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Abstract
Given a family of Horn clauses, what is the minimal num-
ber of Horn clauses implying all other clauses in the family?
What is the maximal number of Horn clauses from the family
without having resolvents of a certain kind? We consider var-
ious problems of this type, and give some sharp bounds. We
also consider the probability that a random family of a given
size implies all other clauses in the family, and we prove the
existence of a sharp threshold.

1 Introduction
Horn formulas form a basic framework for knowledge rep-
resentation, being an expressive and tractable fragment of
logic. They have been studied from many different aspects,
such as reasoning and learning (Angluin, Frazier, & Pitt
1992; Kleine Büning & Lettmann 1999).

In our recent work (Langlois, Sloan, & Turán 2006; 2007;
Langlois et al. 2007), we studied related problems on Horn
formulas in the context of Horn approximation and belief
revision. Motivated by applications such as the Open Mind
Common Sense (Singh 2002) project for the acquisition of
commonsense knowledge bases, we formulated the Know-
BLe (Knowledge Base Learning) problem on synthesizing
learning and belief revision. The objective is to learn a Horn
formula in the model of learning with entailment, using a
learning algorithm which updates its hypotheses in a ratio-
nal manner in the spirit of the AGM paradigm (Alchourrón,
Gärdenfors, & Makinson 1985).

In order to analyze various approaches to this problem, it
would be useful to have a good understanding of the combi-
natorial and probabilistic properties of Horn formulas, such
as how many additional clauses are implied and how many
resolution steps can be formed. In this paper we consider
some combinatorial problems of this sort.

Given a family of Horn clauses, what is the minimal num-
ber of Horn clauses needed to imply all Horn clauses in the
family? What is the maximal number of Horn clauses in
the family such that no resolution steps of a certain kind can
be performed? These questions also appear to be of inde-
pendent interest in combinatorics, as related questions about
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hypergraphs are much studied in extremal hypergraph the-
ory.

As an interesting basic case, we discuss definite Horn
clauses of size 3 in most of the paper (we briefly discuss
the simple case of definite Horn clauses of size 2 as well,
as it provides some interesting analogies). In the intended
commonsense knowledge base application it seems reason-
able to assume that the knowledge base contains non-unit
definite clauses (in contrast to other applications where the
knowledge base is used to derive facts from other facts).

It is noted that if a set of definite, size-3 Horn formulas
implies a definite, size-3 Horn clause, then that clause has
a resolution derivation using intermediate clauses of size at
most 4 (and size-4 intermediate clauses may be necessary).
The minimal number of definite, size-3 Horn clauses imply-
ing all definite Horn clauses of size 3 over n variables is
determined exactly. At the other end, asymptotically sharp
bounds are given for the maximal number of definite, size-3
Horn clauses over n variables, such that no resolution (resp.,
no resolution giving a resolvent of size 3, and no resolution
giving a resolvent of size 4) can be performed among those
clauses.

We also consider the probability that a given number of
random definite, size-3 Horn clauses imply all other definite,
size-3 Horn clauses. It is shown that this probability has a
sharp threshold.

The paper is organized as follows. Section 2 gives some
preliminaries, Section 3 discusses the case of definite Horn
clauses of size 2 and Section 4 gives the bound on the size
of intermediate clauses. Section 5 is on the minimal number
of definite, size-3 Horn clauses implying all definite, size-
3 Horn clauses. The bounds for the maximal number of
definite, size-3 Horn clauses without different kinds of re-
solvents are contained in Section 6. Random formulas are
considered in Section 7. We make a few final remarks in
Section 8.

2 Preliminaries
We use standard terms from propositional logic such as lit-
eral and clause. Formulas are over n variables, and the vari-
ables are Xn = {x1, . . . , xn}. A clause is Horn (resp., def-
inite Horn) if it contains at most one (resp. exactly one)
unnegated literal. We will generally write the Horn clause
(x̄∨ ȳ ∨ z) in the form x, y → z. For a definite Horn clause



C, let Body(C) be the set of variables corresponding to the
negated literals in C and let Head(C) be the unnegated vari-
able of C.

