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Abstract

We construct an incidence structure using certain points and lines
in finite projective spaces. The structural properties of the associated
bipartite incidence graphs are analyzed. These n×n bipartite graphs
provide constructions of C6-free graphs with Ω(n4/3) edges, C10-free
graphs with Ω(n6/5) edges, and Θ(7, 7, 7)-free graphs with Ω(n8/7)
edges. Each of these bounds is sharp in order of magnitude.
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1 Introduction

One of the basic problems in extremal graph theory can be stated as follows.
Given a fixed graph F , determine ex(n, F ), the maximum number of edges
in an n vertex graph containing no copy of F as a subgraph. The parameter
ex(n, F ) is sometimes called the Turán number of F .

The Erdős-Simonovits-Stone Theorem [7, 8] determines ex(n, F ) asymp-
totically except when χ(F ) = 2, or F is bipartite; in this case all it says
is that ex(n, F ) = o(n2). Among bipartite graphs, there are two important
classes of graphs for which the Turán problem remains open: complete bi-
partite graphs and even cycles. It is fair to say that these are two of the
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major open problems in extremal graph theory. In this paper, we are mainly
concerned with lower bounds for ex(n,C2t).

Reiman [14] observed that ex(n, C4) ≤ n3/2/2 + n/4, and Bondy and Si-
monovits [2] showed more generally that ex(n, C2t) ≤ 100tn1+1/t. Recently,
Verstraëte [15] improved the constant to 8(t− 1). Constructions of n-vertex
C2t-free graphs with Ω(n1+1/t) edges are known only for t = 2 (Brown [3] and
Erdős-Rényi [6]), 3, and 5. For the latter two cases, independent construc-
tions have been given by Benson [1], Wenger [16], and Lazebnik-Ustimenko-
Woldar [11].

The first author [13] recently provided a construction that yields ex(n,C6) =
Ω(n4/3). This arose from a triangle-free set of lines in projective 3-space, and
resulted in an m by m bipartite graph with girth 8 and (1+ o(1))m4/3 edges.
We could not prove that it is not isomorphic to one of the previous bipartite
constructions in [11]. Certainly the geometric language in which the con-
struction is phrased, and the proof that the construction works, are both
new. In particular, it would be interesting to determine the relationship
between this construction and known generalized quadrangles.

In this paper, we generalize the construction from [13] to t-dimensional
projective spaces. This gives us an m by m bipartite graph Bt with (1 +
o(1))m1+1/t edges for infinitely many m. Our first result is to prove that the
graph B5 contains no cycle of length 10. Our construction does not yield the
densest known m vertex graphs without C10.

Our hope was that the same approach would yield ex(n, C2t) = Ω(n1+1/t)
for other values of t, in particular, for t = 4 (which is somewhat of a notorious
open case). Unfortunately, this was not the case, and the closest we got was
for t = 7. The graph B7 does contain copies of C14, but we prove that
every two vertices of B7 have at most two pairwise internally disjoint paths
of length 7 between them (note that C14 is a graph consisting of exactly two
internally disjoint paths of length 7 with the same endpoints). Consequently,
we obtain the new result

ex(n, Θ(7, 7, 7)) = Ω(n8/7), (1)

where the theta graph Θ(7, 7, 7) is the graph consisting of three pairwise
internally disjoint paths of length 7 with the same endpoints. Moreover, the
exponent 8/7 is sharp, as shown by a result of Faudree and Simonovits [9].

It is worth remarking that determining the order of magnitude of the
Turán number of any bipartite graph (with a cycle) is nontrivial. For ex-
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ample, ex(n,Q3), where Q3 is the 3-dimensional cube, is a well-known open
problem.

