges. Assume also that n0 > 3k2. If |W | < n0, then |Hk|+ |Hk−1| < |W |k < nk

0. If n

is large enough then, by Claim 3, this is less than |H∗|
100 , as required. So we assume |W | > n0.

Since the k-graph Hk itself contains no 2-regular subgraph, |Hk| ≤ 2
(|W |−1

k−1

)
. Recall that

|W | = dk(n− s)e =

⌈
k

(
k − 1 +

2k|H∗|(
n−1
k−2

)
)⌉

< k2 +
2k2|H∗|(

n−1
k−2

) .

Using this and |W | > n0 > 3k2, we obtain

|W | < 3
2

2k2|H∗|(
n−1
k−2

) =
3k2|H∗|(

n−1
k−2

) .

Now suppose, for a contradiction, that |Hk|+ |Hk−1| > |H∗|
100 . By Claim 2,

|H∗|
100

< |Hk|+ |Hk−1| < 2
(|W | − 1

k − 1

)
+

( |W |
k − 1

)
<

3|W |k−1

(k − 1)!
<

k2k|H∗|k−1

(
n−1
k−2

)k−1
.

Simplifying,

|H∗|k−2 >

(
n− 1
k − 2

)k−1 1
100k2k

>

(
n− 1
k − 2

)(k−2)(k−1) 1
100k2k

>
(n− 1)(k−2)(k−1)

100k(k−2)(k−1)+2k
.

This implies that |H∗| > (n−1)k−1

100kk−1+2k/(k−2) > εnk−1, which contradicts (15). This completes the
proof of Claim 4.

Let p be the number of pairs (e, f) such that

(1) v 6∈ e ∈ H and |e ∩W | ≤ k − 2 (i.e. e ∈ G = ∪k−2
i=0 Hi)

(2) v ∈ f 6∈ H and |f | = k (so the number of such fs is |H∗|)
(3) |e ∩ f | = k

2

(4) e ∩ f and e\f (which are both k
2 -sets) have a point outside W .

Fix e ∈ H as in (1) above. Since |e \W | ≥ 2, there is a k
2 -subset g ⊂ e such that neither g nor

e\g lies within W . Let h be a (k
2 − 1)-subset of V (H)\(W ∪ e ∪ {v}) and let f = g ∪ h ∪ {v}.

Then the three sets e, f, (e\g)∪h∪{v} form a 2-regular subgraph. Consequently, either g ∪h

or (e\g) ∪ h is not in Hv. The number of pairs {g, e\g} that we can take in this argument is
at least

1
2

(
k

k/2

)
−

(|W ∩ e|
k/2

)
≥ 1

2

(
k

k/2

)
−

(
k − 2
k/2

)
.

Therefore, counting p from the e’s we have

p ≥ (0.99)|H∗|
(

1
2

(
k

k/2

)
−

(
k − 2
k/2

))(
n− |W | − k − 1

k/2− 1

)

> (0.98)|H∗|
(

1
2

(
k

k/2

)
−

(
k − 2
k/2

))(
n

k/2− 1

)
,
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where the last inequality holds since |W | < εk4kn and n is sufficiently large.

On the other hand, counting p from the fs we have p ≤ |H∗|(k−1
k/2

)
q, where q is the number of

different ways the k
2 -sets g ⊂ f\{v} can extend to e, where e ∩ f = g. Let F be the k

2 -graph
of these possible extensions of g to e. Let F0 ⊂ F be the k

2 -graph whose edges have no points
in W and F1 ⊂ F be the k

2 -graph whose edges have at least one point in W .

Claim 5. |F0| < 2
(

n
k/2−1

)
/k and |F1| ≤ εk2k

(
n

k/2−1

)
.

Proof. We start with F1: to each k
2 -set h ∈ F1 associate a (k

2 − 1)-set h′ ⊂ h such that
h′ ∩W 6= ∅ and W ∩ h ⊂ h′. Such an h′ exists by the definition of F1. If there are distinct
h1, h2 ∈ F1 with h′1 = h′2, then there are distinct vertices y, z 6∈ W such that h1 = h′1∪{y} and
h2 = h′2 ∪ {z}. By Claim 1, there exists i for which ei has no point of W ∩ (g ∪ h1 ∪ h2). Now
the four sets g∪h1, g∪h2, ei∪{v, y}, ei∪{v, z} form a 2-regular subgraph of H, contradicting
that H has no 2-regular subgraph. Consequently, |F1| is at most the number of (k

2 − 1)-sets
of V (H) that contain at least one point of W . This is at most

|W |
(

n

k/2− 2

)
<

3k2εnk−1

(
n−1
k−2

)
(

n

k/2− 2

)
< εk2k

(
n

k/2− 1

)
.

This gives the bound on |F1|. If there are distinct h1, h2 ∈ F0 with |h1 ∩ h2| = k/2− 1, then
arguing as above we find a 2-regular subgraph of H. Consequently, |F0| <

(
n

k/2−1

)
/
( k/2
k/2−1

)
.

Putting these bounds together we have q ≤ εk2k
(

n
k/2−1

)
+ 2

(
n

k/2−1

)
/k, and this gives

p ≤ (1 + εk4k)|H∗|
(

k − 1
k/2

)
2
k

(
n

k/2− 1

)
.