The size of a clause is the number of literals it contains.
We use Dn

k to denote the collection of all size-k definite
Horn clauses on n variables. Its size is

|Dn
k | = k ·

(
n

k

)
, (1)

which is Θ(nk) for constant k.
A (definite) Horn formula is a conjunction—or a set,

whichever view is more convenient—of (definite) Horn
clauses.

A clause C is an implicate of a Boolean formula ϕ if every
assignment satisfying ϕ also satisfies C; clause C is a prime
implicate if it is an implicate but none of C’s sub-clauses is
an implicate.

We say that two clauses have an opposing literal when
there is a variable that appears negated in one clause and un-
negated in the other. A pair of Horn clauses can have either
zero, one, or two opposing literals. We define the familiar
operation of resolution for the case of Horn clauses to ap-
ply to a pair of Horn clauses that have exactly one opposing
literal. Let C1 and C2 be such Horn clauses, and assume
w.l.o.g. that C1 is definite with its head being the oppos-
ing literal: Head(C1) ∈ Body(C2). Resolution returns the
clause (Body(C1)∪Body(C2)\{Head(C1)}) → Head(C2),
which is called the resolvent of C1 and C2. Thus the re-
solvent of the two clauses (a, b → c) and (c, d → e) is
(a, b, d → e). The resolvent of two definite, size-3 Horn
clauses has size 3 or 4, referred to as a 3-resolvent, resp., a 4-
resolvent. The resolvent of two definite size-2 Horn clauses
always has size 2. A set of clauses F is called resolvent-free
if no two clauses in F can be resolved.

We will use standard facts about Horn resolution, such
as that every prime implicate of a Horn formula is a Horn
clause, and we will also refer to the standard procedure of
forward chaining, which can also be viewed as a unit res-
olution proof procedure (e.g., (Kleine Büning & Lettmann
1999; Russell & Norvig 2003)).

3 Definite Horn formulas with size-2 clauses
In this section we consider some extremal problems for def-
inite Horn formulas with size-2 clauses. A definite, size-2
Horn clause a → b can be thought of as a directed edge
(a, b), so definite Horn formulas with size-2 clauses can be
viewed as directed graphs.

Proposition 1. There is a subset of Dn
2 of size n that has ev-

ery clause in Dn
2 as an implicate, and no smaller size subset

has this property.

Proof. The formula

(x1 → x2) ∧ (x2 → x3) ∧ · · · ∧ (xn → x1)

of clauses forming a cycle implies every size-2 definite Horn
clause: For i < j, the clause xi → xj can be obtained
by resolving (xi → xi+1), (xi+1 → xi+2), . . . , (xj−1 →
xj), two at a time in order. If instead i > j, then resolve

(xi → xi+1), (xi+1 → xi+2), . . . , (xn−1 → xn), (xn →
x1), (x1 → x2), . . . , (xj−1 → xj). At least n clauses are
needed, as otherwise there is a variable that never appears as
a head, and there is no way to obtain implicates having that
head.

Proposition 2. If F ⊆ Dn
2 is resolvent-free, then |F | ≤⌊

n2

4

⌋
for n ≥ 3, and the bound is sharp.

Proof. Partition the set Xn of variables into sets A and B,
and consider all clauses of the form a → b with a ∈ A and
b ∈ B. Clearly, this is a resolvent-free family. The number
of clauses is maximized if |A| = bn

2 c and |B| = dn
2 e, giving

a family of the claimed size.
Now we show that the bound is the largest possible for

n ≥ 3. The cases n = 3, 4 are trivial. In digraph terms,
we want the directed graph on n vertices with a maximum
number of edges, having no simple path of length 2. If there
is cycle of length two then its vertices cannot be incident
to any other edge and the statement follows by induction.
Otherwise, every vertex has either in-degree 0 or out-degree
0, and so the graph is a subgraph of a complete directed
bipartite graph described above.

