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Abstract

A fundamental problem in Ramsey theory is to determine the growth rate in terms of n of the Ramsey
number r(H,K

(3)
n ) of a fixed 3-uniform hypergraph H versus the complete 3-uniform hypergraph with n

vertices. We study this problem, proving two main results. First, we show that for a broad class of H,
including links of odd cycles and tight cycles of length not divisible by three, r(H,K

(3)
n ) ≥ 2ΩH (n logn).

This significantly generalizes and simplifies an earlier construction of Fox and He which handled the case
of links of odd cycles and is sharp both in this case and for all but finitely many tight cycles of length
not divisible by three. Second, disproving a folklore conjecture in the area, we show that there exists a
linear hypergraph H for which r(H,K

(3)
n ) is superpolynomial in n. This provides the first example of a

separation between r(H,K
(3)
n ) and r(H,K

(3)
n,n,n), since the latter is known to be polynomial in n when

H is linear.

1 Introduction

Given two k-uniform hypergraphs (or, henceforth, k-graphs) G and H, their Ramsey number r(G,H) is the

smallest N such that whenever the edges of the complete k-graph K
(k)
N are colored in red or blue, there

must be either a red copy of G or a blue copy of H. That these numbers exist is the statement of Ramsey’s
original theorem [16], but many questions remain about their quantitative behavior.

The graph case k = 2 has received particular attention. A result of Erdős and Szekeres [8] from 1935
says that

r(Ks,Kn) ≤
(
n+ s− 2

s− 1

)
and one of the main driving forces in the area has been to decide if and when this bound is close to being
tight. When s = n, their bound implies that r(Kn,Kn) ≤ 4n and the problem of improving this bound by
an exponential factor, which was recently resolved in a breakthrough paper of Campos, Griffiths, Morris and
Sahasrabudhe [3], has occupied a central place in extremal combinatorics.
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The problem that we will be concerned with in this paper is more closely related to the estimation of the
off-diagonal Ramsey numbers r(Ks,Kn) where s is fixed and n tends to infinity. In this case, the Erdős–
Szekeres bound r(Ks,Kn) ≤ ns−1 can be close to tight. For instance, by combining important results of
Ajtai, Komlós and Szemerédi [1] and Kim [11], we have

r(K3,Kn) = Θ

(
n2

log n

)
.

Until lately, no similar result was known for any other s, but another recent breakthrough result by Mattheus
and Verstraëte [13] shows that r(K4,Kn) = Θ̃(n3) (where the tilde in the big-O notation means that the
estimate is tight up to logarithmic factors). At present, no similar result is known for s ≥ 5.

Despite the problems that remain in the graph case, even less is known about Ramsey numbers of
hypergraphs. It has been known since the 1970s that there are positive constants c and C depending only
on k such that

tk−1(cn
2) ≤ r(K(k)

n ,K(k)
n ) ≤ tk(Cn),

where the tower function is given by t1(x) = x and ti+1(x) = 2ti(x). However, the correct tower height in
these bounds remains unknown for all k ≥ 3. The case k = 3 is of particular importance, since the ingenious
stepping-up lemma of Erdős and Hajnal (see, for instance, [10]) allows us, starting from k = 3, to construct
lower bound colorings for uniformity k + 1 from colorings for uniformity k, gaining an extra exponential

each time. In particular, if we could show that r(K
(3)
n ,K

(3)
n ) grows as a double exponential in n, this would

essentially resolve the problem of estimating r(K
(k)
n ,K

(k)
n ) for all k.

Our concern in this paper will be with studying off-diagonal Ramsey numbers for 3-graphs. As above,
variants of the stepping-up lemma (see, for example, [6, 15]) can be used to lift bounds on off-diagonal
Ramsey numbers for 3-graphs to higher uniformities, so we will focus on the critical 3-uniform case. For

r(K
(3)
s ,K

(3)
n ) with s fixed and n growing, the best known bounds, due to Conlon, Fox and Sudakov [4], are

that
2cn logn ≤ r(K(3)

s ,K(3)
n ) ≤ 2Cns−2 logn

for some positive constants c and C depending only on s.

In general, there are very few H for which the growth rate of log(r(H,K
(3)
n )) in terms of n is well

understood. The only exceptions are tripartite 3-graphs and their iterated blowups, for which Erdős and

Hajnal [7] proved that r(H,K
(3)
n ) ≤ nOH(1), and links of odd cycles, for which Fox and He [9] showed that

r(H,K(3)
n ) = 2ΘH(n logn),

proving that an old upper bound of Erdős and Hajnal [7] is tight. Note that for us the link of a (2-)graph
G will mean the 3-graph LG with vertex set V (G) ∪ {u}, where u is a new vertex, and edge set e ∪ {u} for

every e ∈ E(G). More generally, the result of Fox and He showed that r(H,K
(3)
n,n,n) ≥ 2ΩH(n logn) whenever

H is the link of an odd cycle.

Our first theorem extends this latter result by showing that r(H,K
(3)
n,n,n) ≥ 2ΩH(n logn) for a large class

of 3-graphs H, including links of odd cycles and all tight cycles of length n with 3 ∤ n and, as we shall see
below, is sharp in both these cases. We state our result in terms of a function of H that we denote by
mpair(H), though we will hold off on formally defining this parameter until Section 2.

Theorem 1.1. If mpair(H) ≥ 1
2 , then r(H,K

(3)
n,n,n) ≥ 2ΩH(n logn).

Since K
(3)
n,n,n ⊆ K

(3)
3n , this theorem also holds with K

(3)
n,n,n replaced by K

(3)
n . Though we will only define

mpair(H) later on, some sense of it may be gained by noting that an early result of Erdős and Hajnal [7] on
off-diagonal hypergraph Ramsey numbers may also be couched in this language.

Theorem 1.2. [Rephrasing of a result in [7]] If mpair(H) > 1
3 , then r(H,K

(3)
n,n,n) ≥ 2ΩH(n).
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As well as being much more general than the result of Fox and He [9], Theorem 1.1 also has a simpler
proof, in particular avoiding the entropy techniques of [9] and perhaps suggesting that mpair(H) is in fact
the correct parameter to work with. It is also often tight, as shown by the following result. The shadow (or
1-skeleton) of a 3-graph H is the graph G with V (G) = V (H) whose edge set consists of all pairs of vertices
uv such that uvw is an edge of H for some vertex w. We use the standard notation ∂H = E(G).

Theorem 1.3. Let H be a 3-graph that can be created by starting with the empty graph and iteratively adding
edges that strictly increase the number of edges in the shadow of H at each step. Then

r(H,K(3)
n,n,n) ≤ 2OH(n logn).

Note that Theorem 1.3 immediately implies that Theorem 1.1 is tight for links of odd cycles and for
tight cycles, as these may clearly be constructed by repeatedly adding 3-edges that add at least one 2-edge
to the shadow. However, we also note that, apart from finitely many exceptions in the case of tight cycles,

the stronger bound r(H,K
(3)
n ) ≤ 2OH(n logn) was already known in both of these cases [7, 14].

Our second main result addresses a longstanding problem in the area, asking whether r(F,K
(3)
n ) is

polynomial in n if F is a linear 3-graph (also known as a linear triple system, partial triple system or partial
Steiner system), that is, a 3-graph where any two edges share at most one vertex. That this should be the
case was something of a folklore conjecture, but had been resistant to attack. The following result shows
why.

Theorem 1.4. For all sufficiently large k, there exists a linear 3-graph F on k vertices such that

r(F,K(3)
n ) > 2c(logn)

√
k/(128 log5 k)

,

where c > 0 depends only on k.

In contrast, a result of Fox and He [9] shows that if F is a linear 3-graph, then the Ramsey number

r(F,K
(3)
n,n,n) grows polynomially in n. Combined, these results give the first examples of 3-graphs F for

which the Ramsey numbers r3(F,K
(3)
n,n,n) and r3(F,K

(3)
n ) are known to have very different growth rates.

Theorem 1.4 also has a further corollary. If, for a triple system F , we define mk(F ) to be the minimum
number of edges in an F -free triple system with chromatic number at least k, Bohman, Frieze and Mubayi [2]
conjectured that there exists a linear triple system F for which mk(F ) = k3+o(1). It is easy to see that
mk(F ) ≥ k3+o(1), since any triple system with f edges has chromatic number O(f1/3), so this conjecture
would be asymptotically tight. Theorem 1.4 settles the conjecture, since it produces N -vertex F -free 3-
graphs with independence number n = No(1) and, hence, chromatic number at least k = N1−o(1). Moreover,
the number of edges is trivially at most

(
N
3

)
= k3+o(1).

We now proceed to our proofs, beginning with Theorem 1.1. We will return to Theorem 1.4 in Section 3
and conclude in Section 4 with some further remarks and conjectures. We note that, unless otherwise
indicated, all of our logarithms are natural logarithms.

2 Proof of Theorem 1.1

In this section, we prove Theorem 1.1, saying that if mpair(H) ≥ 1
2 , then r(H,K

(3)
n,n,n) ≥ 2ΩH(n logn). Our

first task is to formally define mpair(H), which we do in Section 2.1. Our construction is described in detail
in Section 2.2 and then, in Section 2.3, we show that it has the required properties. In Section 2.4, we show
that mpair(H) ≥ 1

2 for all links of odd cycles and all tight cycles whose length is not a multiple of 3, so that
our results do indeed apply in these cases. Finally, in Section 2.5, we give the short proof of Theorem 1.3,
which says that Theorem 1.1 is tight for a large class of 3-graphs.
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2.1 Avoidability

In this section, we formally define the “pair density” statisticmpair(H) that was mentioned in the introduction
and give a characterization of all 3-graphs H with mpair(H) ≥ 1

2 . We will call such 3-graphs “avoidable”.
However, before getting to that, we need several other definitions.