Our final result concerns an asymmetric bipartite version of the Turán
problem. Let f(n,m) denote the maximum number of edges in an n by
m bipartite graph (n ≥ m) with girth at least 8. Erdős conjectured that
f(n, m) = O(n) for m = O(n2/3), and this was disproved by de Caen and
Székely [4] who proved that f(n, m) ≥ n58/57+o(1) for m = (1 + o(1))n2/3.
The best known lower bound due to Lazebnik, Ustimenko and Woldar [12] is
Ω(n16/15). In the other direction, an upper bound of de Caen and Székely [4]
is O(n10/9). A slight variation of our construction produces a bipartite graph
that matches the lower bound in [12]. We emphasize here that our proof uses
only basic facts about projective geometries, and is extremely short.

The paper is organized as follows. Section 2 contains the main construc-
tion used throughout. In section 3, we give a quick proof of the result in
[13] for t = 3 and demonstrate the pitfalls of the t = 4 case by showing that
our graphs do contain many copies of C8. In section 4 we prove the t = 5
case, and in section 5 we prove (1). We end in section 6 by modifying our
graphs a little to obtain the claimed lower bound for f(n,m), namely that
f(n, m) ≥ Ω(n16/15) for m = (1 + o(1))n2/3.

2 The arc construction

For t ≥ 2 and q a prime power, let Σ = PG(t, q) represent the t-dimensional
projective space over the finite field GF (q). Let Σ0 represent a hyperplane
of Σ, that is, an isomorphic copy of PG(t− 1, q) inside Σ.

An arc of Σ0 is a collection of points of Σ0 such that no t points are in
a (t − 2)-dimensional subspace of Σ0. For q ≥ t, a standard construction of
an arc with q + 1 points is given by the normal rational curve as described
in [10]. Letting Σ0 be the set of points whose first homogeneous coordinate
is 0, this arc consists of the points

{(0, 1, x, x2, x3, . . . , xt) : x ∈ GF (q)} ∪ {(0, 0, 0, . . . , 0, 1)}.

Construction: Let A be the normal rational curve in Σ0. Let H(t, q) denote
the bipartite graph with parts P and L. The set P consists of the points of
Σ\Σ0 and L consists of all the lines of Σ not in Σ0 that meet the hyperplane
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Σ0 in a point of A. The vertex p ∈ P is adjacent to l ∈ L if the point p
lies on the line l in Σ. An easy counting argument shows that |P | = qt and
|L| = qt−1(q + 1). Moreover, each vertex in P has degree |A| = q + 1 and
each vertex in L has degree q. Letting m = qt, we see that H(t, q) has part
sizes m and m + m1−1/t, and m + m1+1/t edges.

Remark: Deleting m1−1/t vertices from L results in an m×m bipartite graph
with m1+1/t edges. For every ε > 0, there is an n0 such that for n > n0, the
interval (n, n + εn) contains a prime. Consequently, for fixed t, the graphs
H(t, q) produce a family of m by m bipartite graphs with (1 + o(1))m1+1/t

edges.

3 6-cycles and 8-cycles

In this section, we analyze the graphs H(3, q) and H(4, q). When t = 3,
the arc A is a collection of q + 1 points of PG(2, q), no three collinear.
The construction in this case was described in [13] where the associated
graphs were used to construct low-density parity check codes. We repeat the
argument here instead focusing on the associated graph.

Theorem 3.1 The graph H(3, q) has girth 8.

Proof: First note that H(3, q) contains no 4-cycles, since every two lines of
L have at most one point in common. Now, for contradiction, suppose that
the lines l1, l2, and l3 of L form a triangle. Hence, any two of the three lines
meet in a point of Σ \ Σ0. Then these three lines meet the hyperplane Σ0

in three distinct points A1, A2, and A3 of A. Since the lines are necessarily
coplanar, these three points meet on the line determined by the intersection
of Σ0 and the plane containing the triangle. Hence, the three points A1, A2,
and A3 are collinear contradicting the definition of arc.