4 Size of intermediate clauses in resolution
A resolution derivation of a short clause from a formula
consisting of short clauses may contain large intermediate
clauses. It is a basic observation with far-reaching implica-
tions that in some cases large intermediate clauses are un-
avoidable (Ben-Sasson & Wigderson 2001; Haken 1985).
A trivial example for a class of clauses where such a phe-
nomenon cannot occur is size-2 clauses, as every resolvent
of such clauses has size at most 2. We note that there is also
no blow-up of intermediate clauses for Horn formulas.

Theorem 3. Let ϕ be a definite Horn formula with clauses
of size at most 3. Then any size-3 prime implicate of ϕ has
a resolution derivation where all clauses occurring in the
proof have size at most 4.

Proof sketch. Since ϕ is definite, all its resolvents and hence
all its prime implicates must be definite Horn clauses. As-
sume that C = a, b → c is the implied clause. Then there
is a forward chaining derivation of c from ϕ ∧ a ∧ b. In this
derivation, each resolvent is shorter than its non-unit parent
by one. Thus intermediate clauses all have size at most 2.
Now omit any resolutions that used a or b. This new res-
olution derivation contains the same clauses as the original
one, except that some clauses have a and/or b added to their
body. Intermediate clause sizes could therefore be as large
as 4. The final clause of this derivation, which is an impli-
cate of ϕ, could in general have any subset of {a, b} as its
body and c as its head. However, since C is a prime impli-
cate, the final clause must be C.

The bound of 4 cannot be improved, as there may be size-
3 prime implicates where we must use some intermediate
clause of size 4. For example, we must use a size-4 interme-
diate resolvent to derive the prime implicate a, b → f of the



Horn formula

(a, c → e) ∧ (b, d → c) ∧ (d, e → f) ∧ (a, b → d).

Theorem 3 can be generalized, for example, to the follow-
ing statement, using the same argument.

Corollary 4. Let ϕ be a definite Horn formula with clauses
of size at most s. Then any prime implicate of ϕ with t vari-
ables in its body has a resolution derivation where all in-
termediate clauses occurring in the proof have size at most
s− 1 + t.

5 Small formulas with all implicates
In this section we consider the problem of finding the small-
est family of definite size-3 Horn clauses implying every
clause in Dn

3 , and as in Proposition 1, we find the exact min-
imum.

Theorem 5. There is a subset of Dn
3 of size

(
n
2

)
that has ev-

ery clause in Dn
3 as an implicate, and no smaller size subset

has this property.

Proof. To show that
(
n
2

)
clauses are sufficient, we exhibit a

set Sn ⊆ Dn
3 of this size and demonstrate that Sn implies all

definite size-3 clauses. Each clause of Sn is in one of three
categories:

I. xi, xj → xi+1, for i ≤ n− 2 and i + 1 < j,
II. xi, xi+1 → xi+2, for i ≤ n− 2,

III. xn−1, xn → x1.

Note that Sn can be viewed as the size-3 analog of the di-
rected cycle considered in Proposition 1.

All definite Horn clauses of size 3 are satisfied by the all
1’s vector, the all 0’s vector and all unit vectors. Call these
vectors standard.

Assume for contradiction that C ∈ Dn
3 is not implied

by Sn. Then there is a truth assignment that satisfies Sn

and falsifies C. This truth assignment has at least two 1’s
(corresponding to variables in Body(C)) and at least one 0
(namely, Head(C)), thus it is non-standard. Therefore, it is
sufficient to show that every non-standard vector falsifies at
least one clause of Sn. A non-standard vector can have the
following forms (using regular expressions):

1. (0+1)*10(0+1)*1(0+1)*,
2. (0+1)*110(0+1)*,
3. 0(0+1)*11.

Vectors of form 1 falsify clauses of class I, vectors of form
2 falsify clauses of class II, and vectors of form 3 falsify
clauses of class III.

For the lower bound, note that resolution of two definite
clauses of size at least 3 does not produce clauses with any
new bodies of size 2. Therefore a set of clauses implying all
other clauses must contain all possible bodies.