Definition. A hypergraph is ordered if its vertex set is a linearly ordered set and nonempty if it has at least
one edge.

Definition. An oriented 3-graph G is a pair of sets (V,E) such that E ⊆ V 3 contains at most one of the
six permutations of any given ordered triple (v1, v2, v3) ∈ V 3.

Definition. Given an ordered 3-graph H and an oriented 3-graph G, a pair homomorphism from H to G
is a function f : ∂H → V (G) such that, for every edge {u, v, w} ∈ E(H) with u < v < w, f(uv), f(vw)
and f(wu) are distinct and (f(uv), f(vw), f(wu)) ∈ E(G). The map sending uvw to (f(uv), f(vw), f(wu))
induces another map, which we also call f , from E(H) to E(G). Write f(H) for the subgraph of G whose
edge set is the image of this map and whose vertex set is f(∂H). Note that v(f(H)) = |f(∂H)| and
e(f(H)) = |f(E(H))|.

Definition. If H is a nonempty ordered 3-graph, define

mpair(H) := min
f :∂H→V (G)

max
H′⊆H

e(f(H ′))

v(f(H ′))
,

where f ranges over all pair homomorphisms from H to any oriented G and H ′ ranges over all nonempty
subhypergraphs of H. We define mpair(H) for an unordered 3-graph H to be the minimum of mpair(H) over
all orderings of H.

Since f(H) has no isolated vertices by definition, v(f(H)) ≤
∑

degf(H)(v) = 3e(f(H)) and consequently

mpair(H) ≥ 1/3 for all nonempty H. On the other hand, mpair(K
(3)
s ) = Θ(s). Indeed, the upper bound

follows immediately from the Kruskal–Katona theorem and for the lower bound we may argue as follows.

Suppose that f is a surjective pair homomorphism from K
(3)
s to an oriented graph G. Then, for any incident

pair e and e′ in ∂K
(3)
s , we know that f(e) ̸= f(e′) and e and e′ lie in an edge of G. As we vary e′ over all

elements of ∂K
(3)
s incident to e, we see that f(e) lies in at least Ω(s) edges of G. Hence, the minimum degree

of G is at least Ω(s), so e(G)/v(G) = Ω(s) as well.
In order to say what it means for a 3-graph to be avoidable, we must first recall that a Berge cycle is a

hypergraph with (distinct) vertices v1, . . . , vt and distinct edges e1, . . . , et, where {vi, vi+1} ⊆ ei and indices
are taken modulo t.

Definition. We say that a 3-graph H is avoidable if every 3-graph G for which there is a pair homomorphism
f from H to G contains a Berge cycle.

The following lemma shows that being avoidable is equivalent to having pair density at least 1/2.

Lemma 2.1. A 3-graph H is avoidable if and only if mpair(H) ≥ 1
2 .

Proof. This boils down to the observation that a 3-graph G contains a subhypergraph G′ with e(G′)/v(G′) ≥
1
2 if and only if it contains a Berge cycle. Indeed, any Berge cycle satisfies this property and, conversely,
any Berge acyclic hypergraph satisfies v(G) > 2e(G) by applying Lemma 2.7 below to each connected
component.

The following definition is also of interest.

Definition. A 3-graph H is 123-inducible if there is an ordering of V (H) and a labelling of ∂H by 1, 2 and
3 in such a way that, for every uvw ∈ E(H) with u < v < w, uv is labelled 1, vw is labelled 2 and uw is
labelled 3.
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Lemma 2.2. H is 123-inducible if and only if mpair(H) = 1
3 .

Proof. As a 123-coloring is a pair homomorphism yielding one edge and three vertices (and, clearly, 3e ≥ v
for any 3-graph without isolated vertices), any 123-inducible graph has mpair equal to 1/3. Conversely, if
mpair(H) = 1

3 , there is a pair homomorphism f such that 3e(f(H)) = v(f(H)). But then f(H) must consist
entirely of disjoint triples, whose vertices we may color with the colors 1, 2, 3 in accordance with the ordering
on v(H). That is, H is 123-inducible.

We note that Theorem 1.2, the result of Erdős and Hajnal [7] quoted in the introduction, was orig-
inally proved in terms of 123-inducibility and then states that if a 3-graph H is not 123-inducible, then

r(H,K
(3)
n,n,n) ≥ 2ΩH(n). The proof is rather simple: take a random coloring of the edges of K

(2)
N in three

colors 1, 2 and 3 and then color an edge uvw of K
(3)
N with u < v < w in red if and only if uv is colored 1, vw

is colored 2 and uw is colored 3. It is easy to verify that there exists a positive constant C such that, with
positive probability, this coloring contains no red copy of any 3-graph H which is not 123-inducible and no

blue K
(3)
n,n,n with n = C logN .

2.2 The construction

In this section, we describe our construction for Theorem 1.1. In light of Lemma 2.1, it will suffice to show
the following.

Theorem 2.3. If H is avoidable, then r(H,K
(3)
n,n,n) ≥ 2ΩH(n logn).

The construction for Theorem 2.3 is as follows. Take ε sufficiently small in terms of H, c sufficiently small
in terms of ε and n sufficiently large in terms of c. Let N = 2cn logn and t = nε and define f :

(
[N ]
2

)
→ [t]

uniformly at random. Pick g : [t]3 → {red,blue} to satisfy:

1. The red color in g is an oriented 3-graph, i.e., for all e ∈ [t]3 at most one of the six permutations σ(e)
of e satisfies g(σ(e)) = red. In particular, if e has at least two equal coordinates, then g(e) = blue.

2. Among any k ≤
(
v(H)
2

)
elements of [t] there are fewer than k/2 red edges. In particular, the red edges

in g form a linear 3-graph.

3. In blue, g does not have complete balanced oriented tripartite subgraphs of order t1−ε. That is, for
any X,Y, Z ⊆ [t] of size t1−ε, there must be at least one triple (x, y, z) ∈ X × Y × Z for which
g(x, y, z) = red.

Thus, the red color in g may be seen as an oriented 3-uniform analog of a graph with high girth
and small independence number. Our coloring χ :

(
N
3

)
→ {red,blue} is now defined by χ(u, v, w) =

g(f(uv), f(vw), f(wu)) for all u < v < w in [N ]. Note that condition 2 already implies that χ contains
no red copy of H provided H is avoidable.

We now prove the existence of a function g satisfying conditions 1-3 before moving on to proving Theo-
rem 2.3 in the next section.

Lemma 2.4. For any 3-graph H, there exists a function g satisfying conditions 1-3 above for any ε suffi-
ciently small and t sufficiently large in terms of H.

Proof. We would like to construct a function g with the required properties. First, note that we must
have g(i, i, i) = g(i, i, j) = g(i, j, i) = g(j, i, i) = blue for all i, j. To color the remaining edges, we use the
alteration method. Let g : [2t]3 → {red,blue} be random, where g(i, j, k) = red with probability p = t−2+δ

independently for each triple (i, j, k). The expected number of pairs of permutations of the same triple which
are both colored red is at most (

2t

3

)(
6

2

)
p2 = O(t3p2) < t/3
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and the expected number of red (k, k/2)-configurations is at most(
2t

k

)(
k3

k/2

)
pk/2 = Ok(t

kpk/2) < t/3

if δ is sufficiently small and t is sufficiently large in terms of |V (H)|. The expected number of blue tripartite
X,Y, Z ⊂ [2t] of size |X| = |Y | = |Z| = t1−ε is at most

(2t)3t
1−ε

(1− p)t
3−3ε−O(t2) ≤ eO(t1−ε log t)−t1−3ε+δ

< t/3

if ε is sufficiently small compared to δ. Here the O(t2) subtracted in the exponent accounts for the possibility
that X, Y , Z overlap, in which case up to O(t2) triples (x, y, z) with a repeated coordinate were colored blue
in advance.

Thus, in total, there exists a sample of g for which the number of bad red and blue configurations is
together less than t, so we may delete t vertices from [2t] to obtain the desired g.

2.3 Proof of Theorem 2.3

We note that g is fixed and all probabilistic statements are with respect to the random choice of f . By
construction, for all choices of f , the coloring χ is guaranteed to contain no red copy of H. It therefore

remains to show that with positive probability χ contains no blue copy of K
(3)
n,n,n. We remark that the only

property of g that we will use in the proof of this statement is property 3, which will be used in the proof of
Claim 2 below.

Observe that every K
(3)
n,n,n contains a complete tripartite subgraph with parts I, J , K of order n/3 such

that I < J < K (that is, for all i ∈ I, j ∈ J, k ∈ K, i < j < k). Thus, up to this factor of three that we will

ignore, it suffices to show that χ contains no blue copy of K
(3)
n,n,n whose parts I, J,K satisfy I < J < K. By

taking a union bound over all N3n possible choices of I, J,K, we see that it suffices to show the following.

Lemma 2.5. If I < J < K are three n-element subsets of [N ], then the probability that χ(i, j, k) = blue for

all (i, j, k) ∈ I × J ×K is at most t−εn2/50.

Proof. We would like to count blue functions f : (I × J) ∪ (J × K) ∪ (I × K) → [t], i.e., those for which
g(f(i, j), f(j, k), f(k, i)) = blue for all (i, j, k) ∈ I × J ×K. Let F be the family of all such blue f . If we set
δ = ε/50, Lemma 2.5 is equivalent to the inequality

|F| ≤ t(3−δ)n2

, (1)

which is now our goal. We will split the argument into three steps. For simplicity, we often abuse notation
by writing

∑
X f(x) and

∏
X f(x) instead of

∑
x∈X f(x) and

∏
x∈X f(x).