To show the girth is exactly 8, we exhibit an 8-cycle. Denoting pro-
jective points by their homogeneous coordinates, and lines with a pair of
linear equations on the coordinates (w, x, y, z), our desired 8-cycle is given
by (1, 0, 0, 0) → {y = z = 0} → (1, 1, 0, 0) → {w = x, y = 0} → (1, 1, 0, 1) →
{w = z, y = 0} → (1, 0, 0, 1) → {x = y = 0} → (1, 0, 0, 0).

When t = 4, the arc A is a collection of q + 1 points of PG(3, q), no four
coplanar. As mentioned in the introduction, H(4, q) does in fact contain
8-cycles.

4



Lemma 3.2 Let P1, P2, P3, and P4 be four distinct points of Σ \ Σ0 which
form a quadrilateral with the lines of L. Then the four points are coplanar.

Proof: For a contradiction, suppose that the four points are not coplanar.
First note that the lines of the quadrilateral necessarily meet the arc in 4
distinct points since if two lines passed through the same point of the arc,
then the four points Pi would all lie in a common plane. Now, the four points
Pi span a solid of Σ which necessarily meets the hyperplane Σ0 in a projective
plane. The lines determining the quadrilateral are all contained in this solid
and meet Σ0 in 4 distinct points of the arc. But these four points are then
coplanar contradicting the definition of arc.

By Lemma 3.2, all 8-cycles of the associated graph arise from quadrilat-
erals lying in a plane. One might hope that the number of these is relatively
small, allowing for some clever deletion procedure that destroys all these cy-
cles, but this is not the case. In fact, given any two distinct points A, A′ on
A, choose any plane π of Σ, not in Σ0 and containing the points A and A′.
Any two lines of π through A, together with any two lines of π through A′

will form a quadrilateral. In H(4, q) this is an 8-cycle. Moreover, as no 3
points of A are collinear, the 8-cycles so obtained are pairwise distinct. Stan-

dard counting shows that the number of such quadrilaterals is
(

q+1
2

)(
q
2

)2
q2.

There appears to be no way to delete a small number of edges from H(4, q)
to destroy all these copies of 8-cycles.

4 No 10-cycles

When t = 5, we are using an arc of Σ0
∼= PG(4, q). Our incidence struc-

ture contains q4(q + 1) lines and q5 points. In this case we will show that
H(5, q) contains no 10-cycles, however, it will certainly contain 8-cycles. The
same argument given earlier shows that H(5, q) has no C6 which implies that
H(5, q) has girth 8.

Theorem 4.1 The line set L does not contain 5 lines forming a pentagon.

Proof: Let P = {P1, P2, P3, P4, P5} be 5 points of Σ \ Σ0 (in cyclic order)
which form a pentagon. Moreover, let li ∈ L be the line joining Pi and Pi+1,
where indices are taken modulo 5. We look at cases based on the dimension
of the space spanned by these five points. Clearly this dimension is greater
than 1.
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• Case 1: Suppose that the five points are all coplanar. Then a straight
forward pigeonhole argument shows that the five lines li must meet A
in at least 3 points which are necessarily collinear. This contradicts the
definition of A.

• Case 2: Suppose that the five points span a solid. We claim that the
five lines li must meet A in at least 4 points. If not, then two points
of A, say A1 and A2 would each be incident with two different lines.
Without loss of generality, assume that l1 and l3 are incident with A1

and l2 and l4 are incident with A2. Then the plane π1 determined
by l1 and l3 and the plane π2 determined by l2 and l4 both contain
the three noncollinear points P2, P3, P4. Consequently, π1 = π2. But
this immediately implies that P is in a plane which contradicts the
assumptions of Case 2. Therefore, the five lines li meet A in at least 4
points. The solid of Σ determined by P meets Σ0 in a plane. But this
plane contains 4 points of A by the argument above contradicting the
definition of A.