Incidentally, an examination of the resolutions needed
shows that in order to derive all the clauses of Dn

3 from Sn

one does not need any size-4 intermediate clauses, unlike the
general case given by Theorem 3.

Theorem 6. Every clause C ∈ Dn
3 can be derived from Sn

with every intermediate clause being in Dn
3 .

Proof sketch. A careful series of inductions shows that
eventually all clauses can be derived. Table 1 gives a hint
of the idea for each of the

(
n−1

2

)
clauses with head xh, for

some arbitrary h. Starting at the leftmost column, with the
boxed clause, we can derive all the clauses above the boxes,
up through column h + 1. Next these can be used to ob-
tain the rest of the clauses in the leftmost columns (going
“down” these same columns.) Two similar steps then handle
the right columns.

6 Large formulas without resolvents
A set of clauses F ⊆ Dn

3 is 3-resolvent-free (resp. 4-
resolvent-free) if no two of its clauses can be resolved to
produce a 3-resolvent (resp., 4-resolvent). In this section
we prove upper bounds on the size of resolvent-free, 3-
resolvent-free, and 4-resolvent-free clause sets. First, we
formulate a few technical lemmas.

6.1 Duplicates and Escher configurations
Definite, size-3 clauses C1, C2 form a duplicate if they con-
tain the same set of variables. Thus duplicate clauses are of
the form a, b → c and a, c → b.

Lemma 7. Let F ⊆ Dn
3 be 3-resolvent-free. Then we can

delete at most
(
n
2

)
clauses from F such that no duplicates

remain.

Proof. It is sufficient to show that if clause a, b → c occurs
in a duplicate in F , then F cannot contain another clause
with the same body. Indeed, such a clause a, b → d gives a
size-3 resolvent with both a, c → b and b, c → a, and one of
these clauses occurs in F .

Lemma 8. Let F ⊆ Dn
3 be 4-resolvent-free. Then we can

delete at most (3/2)n2 clauses from F such that no dupli-
cates remain.

Proof. Consider the weighted undirected graph G on the
vertex set Xn with an edge (b, c) for every pair of dupli-
cates a, b → c and a, c → b. The weight of such an edge
(b, c) is the number of such vertices a. If we delete a clause
from each such pair then no duplicates remain. Therefore, it
is sufficient to prove the claimed upper bound for the sum of
the edge weights in G.

We claim that the edges of G having weight at least 3 are
independent. Assume that (b, c) and (c, d) both have weight
at least 3. Then there is a vertex e such that b, e → c is in F ,
and there is a vertex f such that c, f → d is in F . For the
last assertion we use the fact that (c, d) has weight at least 3,
as f then can be chosen to be different from b and e. But the
two clauses can be resolved to produce a 4-resolvent.

Hence the number of edges in G with weight at least 3 is
at most n/2. Every weight is at most n, so the total weight
of edges in G is at most (n2/2) + 2

(
n
2

)
≤ (3/2)n2.



n n-1 . . . h+1 h-1 . . . 2
x1, xn → xh x1, xn−1 → xh . . . x1, xh+1 → xh x1, xh−1 → xh . . . x1, x2 → xh

x2, xn → xh x2, xn−1 → xh . . . x2, xh+1 → xh x2, xh−1 → xh . . .
x3, xn → xh x3, xn−1 → xh . . . x3, xh+1 → xh x3, xh−1 → xh . . .

. . . . . . . . . . . . . . . . . .
xh−1, xn → xh xh−1, xn−1 → xh . . . xh−2, xh+1 → xh xh−2, xh−1 → xh . . .
xh+1, xn → xh xh+1, xn−1 → xh . . . xh−1, xh+1 → xh . . .

. . . . . .
xn−2, xn → xh xn−2, xn−1 → xh . . . . . .
xn−1, xn → xh . . .

Table 1: All definite size-3 Horn clauses with head xh

Definite, size-3 clauses C1, C2 form an Escher configura-
tion if Head(C1) ∈ Body(C2) and Head(C2) ∈ Body(C1).
(The name is inspired by Escher’s Drawing Hands , though
here it is heads rather than hands that are on one another.)
Note that such a pair of clauses cannot be resolved.
Lemma 9. Let F ⊆ Dn

3 be resolvent-free. Then we can
delete at most 2n2 clauses from F such that no Escher con-
figurations remain.