1. Coloring (I × J) ∪ (J ×K) first. Let FJ be the family of functions fJ : (I × J) ∪ (J ×K) → [t] for

which there are at least t(1−2δ)n2

blue functions f ∈ F extending fJ , i.e., for which f |(I×J)∪(J×K) = fJ . It
suffices to show that

|FJ | ≤ t(2−2δ)n2

, (2)

since that would imply that

|F| ≤ |FJ | · tn
2

+ t2n
2

· t(1−2δ)n2

≤ 2t(3−2δ)n2

≤ t(3−δ)n2

,

by conditioning on whether or not f |(I×J)∪(J×K) ∈ FJ . That is, (1) would hold.
It will be convenient to set up some notation for counting blue extensions of fJ . For fJ : (I × J) ∪

(J ×K) → [t], let f∗
J (i, k) be the number of choices of c = f(i, k) for which g(fJ(i, j), fJ(j, k), c) = blue for

all j. Observe that the number of extensions P (fJ) of fJ to blue functions f ∈ F is exactly the product
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P (fJ) =
∏

I×K f∗
J (i, k). Thus, FJ is exactly the family of fJ satisfying P (fJ) ≥ t(1−2δ)n2

, so, by the AM-GM
inequality, every fJ ∈ FJ satisfies

S(fJ) :=
∑
I×K

f∗
J (i, k) ≥ n2

(∏
I×K

f∗
J (i, k)

)1/n2

= n2P (fJ)
1/n2

≥ n2t1−2δ.

2. Coloring (I × {j}) ∪ ({j} ×K) one j at a time. To prove (2), we reveal the values of fJ one j at a
time and track the evolution of P (fJ) and S(fJ). To do so, we extend the definitions of f∗

J , P (fJ) and S(fJ)
to subsets J ′ ⊆ J . Given J ′ ⊆ J and a function fJ′ : (I × J ′) ∪ (J ′ ×K) → [t] defined on the pairs incident
to J ′, we take f∗

J′(i, k) to be the number of choices of c = f(i, k) for which g(fJ′(i, j), fJ′(j, k), c) = blue for
all j ∈ J ′, P (fJ′) :=

∏
I×K f∗

J′(i, k) and S(fJ′) =
∑

I×K f∗
J′(i, k).

If J = {j1, . . . , jn}, let Jr = {j1, . . . , jr}, where J0 = ∅. Observe that if fJ : (I × J) ∪ (J ×K) → [t] is
restricted to fJr

:= fJ |(I×Jr)∪(Jr×K), then the values S(fJr
) satisfy

n2t = S(fJ0
) ≥ S(fJ1

) ≥ S(fJ2
) ≥ · · · ≥ S(fJn

) = S(fJ) ≥ 0.

Thus, for any fJ we have that at least n/2 values of r satisfy S(fJr−1
)−S(fJr

) ≤ 2nt. In words, this means
that revealing the colors on the pairs incident to jr decreases the total number of blue choices between I
and K by at most 2nt. Call r slow (with respect to fJ) if S(fJr−1

) − S(fJr
) ≤ 2nt. It will suffice to show

the following.

Claim 1. If P (fJr−1
) ≥ t(1−2δ)n2

, then the number of ways to color fjr := fJ |(I×{jr})∪({jr}×K) to make r

slow is at most t(2−5δ)n.

Indeed, if the claim is true, we have

|FJ | ≤ 2n · (t2n)n/2 · (t(2−5δ)n)n/2 ≤ t(2−2δ)n2

,

since, to construct fJ ∈ FJ , there are at most 2n ways to pick which of the steps are slow and, on each of
the ≥ n/2 slow steps, there are ≤ t(2−5δ)n ways to color fjr because, throughout the process, P (fJr−1

) ≥
P (fJ) ≥ t(1−2δ)n2

. This would prove (2), as desired.

3. Counting slow steps. It remains to prove Claim 1. Fix r satisfying P (fJr−1
) ≥ t(1−2δ)n2

. We
are interested in counting the number of “slow colorings” fjr : (I × {jr}) ∪ ({jr} × K) → [t] for which
S(fJr−1

)− S(fJr
) ≤ 2nt. That is, we wish to count the number of choices of fjr for which∑

I

∑
K

(f∗
Jr−1

(i, k)− f∗
Jr
(i, k)) ≤ 2nt.

Since
∑

K(f∗
Jr−1

(i, k)− f∗
Jr
(i, k)) is nonnegative, at least 3n/4 values of i satisfy∑

K

(f∗
Jr−1

(i, k)− f∗
Jr
(i, k)) ≤ 8t. (3)

Expanding out the assumption P (fJr−1) ≥ t(1−2δ)n2

, we have∏
I

∏
K

f∗
Jr−1

(i, k) ≥ t(1−2δ)n2

.

Since f∗
Jr−1

(i, k) ≤ t for all i, k, at least 3n/4 values of i satisfy∏
K

f∗
Jr−1

(i, k) ≥ t(1−8δ)n. (4)
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Thus, there must exist a set I ′ ⊆ I of exactly n/2 values of i for which (3) and (4) hold simultaneously. Let
us now fix such an I ′ of size n/2 and count the number of fjr satisfying (3) for all i ∈ I ′. Call such colorings
I ′-slow.

Our goal is to prove that the number of I ′-slow colorings of fjr is at most t(2−ϵ/8)n. This will finish the
proof of Claim 1 as, summing over the at most 2n choices of I ′, the number of ways to make a slow coloring
fjr is at most t(2−ε/10)n = t(2−5δ)n, as desired.

Choosing fjr is the same as choosing f{jr}×K and fI×{jr}. Suppose we have already picked f{jr}×K , the
colors incident to K. Then the remaining pairs from jr to I can be colored independently: those outside of
I ′ in t ways each and those incident to I ′ so as to satisfy (3). For a particular i ∈ I ′, let Ci(f{jr}×K) be the
set of colors consisting of those c = fjr (i, jr) satisfying (3). Such a color c has to be chosen so that for at
most 8t of the n values of k, f∗

Jr
(i, k) decreases.

Claim 2. If i satisfies (4), then the number of choices of f{jr}×K for which |Ci(f{jr}×K)| ≥ t1−ε is at most

2t ·
(
n
8t

)
· t(1−ε/2)n ≤ t(1−ε/4)n.

Proof. Fix a choice of X = Ci(f{jr}×K) in at most 2t ways and a choice of the at most 8t values of k for

which f∗
Jr
(i, k) decreases in at most

(
n
8t

)
ways. Once these choices are fixed, the color choices for jr × k can

be made independently for each k, so long as, for those k outside of the special 8t, we do not eliminate any
possible colors across (i, k). Let Yk denote the set of valid color choices for jr × k, so that |Yk| = t for those
in the special set of 8t.

By (4), we see that, for at least 3n/4 values of k, we have a set Zk ⊆ [t] of size f∗
Jr−1

(i, k) ≥ t1−ε of
possible colors for ik. For all except 8t of these, none of these colors can be eliminated by choosing any of
the possible colors ij from X and so, for each of at least 3n/4− 8t ≥ n/2 choices of k, we have that there is
no triple (x, y, z) ∈ X × Yk × Zk for which g(x, y, z) = red. Since X and Zk are both at least t1−ε, we find
that Yk is less than t1−ε. Thus, the number of choices of f{jr}×K for this particular choice of X and the

exceptional 8t values of k is at most (t1−ε)n/2 · tn/2, so the claim follows.

This claim essentially finishes the proof. We have

|{I ′-slow colorings fjr}| =
∑

f{jr}×K

∏
i

|Ci(f{jr}×K)|,

a sum that has tn total terms, where each summand is a product of factors which lie in {0, 1, . . . , t}. We can
partition the products above based on whether i ∈ I ′, so that, using the trivial bound t for |Ci(f{jr}×K)|
when i ̸∈ I ′, we obtain

∑
f{jr}×K

∏
i

|Ci(f{jr}×K)| ≤
∑

f{jr}×K

(∏
i∈I′

|Ci(f{jr}×K)|

)
tn−|I′|.

By Claim 2 and the definition of I ′, we have that if i ∈ I ′, then the corresponding factor |Ci(f{jr}×K)| is at
least t1−ε for at most t(1−ε/4)n choices of f{jr}×K . This allows us to partition the sum as∑

f{jr}×K

∏
i∈I′

|Ci(f{jr}×K)| =
∑

|Ci(f{jr}×K)|≥t1−ε

∏
i∈I′

|Ci(f{jr}×K)|+
∑

|Ci(f{jr}×K)|<t1−ε

∏
i∈I′

|Ci(f{jr}×K)|.

The first sum can be bounded by t(1−ε/4)n · t|I′| and the second sum can be bounded by tn · (t(1−ε))|I
′|.

Multiplying by tn−|I′| and recalling that |I ′| = n/2, this yields

|{I ′-slow colorings fjr}| ≤ tn−|I′|(t(1−ε/4)n · t|I
′| + tn · (t(1−ε))|I

′|) = t(2−ε/4)n + t(2−ε/2)n < t(2−ε/8)n,

so the proof is complete.
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2.4 Avoidability proofs

In this section, we calculate the pair densities of tight cycles and links of cycles, as a result showing that

non-tripartite tight cycles and links of non-bipartite graphs are avoidable. Write C
(3)
n for the 3-uniform tight

cycle of length n. Concretely, we can take V (C
(3)
n ) = Zn and E(C

(3)
n ) = {{k, k + 1, k + 2} : k ∈ Zn}.