• Case 3: Finally, suppose that the five points of the pentagon span a
subspace of dimension 4. Then, we claim that the lines li must meet
A in 5 distinct points. If not, then the pentagon contains two lines li
and lj, |i− j| > 1, which are coplanar, and hence four of its points are
all in a common plane. This means that P can span at most a solid,
contradicting the assumption of Case 3. So the lines li meet A in 5
distinct points. But the intersection of Σ0 with the space spanned by
P forms a solid. Hence, these five points of the arc all lie in a common
solid. This again contradicts the definition A.

The argument to prove Lemma 3.2 shows that if a quadrilateral is formed
by the lines of L, then the lines of the quadrilateral are necessarily coplanar.
Hence the girth of H(5, q) is 8, but it contains no 10-cycles.

5 No Θ(7, 7, 7)

When t = 7, we are working in PG(7, q) with an arc of PG(6, q). Let
P = {P1, . . . P7} be seven points of Σ \ Σ0 (in cyclic order) which form a
7-sided figure, a septagon. Moreover, let li ∈ L be the line joining points Pi
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and Pi+1, where indices are taken modulo 7. Note that the lis are distinct
and hence every 3 consecutive points of P are noncollinear.

Our proof in this case is considerably more involved and will be aided
with some new notation. Let Ai be the point of the arc A which is incident
with li (note that Ai = Aj for i 6= j is possible). Let d be the dimension of
the subspace of Σ spanned by the points of P , and let a be the number of
distinct Ais.

We first point out a relationship between a and d. Note that the dimension
of Σ0 ∩ 〈P〉 = d− 1 since Σ0 is a hyperplane and P contains points outside
of Σ0. Also, recall that no d + 1 points of A lie in a subspace of dimension
d− 1. Since each Ai lies in Σ0 ∩ 〈P〉, we obtain

a ≤ d. (2)

We will use this relationship throughout the proof of the main theorem.
We first note that d > 1. Otherwise all li are equal which is clearly a
contradiction. Also, note that

⋃
i{Ai} induces a coloring of the lines forming

our septagon, where the color c(l) of the line l is the unique k for which
Ak ∈ l. Note that c(li) 6= c(li+1) for each i, since two distinct lines share
at most one point. We write [c1, c2, . . . , c7] for this sequence of colors, where
ci = c(li) for each i.

Lemma 5.1 Let Pi, Pi+1, Pj ∈ P with j 6∈ {i− 1, i + 2}. If c(li) = c(lk) for
k = j − 1 or k = j, then Pi, Pi+1 and Pj are noncollinear.

Proof: For contradiction, suppose Pi, Pi+1 and Pj are collinear. Then the lines
li and lk both contain Pj and Ai ∈ A. This implies that li = lk contradicting
the fact that the lis are all distinct.

Lemma 5.2 Suppose that the set of points in P form a septagon. Then
the colors of the lines li follow the pattern [x, y, x, z, x, y, z] for three distinct
colors x, y, and z.

Proof: We prove the result by considering cases based on the value of a, the
number of points of A which lie on the lines forming our septagon. In each
case, we consider the various configurations of the points of P , and we obtain
a contradiction with (2).
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• Case a = 2: In this case, a straightforward pigeon hole argument
shows that li = li+1 for some i. This is a contradiction.

• Case a = 3: Note that the 3 points of the arc induce a 3-coloring on
the lines of L. A pigeon hole argument shows that no color can appear
more than three times. Hence, up to equivalence, the induced coloring
is of the type [x, y, x, y, x, y, z], [x, y, x, z, x, z, y], or [x, y, x, z, x, y, z] for
three distinct colors x, y, and z. We prove that the first two cases are
impossible. For the following, let π(li, lj) represent the plane generated
by the two concurrent lines li and lj.

– If the coloring follows the pattern [x, y, x, y, x, y, z], then π(l1, l3) =
π(l2, l4) since these planes share the three noncollinear points
P2, P3, P4. Similarly, π(l2, l4) = π(l3, l5) = π(l4, l6). Hence, all
7 points of P are in a common plane which means d = 2, a con-
tradiction.