Proof. Consider the undirected graph G on the vertex set
Xn with an edge (Head(C1), Head(C2)) for every pair of
clauses C1, C2 ∈ F forming an Escher configuration. We
claim that every vertex of this graph has degree at most 2.
Assume that d has neighbors a, b, c in G. Then F contains
clauses

(a. → d), (d. → a), (b. → d), (d. → b), (c. → d), (d. → c),

where the dots correspond to one additional literal in each
body. One can use a “sudoku” argument to derive a contra-
diction. If the second and third clauses cannot be resolved
then the third clause must be b, a → d. Similarly, if the
fourth and fifth (resp., sixth and first) clauses cannot be re-
solved then the fifth (resp., first) clause must be c, b → d
(resp., a, c → d). But then the first and fourth clauses can be
resolved.

Thus G has at most n edges. Every edge corresponds to
at most 2(n− 2) clauses (those obtained by adding a second
literal to the bodies), and so the bound of the lemma follows.

6.2 No resolvents
Let us partition the set of variables Xn into set A and B,
and consider the set of clauses of the form a, b → c with
a, b ∈ A, c ∈ B. Clearly, this is a resolvent-free family
of definite, size-3 Horn clauses, which can be viewed as the
size-3 analog of the complete directed bipartite graph of Sec-
tion 3. The number of clauses in the family is

(
m
2

)
(n−m),

where |A| = m. This quantity is maximized for m with
|m− 2n/3| ≤ 1, and the maximum is

p(n) =
4
9

(
n

3

)
+ O(n2).

The family constructed for the optimal value of m thus has
size p(n). We now show that this size is asymptotically op-
timal.

Theorem 10. There is a positive c such that if F ⊆ Dn
3 is

resolvent-free, then

|F | ≤ p(n) + cn2 .

Proof. Let F ⊆ Dn
3 be resolvent-free. Applying Lemma 9,

we can delete O(n2) clauses such that no Escher configura-
tion remains. In the remaining set F ′ of clauses, no variable
can occur in a body of a clause and in the head of another
clause, as those two clauses would either be resolvable or
form an Escher configuration. Thus every variable is either
head only, or body only, or neither. Thus F ′ is a subfamily
of some family obtained by the above construction, and so
its size is at most p(n).

6.3 No resolvents of size 3
Let us again partition the set of variables Xn into sets A
and B, and this time consider the set of clauses of the form
a, b → c with a, b ∈ A, c ∈ B, or a, b ∈ B, c ∈ A. This
is a 3-resolvent-free family of definite, size-3 Horn clauses.
(On the other hand, there are many resolvents of size 4.) The
number of clauses in the family is

(
m
2

)
(n−m) +

(
n−m

2

)
m,

where |A| = m. This quantity is maximized for m with
m = bn/2c, and the maximum is

q(n) =
3
4

(
n

3

)
+ O(n2).

The family constructed for the optimal value of m thus has
size q(n). We now show that this size is asymptotically op-
timal.

Theorem 11. There is a positive c such that if F ⊆ Dn
3 is

3-resolvent-free, then

|F | ≤ q(n) + cn2 .

Proof. Let F ⊆ Dn
3 be 3-resolvent-free. Applying

Lemma 7, we can delete O(n2) clauses such that no dupli-
cates remain. Let a, b → c be a clause in the remaining fam-
ily F ′. Then no clause in F ′ can have body a, c → or b, c →,
as any such clause would either produce a 3-resolvent with
a, b → c, or form a duplicate with it.

Consider the undirected graph G with vertices Xn and
edges corresponding to the bodies of clauses in F ′, and let
t be the number of vertex triples containing precisely one
edge of G. The remark above implies that |F ′| ≤ t.