Proposition 2.6.

mpair(C
(3)
n ) =

{
1/2 3 ∤ n,
1/3 3|n.

Proof. As any subgraph H of C
(3)
n satisfies e(H) ≤ |∂H|/2, we can see that mpair(C

(3)
n ) ≤ 1/2 by mapping

each element of ∂C
(3)
n to a distinct vertex.

If 3|n, it is not difficult to see that C
(3)
n is 123-inducible and thus has mpair = 1/3. It therefore suffices

to show that if mpair(C
(3)
n ) < 1/2, then 3|n.

Take n with mpair(C
(3)
n ) < 1/2. By definition, we can take an ordering of V (C

(3)
n ), a nonnegative integer

k and a surjection f : ∂C
(3)
n → [k] such that |f(E(C

(3)
n ))| < k/2. Consider the 3-graph G on [k] with edges

given by f(e), e ∈ E(C
(3)
n ). Then v(G) = k and e(G) < k/2. Note that G is connected, as in a tight cycle

we can go from any edge to any other by taking a sequence of edges any adjacent pair of which share an
element of the shadow.

Lemma 2.7. For any connected 3-graph G,

v(G) ≤ 2e(G) + 1,

with equality if and only if G is Berge-acyclic. Moreover, in the case of equality, the shadow of G has no
cycle of length at least four.

Proof. Note that if c(G) is the number of connected components in G, then 2e(G) + c(G) − v(G) cannot
decrease upon adding an edge e to G, as easily seen by a short case analysis on the number of new vertices in e.
For the empty 3-graph, this quantity is 0, so, for a connected 3-graph, 2e(G)+1−v(G) = 2e(G)+c(G)−v(G) ≥
0, as desired. Moreover, if G′ is a Berge cycle within G, then 2e(G′) + c(G′) − v(G′) ≥ 1, so, again adding
edges one at a time, we may conclude that 2e(G) + 1− v(G) = 2e(G) + c(G)− v(G) ≥ 1.

Conversely, suppose that G is Berge-acyclic. If every edge of G has at least 2 vertices each contained in
another edge, then we can create a walk of the form e1v1e2v2 · · · , where vi ∈ ei, ei+1 and ei ̸= ei+1, vi ̸= vi+1.
If we get to a vertex or an edge that we have seen before, we obtain a Berge cycle, a contradiction. Thus,
G must contain at least one edge e that contains at most one vertex that is contained in any other edge.
Removing e decreases e(G) by one and v(G) by 2, but preserves Berge-acyclicity and connectedness, so a
simple induction shows that v(G) = 2e(G) + 1.

Finally, suppose that G is Berge-acyclic and assume, for the sake of contradiction, that ∂G has a cycle
of length at least 4. Let e1, . . . , en be the edges in a shortest such cycle of ∂G. If n ≥ 5, ei and ej cannot
be in the same edge e ∈ E(G) for any i, j, as if they were then you could replace them with the third edge
of ∂G within e and make a cycle of length n− 1. Thus, e1, . . . , en are all in different edges of G and form a
Berge cycle, a contradiction. If n = 4, either e1, . . . , e4 are in different edges of G and form a Berge 4-cycle
or two of them are in the same edge e′ ∈ E(G), say e1 and e2. Replacing e1 and e2 with the third element
of ∂G within e′, we either obtain a Berge 3-cycle or the remaining three edges of ∂G are all contained in one
edge of G. In this latter case, however, we have two edges of G spanning only 4 vertices, yielding a Berge
2-cycle, a contradiction.

Applying the lemma, since v(G) > 2e(G), we must have that G is Berge-acyclic and that the shadow of
G only has cycles of length 3.

Consider now the closed walk W of length n on the complete graph with 2k vertices [k]×{+,−} defined

as follows. Label the vertices of C
(3)
n as v1, . . . , vn cyclically. If the edge vivi+1 has color j (i.e., it is mapped
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to j under f), then we map it to (j,+) if vi < vi+1 in our ordering on V (C
(3)
n ) and (j,−) otherwise. The

moves in the walk W go from the image of vivi+1 to the image of vi+1vi+2 (with indices considered cyclically).

Lemma 2.8. The walk W has no cycles of length more than 3 and no edges that are traversed in both
directions.

Proof. Consider the map p from [k] × {+,−} → [k] that ignores the sign. Edges in W are sent to edges in
the shadow of G, so all cycles in the image of W must have length 3.

Suppose now, for the sake of contradiction, that W has a cycle C of length at least 4. The image p(C) is
a closed walk in the shadow of G. The minimum closed subwalk of p(C) coming from a subpath of C must
have length 2 or 3, as the shadow of G only has cycles of length 3. Since C has length greater than 3, this
must come from a subpath of C of the form

(j1, s1), (j2, s2), (j1,−s1)

or
(j1, s1), (j2, s2), (j3, s3), (j1,−s1)

for some ji ∈ [k], si ∈ {+,−}. We now show that both of these cases give contradictory conclusions about
the vertex ordering on v1, . . . , vn.

Case 1: In the first case, there are two edges vivi+1vi+2 and vjvj+1vj+2 of C
(3)
n such that f(vivi+1) =

f(vj+1vj+2) = j1 and f(vi+1vi+2) = f(vjvj+1) = j2. Thus, in G, the images of vivi+1vi+2 and vjvj+1vj+2

share two vertices and so must be the same edge by Lemma 2.7. This implies that f(vivi+2) = f(vjvj+2) = j3
for some color j3. Since f cannot send two edges to two different permutations of the same triple, we see
that the relative orderings of vivi+1vi+2 and vj+2vj+1vj must be the same. However, since the sign s2 of
vi+1vi+2 is the same as the sign of vjvj+1, this cannot be the case.

Case 2: In the second case, consider the edges vivi+1vi+2, vjvj+1vj+2 and vkvk+1vk+2 that form the three
edges of our cycle in p(C). Then we have that

f(vivi+1) = f(vk+1vk+2) = j1,

f(vjvj+1) = f(vi+1vi+2) = j2

and
f(vkvk+1) = f(vj+1vj+2) = j3.

Thus, each pair of the edges f(vivi+1vi+2), f(vivi+1vi+2) and f(vivi+1vi+2) in G must share a vertex. No
two different edges can share two vertices in G, so, since this cannot form a loose 3-cycle, it must be that
these three edges of G are the same. Thus, f(vjvj+2) = j1, f(vkvk+2) = j2 and f(vivi+2) = j3. Once again,
since f cannot send different edges to different permutations of the same triple, this gives that the relative
orderings of vivi+1vi+2, vj+2vjvj+1 and vk+1vk+2vk are identical. However, since vivi+1 maps to (j1, s1) but
vk+1vk+2 maps to (j1,−s1), we see that vivi+1 and vk+1vk+2 have different orderings, contradicting that
vivi+1vi+2 and vk+1vk+2vk have the same relative ordering. This concludes the proof that W has no cycles
of length more than 3.

Finally, we show that no edge of W is traversed in both directions. Suppose, for the sake of contradiction,
that there is an edge (j1, s1), (j2, s2) that is traversed in both directions. Suppose that in the forward
direction this edge comes from vivi+1vi+2 and in the reverse direction it comes from vjvj+1vj+2. Then
f(vivi+1) = f(vj+1vj+2) = j1 and f(vjvj+1) = f(vi+1vi+2) = j2. As in the arguments above, we must
have that f(vivi+2) = f(vjvj+2) and vivi+1vi+2 has the same relative ordering as vj+2vj+1vj . However, this
contradicts the fact that vivi+1 and vj+1vj+2 have the same relative ordering (given by s1). Thus, no edge
of W is traversed in both directions, finishing the proof of Lemma 2.8.
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It is an easy induction to show that any closed walk satisfying the conditions of Lemma 2.8 has length
divisible by 3 (it must have at least one triangle and removing it gives a closed walk of length n − 3 also
satisfying the conditions). Since W has length n, we must have 3|n, finishing the proof of Proposition 2.6.

We now prove a similar statement for links of cycles. Write L
(3)
n for the 3-graph that is the link of the

cycle Cn. Concretely, V (L
(3)
n ) = Zn ∪ {x} and E(L

(3)
n ) = {{x, k, k + 1} : k ∈ Zn}.

Proposition 2.9.

mpair(L
(3)
n ) =

{
1/2 2 ∤ n,
1/3 2|n.

Proof. The proof at first proceeds along similar lines to the previous one, but there are differences in the

details. First, since any subgraph H of L
(3)
n satisfies e(H) ≤ |∂H|/2, we must have mpair(L

(3)
n ) ≤ 1/2 for all

n. If 2|n, it is easy to see that L
(3)
n is tripartite and thus mpair(L

(3)
n ) = 1/3. It therefore remains to show

that mpair(L
(3)
n ) ≥ 1/2 for all odd n.

Suppose, for the sake of contradiction, that we have n with mpair(L
(3)
n ) < 1/2. We must show that n is

even. We may take an ordering of V (L
(3)
n ), a nonnegative integer k and a surjection h : ∂L

(3)
n → [k] such

that |h(E(L
(3)
n ))| < k/2. As before, let G be the 3-graph with edges given by h(e), e ∈ E(L

(3)
n ). Since G is

a connected 3-graph with v(G) = k and e(G) < k/2, Lemma 2.7 implies that G is Berge-acyclic.
Consider now the closed walk W of length n on the complete graph with 2k vertices [k]×{+,−} defined

as follows. Label the center of L
(3)
n as v and the remaining vertices cyclically as v1, . . . , vn. If vvi ∈ ∂L

(3)
n

has color j, map it to (j,+) if v < vi in our ordering on V (L
(3)
n ) and (j,−) otherwise. (Note that this is

different from how our mapping uses the ordering in the previous proof!) The moves in the walk W go from
the image of vvi to the image of vvi+1 (with indices considered cyclically).