– Now suppose the coloring of L follows the pattern [x, y, x, z, x, z, y].
Then let π1 = π(l1, l3) = π(l2, l7), and π2 = π(l4, l6). Now, A1

(the point of A on l1, l3, and l5) is in π1 and also in π2. So, either
π1 = π2 in which case we are finished since then d = 2, or π1

meets π2 in a line (since both planes contain P4 and P7) which
passes through the point A1. But then this line π1 ∩ π2 forms a
pentagon with the lines l1, l2, l3 and l7 which is a contradiction
with Theorem 4.1.

• Case a = 4: We consider the various coloring patterns of the lis.

– Suppose we have one color appearing three times, one color ap-
pearing two times and two colors appearing one time each. Let
x represent the color appearing three times. Then the three lines
with color x all share the same point on A and so generate at
most a solid. If they generate a plane, then we are finished since
then d ≤ 3. So assume they generate a solid.

We claim that the pattern [x, y, x, y, x] cannot appear as a sub-
pattern in any coloring. If so, then the plane generated by the
lines colored with y would necessarily contain the three lines col-
ored with x forcing these lines to be coplanar, a contradiction.
Hence, the only possible coloring patterns are [x, y, x, z, x, y, w]
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or [x, y, x, z, x, w, y] (for example, [x, y, x, z, x, z, w] is equivalent
to [x, y, x, z, x, w, y] by interchanging y and z and reversing the
orientation). In the first case, the plane generated by the lines
colored with y shares the three points P2, P3 and P6 with the solid
generated by the lines colored with x. By Lemma 5.1 these three
points are noncollinear. In the second case, the two planes share
the three noncollinear points P1, P2 and P3. Consequently, in ei-
ther case, P lies in the solid generated by the lines colored with
x, implying d = 3, a contradiction.

– Now consider the possibility of 3 distinct colors x, y, z each ap-
pearing twice, and one additional color appearing only once. For
u ∈ {x, y, z}, let πu be the plane determined by the two lines col-
ored with u. We look at the union of four lines which represent
two colors, say x and y. If these two colors appear in the sub-
pattern [x, y, x, y], then the four lines together generate a plane.
Since πz meets πx = πy in a line. It follows that the set P spans
at most a solid, contradicting (2).

We may therefore assume that no two of the repeated colors give
the pattern [p, q, p, q]. From this, a short case analysis shows that
for some pair of repeated colors, say x, y, the planes πx and πy meet
in two points of P , and therefore span at most a solid. Moreover,
the possible patterns for the seven colors are [xy∗∗xy∗], [xy∗∗yx∗],
and [xyx ∗ y ∗ ∗]. Now πz has three points in common with S. A
short case analysis, together with Lemma 5.1, shows that for each
pattern above, these three points are noncollinear. Therefore P
lies within S, contradicting (2).

• Case a = 5: First suppose that one color appears three times and
all the remaining colors appear exactly once. Then, the three lines
sharing the same color generate at most a solid and only one point
of P is outside this solid. Hence, the points of P generate at most a
4-space, contradicting (2).

The only other possibility is that two distinct colors appear twice each
and three others colors appear once each. The union of the lines from
the two repeating colors generate at most a 4-space. If these lines
generate a solid, then at most one point of P can lie outside this solid.
If these lines generate a 4-space, then no points of P can lie outside of
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this 4-space. In either case, d ≤ 4, a contradiction.

• Case a = 6: In this case, only one color appears twice and all other
colors appear exactly once. The lines having the same color generate
a plane. At most three points of P lies outside this plane. It fol-
lows immediately that the points of P generate at most a 5-space, a
contradiction.

Theorem 5.3 The graph H(7, q) contains no copy of Θ(7, 7, 7).