Therefore we get the required upper bound on |F | by not-
ing that the number of triples containing precisely one edge
of G is at most

1
2

∑
d(v)(n− 1− d(v)) ≤ n

2

(
n− 1

2

)2

.

6.4 No resolvents of size 4
The families constructed in Section 6.2 have no resolvents,
thus the same construction trivially shows that there are
families of size p(n) without 4-resolvents. Our final re-
sult shows that this is asymptotically optimal even for 4-
resolvent-free families. This theorem thus supersedes The-
orem 10; on the other hand, its proof is considerably more
complicated and uses difficult recent results from extremal
hypergraph theory. A 3-uniform hypergraph is specified by
a set of vertices and a set of 3-element subsets of the set of
vertices.
Theorem 12. For every ε > 0 and sufficiently large n, if
F ⊆ Dn

3 is 4-resolvent-free then |F | ≤ p(n) + εn3.

Proof. Let F ⊆ Dn
3 be a 4-resolvent-free set of clauses. Ap-

plying Lemma 8, we can delete O(n2) clauses from F such
that no duplicates remain. Let the remaining set of clauses
be F ′, and consider the 3-uniform hypergraph H obtained
from F ′ by replacing every clause a, b → c with the triple
{a, b, c}. From now on we omit curly braces for triples and
write abc for simplicity.

Let T be the 3-uniform hypergraph {abc, abd, abe, cde}
and T ′ be the 3-uniform hypergraph obtained from T by
duplicating vertices a and b. Thus T ′ consists of the
13 triples abc, ab′c, a′bc, a′b′c, abd, ab′d, a′bd, a′b′d, abe,
ab′e, a′be, a′b′e, cde. By an orientation of this family we
mean a family of 13 definite, size-3 Horn clauses, each con-
taining the 3 variables of a different triple from T ′.

Lemma 13. Any orientation of T ′ contains two clauses with
a resolvent of size 4.

Proof. Consider an orientation of T ′. We may assume by
symmetry that cde is oriented as c, d → e. Then the clauses
a, b → e and a′, b′ → e must be present, otherwise we get a
4-resolvent with c, d → e. Now considering the triple ab′c,
we find that every orientation leads to a 4-resolvent.

It follows from Lemma 13 that H contains no copy of T ′.
From this, in the next lemma, we conclude that H contains
only “few” copies of T .

Lemma 14. For sufficiently large n, every 3-uniform, n-
vertex, T ′-free hypergraph has at most n4.5 copies of T .

Proof. Assume that G has more than n4.5 copies of T . For
every triple cde, let us consider the set of pairs ab which
form a copy of T in G. Triples that have fewer than
n3/2 such pairs contribute at most

(
n
3

)
n3/2 < n4.5 copies

of T . Thus there is a triple cde with at least n3/2 such
pairs. The pairs corresponding to such a triple form a cy-
cle aba′b′ of length 4 (Kővári, Sós, & Turán 1954). But then
{a, b, a′, b′, c, d, e} forms a T ′ in G.

Now we can apply a special case of a deep result, the
hypergraph removal lemma (Gowers 2006; Nagle, Rödl, &
Schacht 2006; Tao 2006) to show that one can delete a “few”
edges from H such that no copies of T remain.

Lemma 15 ((Gowers 2006; Nagle, Rödl, & Schacht 2006;
Tao 2006)). For every ε > 0 and sufficiently large n, if H
is a 3-uniform, n-vertex hypergraph containing at most n4.5

copies of T , then one can delete εn3 edges of H such that
no copies of T remain.

The maximal number of edges in a 3-uniform hypergraph
without a copy of T has been determined exactly by (Füredi,
Pikhurko, & Simonovits 2005).

Lemma 16 ((Füredi, Pikhurko, & Simonovits 2005)). For
sufficiently large n, every 3-uniform, n-vertex, T -free hy-
pergraph has at most p(n) edges.

Now, putting things together, we get that the original set
of clauses F contains at most p(n) + O(n2) + εn3 clauses,
proving the theorem.