The equivalent of Lemma 2.8 in this case is the following.

Lemma 2.10. The walk W is bipartite.

Proof. Suppose, for the sake of contradiction, thatW has an odd cycle C. Consider the map p : [k]×{+,−} →
[k] that ignores the sign. Edges in C are sent to edges in the shadow of G, so all cycles in p(C) must have
length 3. Thus, in the graph p(C), all minimal closed subwalks have length 2 or 3. So we may partition the
edges of p(C) (which possibly occur with repetition) into closed subwalks of lengths 2 or 3.

Call an edge of C (and the corresponding edge of p(C)) switching if it goes from + to − or − to +.
Since C is a cycle, it contains an even number of switching edges. As p(C) has odd length, one of the closed
subwalks in our partition must have a number of switching edges of different parity to its length. Thus, p(C)
contains one of the following:

1. A closed walk of length 2 using exactly 1 switching edge.

2. A closed walk of length 3 using 0 or 2 switching edges.

We now show that both of these are impossible.

Case 1: Suppose we have a closed walk of length 2 using exactly 1 switching edge. We may assume the
walk goes a → b → a for some a, b ∈ [k]. This implies that there are indices i, j such that vvi and vvj+1 are
colored a, vvj and vvi+1 are colored b. Now vivi+1 and vjvj+1 must be colored the same color, call it c, or
else G would have two distinct 3-edges sharing two vertices. Thus, vvivi+1 and vvjvj+1 must correspond to
the same edge in G. Comparing which 2-edges are colored a, b, c, we see that this implies that vvivi+1 and
vvj+1vj have the same relative ordering. But now note that the edge in our walk corresponding to vvivi+1

is switching if and only if v lies between vi and vi+1. Thus, the edge corresponding to vvivi+1 is switching
if and only if the edge corresponding to vvjvj+1 is, meaning it is impossible for exactly one such edge to be
switching.
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Case 2: Suppose we have a closed walk of length 3 using 0 or 2 switching edges. We may assume the walk
goes a → b → c → a for some a, b, c ∈ [k]. This implies that there are indices h, i, j such that

� vvh and vvj+1 are colored a,

� vvi and vvh+1 are colored b,

� vvj and vvi+1 are colored c.

As this cannot yield a Berge 3-cycle in G or two 3-edges sharing two vertices, we must have that vhvh+1 is
colored c, vivi+1 is colored a and vjvj+1 is colored b. As in the previous case, this implies that vvhvh+1,
vivi+1v and vj+1vvj have the same relative ordering. Once again, the edge of our walk corresponding to
vvivi+1 is switching if and only if v lies between vi and vi+1 in the ordering (and similarly for j and k), so
exactly one of our three edges must be switching (depending on which is the middle element in the ordering).
Thus, it is impossible for 0 or 2 switching edges to appear, finishing the proof.

Now Proposition 2.9 immediately follows, as Lemma 2.10 implies that W is a closed walk in a bipartite
graph and thus its length n must be even.

2.5 Proof of Theorem 1.3

In this section, we prove Theorem 1.3, which says that Theorem 1.1 is tight for a large class of 3-graphs,
namely, any 3-graph that can be created by starting with the empty graph and iteratively adding edges that
strictly increase the number of edges in the shadow of H at each step. This theorem will follow immediately
from the following two lemmas, both of which are proved using supersaturation techniques.

Lemma 2.11. For all 3 graphs H, r(H,K
(3)
n,n,n) ≤ r(H,K

(3)
1,n,n)

3n.

Lemma 2.12. If H is a 3-graph such that r(H,K
(3)
1,n,n) = nO(1) and x, y, z are vertices such that at least

one of xy, yz and zx is not in the shadow of H, then

r(H ∪ {xyz},K(3)
1,n,n) = nO(1).

To derive Theorem 1.3, observe that ifH satisfies the conditions of that theorem, we can apply Lemma 2.12

repeatedly to get r(H,K
(3)
1,n,n) = nO(1) and Lemma 2.11 then implies that r(H,K

(3)
n,n,n) ≤ nO(n). It will there-

fore suffice to prove the two lemmas.

Proof of Lemma 2.11. Fix n and let A = r(H,K
(3)
1,n,n). Let χ be a 2-coloring of the complete 3-graph on

A3n vertices and suppose that χ has no red copy of H.
Taking a random induced subgraph on A vertices, as there is no red copy of H, there must be a blue

copy of K
(3)
1,n,n. Since every copy of K

(3)
1,n,n has probablity at most(

A3n−(2n+1)
A−(2n+1)

)(
A3n

A

) =

(
A

2n+1

)(
A3n

2n+1

) ≤ A−(2n+1)(3n−1) < A−6n2−1

of being chosen, there must be at least A6n2+1 blue copies of K
(3)
1,n,n. Thus, at least

A6n2+1(
A3n

2n

)(
2n
n

) > A ≥ n

copies of K
(3)
1,n,n must use the same underlying Kn,n, yielding a copy of K

(3)
n,n,n in blue.
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Proof of Lemma 2.12. By adding isolated vertices if necessary, we can and will assume that {x, y, z} ⊆ V (H).

Suppose that r(H,K
(3)
1,n,n) = A. Assume, without loss of generality, that xy is not in the shadow of H. Let

χ be a 2-coloring of the complete graph on A2v(H) vertices and suppose that χ has no blue copy of K
(3)
1,n,n.

Taking a random induced subgraph on A vertices, as there is no blue copy of K
(3)
1,n,n, there must be a red

copy of H. Since every copy of H has probability(
A2v(H)−v(H)

A−v(H)

)(
A2v(H)

A

) =

(
A

v(H)

)(
A2v(H)

v(H)

) ≤ Av(H)−2v(H)2

of being chosen, χ must have at least A2v(H)2−v(H) red copies of H. Thus, there must be at least

A2v(H)2−v(H)−2v(H)(v(H)−2) = A3v(H)

copies of H in red that have all vertices except x and y in a fixed location. Let F be the set consisting of
these copies. Let z0 be the location where z appears in these copies and let S and T be the possible locations
for x and y among these copies. Then |S||T | ≥ A3v(H), so |S|, |T | ≥ Av(H) > 2n. Since χ contains no blue
K1,n,n, there must be a red edge with one vertex at z0 and one vertex each in S and T , say at s and t.

Since xy is not in the shadow of H, the positions of x and y in S and T are independent after the positions
of the remaining vertices are fixed, so there must be a copy of H in F such that x and y are sent to s and
t. Thus, adding the red edge z0st to this copy, we obtain a copy of H ∪ {xyz}. Therefore,

r(H ∪ {xyz},K(3)
1,n,n) ≤ r(H,K

(3)
1,n,n)

2v(H),

as required.

3 Stepping up for linear hypergraphs versus cliques

In this section, we prove Theorem 1.4, which states that for all sufficiently large k there exists a linear
3-graph F on k vertices such that

r(F,K(3)
n ) > 2c(logn)

√
k/(128 log5 k)

,

where c > 0 depends only on k, though we note that we have not made a serious attempt at optimizing the
power on the log. The proof divides into two parts: first constructing a “quasirandom” F which has many
edges between certain appropriately chosen vertex subsets and then using the stepping-up technique to give

a coloring with no red copy of F and no blue copy of K
(3)
n . These objectives are accomplished separately in

the next two subsections.

3.1 Constructing F

In this section, we make use of a probabilistic technique pioneered by Krivelevich [12] to show that there are
linear hypergraphs with certain ambient properties that will be needed for our stepping-up argument.

Lemma 3.1. For all sufficiently large k, there is a linear triple system F on k vertices with the following
three properties:

1. Every vertex subset of order k3/5 has at least one edge.

2. For any two disjoint subsets S, T ⊂ V (F ) with |S ∪ T | > k/4, |S| > log2 k and |T | > k1/2 log k, there
is at least one edge with one vertex in S and two vertices in T .
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3. For any disjoint vertex subsets A1, . . . , At, S ∈ V (F ) with |S| > k/4, |Ai| ≤ k1/2 log k, |A1∪· · ·∪At| ≥
k/(16 log k), there are at least

|S|
500k

∑
i,j

|Ai||Aj |

edges in F with the property that one vertex is in S and the other two are in distinct parts Ai and Aj.

Proof. Consider the binomial random 3-graph H ∼ H(3)(k, p) with k vertices where each edge appears
independently with probability p = 1/200k. Let B denote the unique 3-graph with 4 vertices and 2 edges
and let B denote a maximal collection of edge-disjoint copies of B in H. Form F by starting with H and
deleting both edges from every copy of B in B. Then, by the maximality of B, the remaining 3-graph F
has no copies of B and, hence, is a linear triple system. We will now show that with high probability F has
the three required properties. We start with the second and third properties and then observe that the first
property can be proved similarly.

Pick S, T ⊂ V (F ) as in the second property of the lemma. Call an edge in H with one vertex in S and
two vertices in T an STT edge. Let X = XS,T be the number of STT edges, let Y = YS,T be the number
of copies of B that contain at least one STT edge and let Z = ZS,T be the maximal number of pairwise
edge-disjoint copies of B, each containing at least one STT edge. Obviously, Z ≤ Y . Define the event

A = AS,T = {X > 10Z}.