Comparing the upper and lower bounds for p and dividing by |H∗|( n
k/2−1

)
yields

(0.98)
(

1
2

(
k

k/2

)
−

(
k − 2
k/2

))
< (1 + εk4k)

2
k

(
k − 1
k/2

)
.

Since ε < k4k/100 this implies that

(0.97)
(

1
2

(
k

k/2

)
−

(
k − 2
k/2

))
<

2
k

(
k − 1
k/2

)
.

A short calculation shows that this is equivalent to (0.97k − 2)(k − 1) < 0.97k(k
2 − 1), and

it is easily verified that this is false for k ≥ 4. This contradiction completes the proof of the
theorem.

7 Concluding Remarks

A k-graph is r-regular if all its vertices have degree r. In contrast to Theorem 1, if the degrees
in a k-graph are all the same, then a linear number of edges already forces a 2-regular subgraph.
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Precisely, let φk denote the maximum number φ such that there exists a φ-regular k-graph
containing no 2-regular subgraph. Then Lemma 1 immediately implies that φk ≤ (6k)k. On
the other hand, we have a lower bound of

(3k/2−1
k−1

)
when k is even and

(
2k−1
k−1

)
when k is odd,

by taking complete k-graphs of the appropriate size (these contain no 2-regular subgraphs
because every 2-regular subgraph has at least 3k/2 vertices when k is even and at least 2k
vertices when k is odd). The lower bounds are of order ck, so there is a substantial gap in
the bounds for φk. We leave the open problem of determining φk and, in particular, φ3. It is
expected that if a k-graph is φ-regular and φ is a large enough constant depending on k and
r, then every φ-regular k-graph has an r-regular subgraph (a subgraph in which every vertex
has degree r). In fact, this should hold for multi-k-graphs – instead of a set of edges a multiset
of edges is allowed. Therefore we make the following conjecture:

Conjecture 2. Let k, r ≥ 2. There exists an integer φk(r) such that for φ >> φk(r), every
φ-regular multi-k-graph contains an r-regular subgraph.

This conjecture is wide open for k, r ≥ 3. If r is a prime not dividing k and we superimpose
r− 1 copies of the complete k-graph on k + 1 vertices, namely Kk

k+1, then we obtain a multi-
k-graph Hr,k containing no r-regular subgraph. To check this, let J be the all-one matrix,
so that J − I is the incidence matrix of Kk

k+1, with rows indexed by edges and columns by
vertices. Then over Zr, the field of integers mod r, we have (r − 1)(J − I) = I − J , and
this matrix has full rank over Zr, since r does not divide k. Therefore no set of rows of
(r − 1)(J − I) is linearly dependent over Zr, which means Hr,k has no non-empty subgraph
in which all vertices have degree zero modulo r. This simple construction shows that if φk(r)
exists, then φk(r) ≥ k(r − 1). For k = 2, in other words, for multigraphs, Tâskinov [16]
completely determined φk(r) using Tutte’s f -Factor Theorem. Unfortunately, no analogous
theorem for k-graphs is known when k ≥ 3. The following positive evidence for Conjecture 2
follows immediately by extending the proof of Alon, Friedland, Kalai [1] and uses Chevalley’s
theorem:

Theorem 5. Let H be an n-vertex multi-k-graph, such that H is k(r − 1) + 1-regular, where
r is a prime number. Then H has a subgraph all of whose vertex degrees are elements of
{r, 2r, . . . , (k − 1)r}.

The multi-k-graph Hr,k shows that Theorem 5 is tight. Further evidence for Conjecture 2
comes from Rödl’s packing method [14]. A k-graph is linear if no two of its edges intersect
in two or more points. If M is a matching in a k-graph H, let ex(M) denote the number
of vertices not covered by M . Rödl’s Theorem [14] says that every linear n-vertex d-regular
k-graph contains a matching M such that ex(M) ≤ d−εn, for some constant ε > 0 depending
only on k. In fact, the degrees of the vertices in the hypergraph are allowed to be between
(1− δ)d and (1 + δ)d for the same conclusion, provided δ > 0 is a sufficiently small constant
depending on ε. By repeatedly removing r such matchings from a linear d-regular k-graph,
we see that for any fixed r, we obtain a subgraph in which all vertices have degree at most
r, and at most rd−εn vertices have degree less than r. In other words, we find an “almost
r-regular” subgraph. On the other hand, we do not even have a verification that every large
enough Steiner triple system has a three-regular subgraph.

14



8 Acknowledgments

The authors are grateful to Laci Lovász for suggesting the idea of counting matchings to obtain
a 2-regular subgraph. The authors also thank the referees for their careful reading which has
helped to improve the presentation.

References

[1] N. Alon, S. Friedland, G. Kalai, Every 4-regular graph plus an edge contains a 3-regular
subgraph, J. Combin. Theory Ser. B 37 (1984), no. 1, 92–93.

[2] Zs. Baranyai, On the factorization of the complete uniform hypergraph, Infinite and
finite sets (Colloq., Keszthely, 1973), Colloq. Math. Soc. Janos Bolyai 10 North-Holland,
Amsterdam, (1975) 91–108.

[3] C. Berge, Hypergraphs: The Theory of Finite Sets, Amsterdam, Netherlands: North-
Holland, 1989.
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[13] O. Pikhurko, J. A. Verstraëte, The Maximum Size of Hypergraphs without Generalized
4-Cycles, J. Combin. Theory Ser. A, to appear.

15
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