7 Random formulas
In this section we consider a probabilistic version of the
problem studied in Section 5. Let p(n, s) be the probabil-
ity that the conjunction of s random clauses from Dn

3 im-
plies every clause from Dn

3 . (Each clause is drawn from
the uniform distribution over Dn

3 .) Informally, the property
of implying every clause has a sharp threshold if around a
certain number of clauses its probability jumps from low to
high over a short interval (see, e.g., (Friedgut 1999)). The
following result shows that n2 lnn is a sharp threshold for
this property. Note that for definite, size-2 Horn clauses the
analogous property is the strong connectivity of random di-
graphs, which has been studied for a long time (e.g., (Karp
1990; Palásti 1966; Uno & Ibaraki 1998)). Phase transitions
for Horn formulas in other probabilistic models have been
considered in (Moore et al. 2007).

Theorem 17. For every ε > 0 there exists some c > 0 such
that if n is sufficiently large then

a) p(n, n2 lnn− cn2) < ε,
b) p(n, n2 lnn + cn2) > 1− ε.

Proof sketch. We use the following facts about the coupon
collector problem: the expected number of trials needed to
collect all of m coupons is m lnm + Θ(m), its variance is
Θ(m2), and hence its standard deviation is Θ(m). (See, e.g.,
(Motwani & Raghavan 1995).) Part a) follows directly from
these facts, the Chebyshev inequality and the observation
used in Theorem 5 that having all

(
n
2

)
possible bodies in the

formula is a necessary condition for generating every clause
in Dn

3 .
In order to prove part b) we use another observation of

Theorem 5: in order to show that a random formula of a
given size implies every clause with high probability, it is
sufficient to show that with high probability it is falsified by
every non-standard vector.



Let Fs be the conjunction of s random clauses from Dn
3 .

For 2 ≤ k ≤ n− 1 let

q(n, k, s) = Pr(some weight k vector satisfies Fs),

where the weight of a vector is the number of its 1’s. We
would like to prove upper bounds for q(n, k, s).

A vector of weight k falsifies
(
k
2

)
(n − k) clauses in Dn

3 ,
as the body of such a clause must contain variables set to 1,
and the head of such a clause must be a variable set to 0. So

q(n, k, s) ≤

(
1−

(
k
2

)
· (n− k)
3 ·
(
n
3

) )s

·
(

n

k

)
.

For k = 2, a direct computation shows that for s = n2 lnn+
(ln(1/ε))n2 it holds that

q(n, 2, s) < e−
2s

n(n−1)

(
n

2

)
<

ε

2
.

If 3 ≤ k ≤ n− 2 then for s = n2 lnn it holds that

q(n, k, s) < e
− (k

2)·(n−k)

3·(n
3)

·s+k ln( e·n
k )

< ek(− (k−1)(n−k)
n ·ln n+1+ln n) < n−2.

If k = n− 1 then

q(n, n− 1, s) ≤
(

1− 1
n

)s

· n

and so for s = n2 lnn it holds that q(n, n − 1, s) = o(1).
Thus

n−1∑
k=3

q(n, k, n2 lnn) = o(1),

hence part b) of the theorem follows.

8 Further comments
The proof of Theorem 12 can be strengthened to show that
p(n) is actually the exact maximum (and thus Theorem 10 is
also sharp). This result will be contained in a future paper.
Along the same lines, it would be interesting to show that
q(n) is the exact maximum in Theorem 11.

There are many open problems related to the ones dis-
cussed here. Extending the results to definite Horn clauses
of size greater than 3 seems to be interesting. For size-3
clauses the problems could be reduced to questions about
graphs in several cases. For larger sizes this may not be the
case anymore. Instead, one may get questions about hyper-
graphs, which tend to be more difficult.

From the point of view of the intended knowledge base
learning application it would be interesting to extend Theo-
rem 17 in several different ways. What is the expected num-
ber of clauses implied by a random family of s clauses for
s below n2 lnn? Other questions involve the length of res-
olution proofs of implied clauses. For s in the range n2 lnn
or higher, a random family of s clauses implies every other
clause with high probability. What is the expected length of
the shortest resolution derivation of clauses?
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