We note that if AS,T holds for every appropriate S, T , then F satisfies the second property. Indeed, if we
delete all edges in all copies of B in B, then the number of STT edges that are deleted is at most 2Z, leaving
at least one STT edge.

Set s = |S| and t = |T |. Since EX = ps
(
t
2

)
and p = 1/200k,

1

200
EX = p2ks

(
t

2

)
≤ EY ≤ 3p2ks

(
t

2

)
=

3

200
EX.

Consequently, aEY ≤ EX ≤ bEY for a = 200/3 > 60 and b = 200. Now

Pr(A) = Pr(X ≤ 10Z) ≤ Pr

(
X ≤ EX

2

)
+ Pr

(
Z ≥ EX

20

)
≤ Pr

(
X ≤ EX

2

)
+ Pr

(
Z ≥ aEY

20

)
.

Krivelevich [12, Claim 1] proved that, for any constant c > 0,

Pr(Z ≥ cEY ) < e−c (log c−1)EY

and, therefore,

Pr

(
Z ≥ aEY

20

)
≤ e−

a
20 (log(a/20)−1)EY ≤ e−

a
20b (log(a/20)−1)EX .

Note that log(a/20) > 1, since a > 60. Moreover, the standard Chernoff bound gives that

Pr

(
X ≤ EX

2

)
< e−EX/8.

Recall that EX = ps
(
t
2

)
= s
(
t
2

)
/200k. The number of choices for S, T of orders s, t is at most

(
k
s

)(
k
t

)
< ks+t.

Thus, in order to show that
∑

S,T Pr(AS,T ) = o(1), the inequalities above imply that we just need st2/k ≫
(s + t) log k. Note that st2/k ≫ s log k, since t >

√
k log k. Moreover, st2/k ≫ t log k, since s + t > k/4,

s > log2 k and t >
√
k. Therefore, F does indeed satisfy the second property with high probability.

We now turn to the third property. Writing X ′ = X ′
S,T for the number of STT edges in F , we first

observe that for all S, T with |S| > k/4 and |T | ≥ k/(16 log k), w.h.p. X ′ > EX ′/2 in F . Indeed, the
previous argument shows that w.h.p. the number of STT edges in F is at least 4X ′/5 > EX ′/2, where, in
the inequality, we used that, by the Chernoff bound, X ′ > 3EX ′/4 w.h.p.
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Now suppose that we are given S and A1, . . . , At as in the third property. Set T = ∪iAi. Since F is
linear and |Ai| ≤ k1/2 log k for all i, the number of SAiAi edges in F over all i is at most∑

i

|Ai|2 ≤ k

k1/2 log k
(k1/2 log k)2 = k3/2 log k. (5)

The STT edges are either SAiAj edges for i ̸= j or SAiAi edges. Note that
(
t
2

)
>
∑

i ̸=j |Ai||Aj | and
EXS,T = ps

(
t
2

)
. In view of (5), and k sufficiently large, we have that

∑
i ̸=j |Ai|Aj | > k2/2 log2 k. Writing

XSAiAi
for the number of SAiAi edges, we conclude that w.h.p. the number of SAiAj edges over all i ̸= j

in F is at least

X ′
S,T −

∑
i

XSAiAi ≥
EXS,T

2
− k3/2 log k >

s

400k

∑
i ̸=j

|Ai||Aj | − k3/2 log k >
s

500k

∑
i ̸=j

|Ai||Aj |.

Finally, we consider the first property. To this end, suppose S ⊂ V (F ) with |S| = k3/5. Define X = XS ,
Y = YS , Z = ZS in the obvious way as above and let A = AS be the event that X > 10Z. Proceeding as we
did for the second property and using that EX = p

(
s
3

)
, Pr(A) = o(1) if the condition ps3 ≫ s log k holds.

But this is equivalent to s2 ≫ k log k, which holds with plenty of room to spare.
We have therefore shown that F satisfies each property w.h.p., so there is indeed a linear F that satisfies

all three properties simultaneously.

In our analysis, we will also need the following result, which comes from a standard application of the
probabilistic method.

Lemma 3.2. For every k ≥ 3, there is a positive constant c = c(k) such that, for every n > 2k, there is a

graph G on m = c(n/ log n)
√

k
64 log5 k vertices with independence number less than n where every subset with r

vertices, for every k1/2/(16 log2 k) ≤ r ≤ k, induces fewer than r2/ log3 k edges.

Proof. Consider G(m, p) with p = m
− 64 log5 k√

k . Then, summing over all r with k1/2/(16 log2 k) ≤ r ≤ k, the
expected number of subsets of order r that induce at least r2/ log3 k edges is at most∑

r≥ k1/2

16 log2 k

(
m

r

)
2r

2

pr
2/ log3 k <

∑
r≥ k1/2

16 log2 k

m2rm
−64r2 log2 k√

k < 1/3.

Moreover, the expected number of independent sets of size n is at most(
m

n

)
(1− p)(

n
2) ≤ mne−pn2/2 = e

n logm− n2

2m64 log5 k/
√

k < 1/3,

where the last inequality follows from the fact thatm = c(n/ log n)
√

k
64 log5 k and that cmay be taken sufficiently

small in terms of k. By Markov’s inequality and the union bound, the statement follows.

3.2 Stepping up

Proof of Theorem 1.4. Let k be a sufficiently large constant that will be determined later. Let F be the linear

triple system on k vertices given by Lemma 3.1 and let G be a graph on m = c(n/ log n)
√

k
64 log5 k vertices,

where V (G) = {0, 1, . . . ,m − 1}, with the properties described in Lemma 3.2. Set V = {0, 1, . . . , 2m − 1}.
Given subsets U1, U2 ⊂ V , we write U1 < U2 if u1 < u2 for all u1 ∈ U1 and u2 ∈ U2. In what follows, we
will use G to define a coloring χ :

(
V
3

)
→ {red, blue} of the triples of V with no red copy of F and no blue

clique on
(
m+n−1
n−1

)
vertices.

For each v ∈ V , write v =
∑m−1

i=0 v(i)2i with v(i) ∈ {0, 1} for each i. For u ̸= v, let δ(u, v) ∈ V (G) denote
the largest i for which u(i) ̸= v(i). It is easy to verify the following properties (see, for example, [10]).
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Property I: For every triple u < v < w, δ(u, v) ̸= δ(v, w).

Property II: For v1 < · · · < vr, δ(v1, vr) = max1≤j≤r−1 δ(vj , vj+1).

We define χ :
(
V
3

)
→ {red, blue} as follows. For vertices v1 < v2 < v3 in V , let δi = δ(vi, vi+1) and set

χ(v1, v2, v3) = red if and only if δ1 > δ2 and δ1δ2 ∈ E(G). We claim that this coloring does not contain a
blue clique of order

(
m+n−1
n−1

)
.

Lemma 3.3. The coloring χ does not contain a blue clique on
(
m+n−1
n−1

)
vertices.

Lemma 3.3 will follow from the claim below. To state it, we need some definitions. Given a subset
A ⊂ V , we say that A contains a δ-increasing set of order s if there are vertices v1, . . . , vs ∈ A such that
v1 < v2 < · · · < vs and

δ(v1, v2) < δ(v2, v3) < · · · < δ(vs−1, vs).

Likewise, we say that A contains a δ-decreasing set of order t if there are vertices v1, . . . , vt ∈ A such that
v1 < v2 < · · · < vt and

δ(v1, v2) > δ(v2, v3) > · · · > δ(vt−1, vt).

Claim 3. Let A ⊂ V be such that A does not contain a δ-increasing set of order s or a δ-decreasing set of
order t. Then |A| ≤

(
s+t−4
t−2

)
.

Proof. We proceed by induction on s and t. Let A = {v1, . . . , v|A|}, where v1 < v2 < · · · < v|A|. For the
base case s = 3 and t ≥ 3, if A does not contain a δ-increasing set of order 3, then we must have

δ(v1, v2) > δ(v2, v3) > · · · > δ(v|A|−1, v|A|).

Since A does not contain a δ-decreasing set of order t, we must have |A| ≤ t − 1 =
(
s+t−4
t−2

)
. A symmetric

argument works for the other base case s ≥ 3 and t = 3.
For the inductive step assume that the statement holds for s′ < s or t′ < t. Suppose A does not contain

a δ-increasing set of order s or a δ-decreasing set of order t. Let j ∈ {1, . . . ,m− 1} be such that

δj = δ(vj , vj+1) = max
i

δ(vi, vi+1)

and let A1 = {v1, . . . , vj} and A2 = {vj+1, . . . , v|A|}. Then, by Properties I and II above, A1 does not contain
a δ-increasing set of size s−1, since otherwise A1∪vj+1 contains a δ-increasing set of size s, a contradiction.
Likewise, A2 does not contain a δ-decreasing set of size t − 1, since otherwise Properties I and II would
imply that A2 ∪ vj contains a δ-decreasing set of size t, again a contradiction. Therefore, by the induction
hypothesis, we have

|A| = |A1|+ |A2| ≤
(
s+ t− 5

t− 2

)
+

(
s+ t− 5

t− 3

)
=

(
s+ t− 4

t− 2

)
,

as required.

Proof of Lemma 3.3. Let A ⊂ V be such that χ colors every triple in A blue. Clearly, A cannot contain a
δ-increasing set of order m+ 2. Moreover, by Properties I and II above, A does not contain a δ-decreasing
set on n+1 vertices, as this would correspond to an independent set of order n in G. Therefore, by Claim 3,
we have |A| ≤

(
m+n−1
n−1

)
.