Proof: Suppose the statement is false. Then there exist two septagons in
Σ \Σ0 which share exactly 4 consecutive points and 4 consecutive lines. Let
C1 be a septagon formed by the lines l1, l2, l3, l4, l5, l6 and l7 and let C2 be a
second septagon formed by the lines l1, l2, l3, l4, l

′
5, l

′
6 and l′7. First note that

we obtain a third septagon C3 formed by the lines l′7, l
′
6, l

′
5, l4, l5, l6 and l7. By

Lemma 5.2, the colors of each of these line sequences must follow a pattern
of the form [x, y, x, z, x, y, z]. Without loss of generality, we can assume that
two of the lines l1, l2, l3 and l4 are colored with the same color, say x, which
appears 3 times in each of the cycles involving l1, l2, l3 and l4. We have three
cases.

• Suppose l1, l2, l3 and l4 are colored in the pattern [x, y, z, x]. Then l5, l6
and l7 cannot be colored with only the colors y and z, implying c(l6) =
x. Similarly, c(l′6) = x. Now consider the sequences l2, l1, l7, l6 and
l2, l1, l

′
7, l

′
6. Each is colored in the pattern [y, x, ∗, x]. In order to avoid

the unallowable pattern [y, x, y, x], we must have c(l7) = c(l′7) = z.
Consequently, the two adjacent lines, l7 and l′7 in C3, have the same
color, a contradiction.

• Suppose l1, l2, l3 and l4 are colored in the pattern [x, y, x, z]. Consider
the sequences l3, l2, l1, l7 and l3, l2, l1, l

′
7. Each is colored in the pattern

[x, y, x, ∗]. Then l7 and l′7 must each be colored with z to avoid an
[x, y, x, y] pattern in C1 or C2. Again, this gives two adjacent lines in
C3 with the same color, a contradiction.
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• Suppose l1, l2, l3 and l4 are colored in the pattern [z, x, y, x]. Then
c(l5) = c(l′5) = z by looking at the sequences l2, l3, l4, l5 and l2, l3, l4, l

′
5

and avoiding the [x, y, x, y] pattern. But then l6 and l7 must be colored
as [x, y] or [y, x] since both are adjacent to a line colored with z. The
same argument applies to l′6 and l′7. But l7 and l′7 cannot both have
the same color since they are adjacent in C3. Hence, without loss of
generality, assume that c(l7) = x and c(l′7) = y. This implies l(c6) =
y and so c(l′6) = x producing an [x, y, x, y] pattern in C3, again a
contradiction.

In all cases, we get a contradiction. Therefore, the graph H(7, q) cannot
contain 2 vertices with three distinct (and pairwise internally disjoint) paths
of length 7 between them.

6 Other graphs from caps

In this section we obtain the claimed lower bound on f(n,m). Our approach
is to use caps of the hyperplane Σ0 in higher dimensional spaces to obtain
bipartite graphs with unequal part sizes.

Theorem 6.1 Let q be a prime power. Then there is a bipartite graph with
part sizes q11(q2 + 1)2 and q10, girth 8, and q12(q2 + 1)2 edges.

Proof: We modify our construction of H(10, q). Instead of using an arc,
we use a cap, namely, a set of points, no three collinear. In [5] it is shown
that there exists a cap C of PG(9, q) consisting of q2(q2 + 1)2 points. Embed
Σ0

∼= PG(9, q) containing C into Σ = PG(10, q). Form the bipartite graph
H ′(10, q) with parts P and L, where P consists of the point in Σ \Σ0 and L
consists of lines not contained in Σ0 that meet C. Adjacency is again defined
by incidence in the geometry.

Easy counting shows that the part sizes of H ′(10, q) are q10 and q11(q2 +
1)2, and the number of edges is q12(q2+1)2. The proof of Theorem 3.1 applies
to show that H ′(10, q) has girth at least 8.

Corollary 6.2 f(n, m) ≥ (1 + o(1))n16/15 for m = (1 + o(1))n2/3.
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