Next, we show that χ does not contain a red copy of F . For the sake of contradiction, suppose χ contains
a copy of F with vertex set V ′ = {v1, . . . , vk} ⊂ V , where v1 < · · · < vk, and let δi = δ(vi, vi+1). In what
follows, we will define a vertex partition

Pt : V
′ = A1 ∪A2 ∪ · · · ∪Ar ∪ St ∪Bs ∪Bs−1 ∪ · · · ∪B1

such that the following conditions hold:
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1. t = r + s+ 1.

2. A1 < · · · < Ar < St < Bs < · · · < B1.

3. |Ai| ≤ k1/2 log k, |Bj | ≤ log2 k and |St| > k/4.

4. There are δ∗1 > · · · > δ∗r such that for any u1 ∈ Ai, u2 ∈ Aj , u3 ∈ St, where i < j, we have u1 < u2 < u3

and
δ(u1, u2) = δ∗i > δ∗j = δ(u2, u3).

5. There are δ̃1 > · · · > δ̃s such that for any u1 ∈ Bi, u2 ∈ Bj , u3 ∈ St, where i < j, we have u3 < u2 < u1

and
δ(u3, u2) = δ̃j < δ̃i = δ(u2, u1).

6. |A1 ∪ · · · ∪Ar| < k/4 and |B1 ∪ · · · ∪Bs| < k3/4.

We start with P1 : V ′ = S1. Suppose we have the partition

Pt−1 : V ′ = A1 ∪ · · · ∪Ar ∪ St−1 ∪Bs ∪ · · · ∪B1,

with the properties described above. If |A1 ∪ · · · ∪ Ar| < k
4 − k1/2 log k and |B1 ∪ · · · ∪ Bs| < k3/4 − log2 k,

we define Pt by partitioning St−1 as follows.
Let St−1 = {vw, vw+1, . . . , vw′}, where w < w′. We define w ≤ z < w′ such that

δ(vz, vz+1) = max
w≤i<w′

δ(vi, vi+1).

Let T = {vw, . . . , vz} and S = {vz+1, . . . , vw′}. Note that |S ∪ T | = |St−1| > k/4. Suppose |T | > k1/2 log k
and |S| > log2 k. By Properties I and II, χ colors every triple with two vertices in T and one in S blue.
However, by the second property of F , one such triple must be red, which is a contradiction. Hence, we
must have either |T | ≤ k1/2 log k or |S| ≤ log2 k.

If |T | ≤ k1/2 log k, then we set Ar+1 = T = {vw, vw+1, . . . , vz} and St = S = {vz+1, vz+2, . . . , vw′} and
we have the partition

Pt = A1 ∪ · · · ∪Ar+1 ∪ St ∪Bs ∪ · · · ∪B1.

Moreover, for δ∗r+1 = δ(vz, vz+1), this partition satisfies the required properties.

If |S| ≤ log2 k, then we set St = {vw, vw+1, . . . , vz} and Bs+1 = {vz+1, . . . , vw′} and we have the partition

Pt = A1 ∪ · · · ∪Ar ∪ St ∪Bs+1 ∪Bs ∪ · · · ∪B1.

Moreover, for δ̃s+1 = δ(vz, vz+1), this partition again satisfies the required properties.
Let t be the maximum integer such that the partition

Pt = A1 ∪ · · · ∪Ar ∪ St ∪Bs ∪ · · · ∪B1

satisfies all six properties described above. Then |A1 ∪ · · · ∪Ar| > k/8 or |B1 ∪ · · · ∪Bs| > k3/4/2. The proof
now falls into two cases.

Case 1: |A1 ∪ · · · ∪Ar| > k/8.

By partitioning dyadically and averaging, we can conclude that there is an integer K and r′ indices
j1 < j2 < · · · < jr′ such that

2K ≤ |Aji | < 2K+1

for all i ∈ {1, . . . , r′} and
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k

16 log k
≤ k

8 log2 k
≤

r′∑
i=1

|Aji | ≤ k.

Hence, each part satisfies

k

32r′ log k
≤ |Aji | ≤

2k

r′
.

In what follows, we will show that R = {δ∗j1 , . . . , δ
∗
jr′

} induces (nearly) quadratically many edges, contradict-
ing the properties of G.

Since |St| > k/4, |Aji | ≤ k1/2 log k and |Aj1 ∪ · · · ∪ Ajr′ | ≥
k

16 log k , the third property of F implies that

there is an absolute constant c′ such that χ colors

f ≥
∑
i,ℓ

|Aji ||Ajℓ |
|S|
500k

≥ k2

c′ log2 k

triples, with one vertex in S and the other two in distinct parts Aji , Ajℓ , red. On the other hand, by property
4 of the partition, each such red triple is obtained from an edge δ∗jiδ

∗
jℓ

∈ E(G). Since F is linear, the number
of such triples going across parts (Aji , Ajℓ , S), with one vertex in each part, is at most |Aji ||Ajℓ |. Writing
eR for the number of edges in the induced subgraph G[R], we obtain

f ≤
∑

δ∗ji
δ∗jℓ

∈E(G)

|Aji ||Ajℓ | ≤ eR
4k2

(r′)2
.

This yields

eR ≥ (r′)2

4c′ log2 k
.

From

k

16 log k
≤

r′∑
i=1

|Aji | ≤ r′(k1/2 log k),

we obtain r′ ≥ k1/2/(16 log2 k). On the other hand, since k may be assumed to be sufficiently large, the
properties of G imply that eR ≤ (r′)2/(log3 k) < (r′)2/(4c′ log2 k), a contradiction.

Case 2: |B1 ∪ · · · ∪Bs| > k3/4/2.

Since 1 ≤ |Bi| ≤ log2 k, we have s > k3/5. Let ui ∈ Bi and consider the subset {u1, . . . , us} ⊂ V ′. Then,
by property 5 of the partition, for ui > uj > uk, we have δ(ui, uj) > δ(uj , uk). Hence, by Properties I and
II, every triple in {u1, . . . , us} is blue. However, by the first property of F , there must be at least one red
triple, a contradiction.

Since |V | = 2m = 2c(n/ logn)

√
k

64 log5 k
, for n′ =

(
m+n
n

)
≤ (m + n)n ≤ m2n, we have log(n′) = Θk(n log n)

and log log(n′) = Θk(log n). Hence, there is a constant c0 depending only on k such that

r3(F, n
′) > |V | = 2m = 2c(n/ logn)

√
k

64 log5 k ≥ 2
c0

(
log n′

(log log n′)2

) √
k

64 log5 k

> 2c0(logn′)

√
k

128 log5 k
,

as required.
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4 Concluding remarks

4.1 Pair constructions

All of the best known lower-bound constructions for 3-uniform hypergraph Ramsey numbers are “pair con-
structions”, which can be formally defined as follows.

Definition. A 3-uniform pair construction (or, henceforth, pair construction) on vertex set [N ] is a coloring

χf,g of the complete 3-graph K
(3)
N obtained from a pair of functions f :

(
[N ]
2

)
→ [p] and g : [p]3 → {red,blue}

by the rule χf,g({i, j, k}) = g(f(i, j), f(j, k), f(k, i)) for any edge {i, j, k} ∈
(
[N ]
3

)
satisfying i < j < k. We

call the parameter p the complexity of the pair construction.

To see how this definition relates to existing constructions, we note that stepping-up constructions are
exactly pair constructions χf,g where f(i, j) = δ(i, j) is the index of the highest significant binary digit where
i and j differ and typically have complexity O(logN). Similarly, inducibility constructions, like those based

on random tournaments or 3-colorings, are pair constructions of constant complexity where f :
(
[N ]
2

)
→ [p] is

a uniform random function. The two constructions described in this paper also fit firmly into this paradigm.
These observations suggest the following natural question: do all Ramsey colorings of 3-graphs admit

low-complexity encodings? More formally, if, for any 3-graphs G and H, we define rp(G,H) to be the

smallest n such that every 2-edge-coloring of K
(3)
n of complexity at most p contains either a red copy of G

or a blue copy of H, then we have the following broad conjecture.

Conjecture 4.1. There exists an absolute constant a > 0 such that, for all 3-graphs G and H, rp(G,H) ≥
r(G,H)a whenever p > r(G,H)o(1).

In other words, we believe that if there is a Ramsey coloring of order N , then there is also a Ram-
sey coloring of order NΩ(1) with much smaller complexity. This would at least explain the prevalence of
such constructions in Ramsey theory, but might also help shed some light on the possible growth rates for

r(H,K
(3)
n ), a topic which we now discuss.

While almost all known Ramsey colorings can be encoded with complexity which is polylogarithmic in
r(G,H), we now show that such a strong dependence is not possible in general.

Proposition 4.2. For n, p ≥ 1, rp(K
(3)
n,n,n) ≤ 2O(n log p). In particular, if p = 2o(n), then rp(K

(3)
n,n,n) =

r(K
(3)
n,n,n)o(1).

Proof. The Kővári–Sós–Turán theorem implies that any bipartite graph with parts of order s ≤ t and density
q with t ≥ q−10 has a complete subgraph with Ω(log s/ log(2/q)) vertices in the part of order s and at least
t0.9 vertices in the part of order t.

Let χf,g be a pair construction for K
(3)
N with complexity p and N = 2Cn log p for some large constant

C > 0. We would like to show that χ contains a monochromatic K
(3)
n,n,n. Divide the vertex set into three

intervals I, J,K of order N/3. We will apply the Kővári–Sós–Turán theorem to shrink I, J,K until the edges
between I × J , J ×K and K × I are each monochromatic in f .

First, we build an auxiliary complete bipartite graph B = (I, J ×K;E) and define an edge-coloring of
B by ϕ(i, (j, k)) = (f(i, j), f(i, k)). Observing that ϕ takes at most p2 values, there must exist c1 and c2 for
which ϕ(i, (j, k)) = (c1, c2) for at least |I||J ||K|/p2 choices of (i, j, k) ∈ I×J×K. By the Kővári–Sós–Turán
theorem, we obtain subsets I ′ ⊆ I, S ⊆ J × K for which |I ′| = Ω(logN/ log(2p2)), |S| ≥ (|J ||K|)0.9 and
ϕ is constant on I ′ × S. Letting J ′, K ′ be the set of all j ∈ J , k ∈ K that appear in S, this implies that
|J ′| ≥ |S|/|K| ≥ |J |0.8, |K ′| ≥ |S|/|J | ≥ |K|0.8 and f(i, j) = c1, f(i, k) = c2 for all (i, j, k) ∈ I ′ × J ′ ×K ′.

Let c3 be the most common value of f(j, k) between J ′ and K ′. By the Kővári–Sós–Turán theorem,
we can find subsets J ′′ ⊆ J ′, K ′′ ⊆ K ′ where |J ′′|, |K ′′| = Ω(logN/ log(2p)) and f(j, k) = c3 for all pairs
(j, k) ∈ J ′′ × K ′′. Observe that, by our choice of N , |I ′|, |J ′′|, |K ′′| = Ω(logN/ log(2p2)) ≥ n. Since every
triple (i, j, k) ∈ I ′ × J ′′ ×K ′′ is assigned the same color χf,g(i, j, k) = g(c1, c2, c3), we are done.

Therefore, if N = r(K
(3)
n,n,n) = 2Θ(n2), the minimum complexity needed to obtain rp(K

(3)
n,n,n) ≥ NΩ(1) is

p = 2Ω(n) ≥ 2Ω(
√
logN). One can show that this is tight by picking uniformly random f and g.

19



4.2 What growth rates are possible?

Adding to the earlier results of Fox and He [9], this paper shows that there are many fixed 3-graphs H for

which r(H,K
(3)
n ) = 2ΘH(n logn). Strangely, we do not have any examples of H for which r(H,K

(3)
n ) = 2ΘH(n),

though it is natural to conjecture their existence.

Conjecture 4.3. There exists a 3-graph H for which r(H,K
(3)
n ) = 2ΘH(n).

We now explicitly construct a 3-graph H with 1
3 < mpair(H) < 1

2 . Since Theorem 1.1 does not apply

to this H and yet r(H,K
(3)
n ) ≥ 2ΩH(n) by Theorem 1.2, it may be a promising candidate for verifying

Conjecture 4.3.

Proposition 4.4. There exists a 3-graph H with 1
3 < mpair(H) < 1

2 .

Proof. First we show that if H can be constructed by repeatedly adding edges {u, v, w} such that at most
one of the three pairs {u, v}, {v, w} and {w, u} was previously in an edge together, then mpair(H) < 1/2.
Indeed, suppose f : ∂H → V (G) is a pair homomorphism with e(G)/v(G) < 1

2 , H
′ = H ∪ {u, v, w} and,

without loss of generality, among the three pairs only {u, v} lies in the shadow of H. Then there is a pair
homomorphism f ′ : ∂H ′ → V (G′) where G′ is obtained from G by adding two new vertices x = f ′(v, w) and
y = f ′(w, u) and one new edge (f(u, v), x, y). But then

e(G′)

v(G′)
=

e(G) + 1

v(G) + 2
<

1

2
.

A link path is the link 3-graph of a path. We construct H by linearly gluing two link paths, by which
we mean that we identify some of the vertices in the two paths while insisting that they do not share edges.
Such a gluing satisfies the property above, since each link path can be built iteratively, and so mpair(H) < 1

2 .
It remains to check that mpair(H) > 1

3 , i.e., that H is not 123-inducible.
Our construction is as follows. Let U with vertices u, u1, . . . , u12 and V with vertices v, v1, . . . , v12 be the

links of the paths u1u2 · · ·u12 and v1v2 · · · v12, respectively. We identify certain ui to certain vj as follows:

� Glue v1 to u2, v2 to u5, v5 to u6 and v6 to u1.

� Glue v7 to u11, v8 to u8, v11 to u7 and v12 to u12.

It is easy to check that this is a linear gluing. We call the resulting graph H and claim that it is not
123-inducible.

Lemma 4.5. If W is the w-link of the path w1w2 · · ·wk, then, in any total order on w,w1, . . . , wk that leads
to a valid 123-coloring of W , either w1 < w2 > w3 < w4 > · · · or w1 > w2 < w3 > w4 < · · · .

Proof. For any valid 123-coloring and any edge abc, we may determine the relative order of a, b and c
if we know the label of the 2-edge ab and the relative order of a and b. Thus, since the edges wwiwi+1

and wwi+1wi+2 share the 2-edge wwi+1, wwi+1wi and wwi+1wi+2 must have the same relative order. In
particular, wi < wi+1 if and only if wi+1 > wi+2, completing the proof of the lemma.

Using this lemma, it is not difficult to show that H is not 123-inducible. Suppose, for the sake of
contradiction, that we have a valid total ordering on the vertices of H leading to a 123-coloring. We have
four cases:

Case 1: u1 < u2 and v1 < v2. In this case, the lemma implies u5 < u6 and v5 < v6. However, v1 = u2 and
v2 = u5, so u1 < u2 = v1 < v2 = u5 < u6. However, v5 = u6 and v6 = u1, contradicting v5 < v6.
Case 2: u1 > u2 and v1 > v2. This is exactly the same as Case 1, but with the inequality signs flipped.
Case 3: u1 < u2 and v1 > v2. The lemma implies that u7 < u8 and u11 < u12, while v7 > v8 and v11 > v12.
Since v7 = u11 and v8 = u8, we have that u7 < u8 = v8 < v7 = u11 < u12. But v11 = u7 and v12 = u12,
contradicting v11 > v12.
Case 4: u1 > u2 and v1 < v2. This is exactly the same as Case 3, but with the inequality signs flipped.

Since we have a contradiction in each case, H is not 123-inducible, as required.
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If we allow families H instead of single 3-graphs H, then the growth rate 2ΘH(n) can occur. Indeed,
letting H be the family of links of nonbipartite graphs, we quickly see that the 3-graph whose edges are the
cyclic triangles in a random tournament provides the lower bound. On the other hand, the upper bound
2n − 1 follows by applying induction to the larger part of the bipartition determined by the link of a vertex
in an H-free 3-graph.

More generally, one might ask what growth rates are possible. For instance, are there fixed 3-graphs H

for which r(H,K
(3)
n ) equals, say, 2ΘH(

√
n), 2ΘH(n log logn) or even 2ΘH(n log∗ n)?

However, the outstanding question on off-diagonal hypergraph Ramsey numbers is to decide whether

there are fixed 3-graphs H for which r(H,K
(3)
n ) ≥ 2ω(n logn). It seems likely that this should already be the

case for H = K
(3)
4 , but our methods seem insufficient for proving this. We even suspect the following should

be true.

Conjecture 4.6. For every c > 0, there exists s such that r(K
(3)
s ,K

(3)
n ) ≥ 2Ωs(n

c).

We note that this is not true if we replaceK
(3)
n byK

(3)
n,n,n, since it is easy to see that r(H,K

(3)
n,n,n) ≤ 2OH(n2)

for all H. In fact, using the methods of [5], one can show that for every 3-graph H there exists ϵ > 0 such

that r(H,K
(3)
n,n,n) ≤ 2OH(n2−ϵ). We suspect that it may even be the case that r(H,K

(3)
n,n,n) ≤ 2OH(n logn) for

all H, which would go some way towards explaining the difficulties in bypassing this bound.

4.3 Linear hypergraphs

The conjecture that r(F,K
(3)
n ) is at most polynomial in n for any linear F was a special case of another

unpublished conjecture, saying that if F is 123-inducible, then r(F,K
(3)
n ) is at most polynomial in n. If

that had been true, then, together with Theorem 1.2, we would have had a clean characterization saying

that r(F,K
(3)
n ) is at most polynomial in n if F is 123-inducible and at least exponential in n if F is not

123-inducible. Instead, Theorem 1.4 leaves us in a messier, though arguably more interesting, situation. If F

is linear with s vertices, then r(F,K
(3)
n ) ≤ r(K

(3)
s ,K

(3)
n ) and the best known upper bound for r(K

(3)
s ,K

(3)
n )

is 2O(ns−2 logn) from [4]. However, for linear F , the arguments in [4] can be extended to prove the stronger

upper bound r(F,K
(3)
n ) ≤ 2n

s−Ω(s1/2)

. We even believe that the following may be true.

Conjecture 4.7. There is an absolute constant C > 0 such that r(F,K
(3)
n ) ≤ 2OF (nC) for every fixed linear

3-graph F .

Perhaps this conjecture could also hold with nC replaced by no(1) or with the family of linear 3-graphs
replaced by the family of 123-inducible 3-graphs, though we are rather less certain about these possibilities.

Finally, we would also like to know whether Theorem 1.4 holds not just for some linear F but for most
linear F . To show this, one would just need to show that the pseudorandomness conditions proved in
Lemma 3.1 hold with high probability for random (partial) Steiner systems. We may return to this problem,
whose study would require methods rather different to those used here, in future work.

Acknowledgements. This research was initiated during a visit to the American Institute of Mathematics
under their SQuaREs program.

References
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