Cliques with many colors in triple systems

Dhruv Mubayi* Andrew Suk ${ }^{\dagger}$

Abstract

Erdős and Hajnal constructed a 4 -coloring of the triples of an N-element set such that every n-element subset contains 2 triples with distinct colors, and N is double exponential in n. Conlon, Fox and Rödl asked whether there is some integer $q \geq 3$ and a q-coloring of the triples of an N-element set such that every n-element subset has 3 triples with distinct colors, and N is double exponential in n. We make the first nontrivial progress on this problem by providing a q-coloring with this property for all $q \geq 9$, where N is exponential in $n^{2+c q}$ and $c>0$ is an absolute constant.

1 Introduction

The Ramsey number $r_{k}(n ; q)$ is the minimum integer N such that for any q-coloring of the k-tuples of an N-element set V, there is a subset $A \subset V$ such that all of the k-tuples of A have the same color. Estimating $r_{3}(n ; 2)$ is one of the most central problems in combinatorics. The best known bounds, due to Erdős, Hajnal and Rado [5, 4], state that there are positive constants c and c^{\prime} such that

$$
\begin{equation*}
2^{c n^{2}}<r_{3}(n ; 2)<2^{2^{c^{\prime} n}} \tag{1}
\end{equation*}
$$

Erdős conjectured that the upper bound is closer to the truth, namely, $r_{3}(n ; 2)$ grows double exponentially in $\Theta(n)$, and he even offered a $\$ 500$ reward for a proof. His conjecture is supported by the fact that a double exponential growth rate is known when we have 4 colors [3, 4], that is, for fixed $q \geq 4$

$$
\begin{equation*}
r_{3}(n ; q)=2^{2^{\ominus(n)}} \tag{2}
\end{equation*}
$$

In this paper, we study the following generalization of $r_{3}(n ; q)$. For integers $n>q \geq t \geq 2$, let $f(n ; q, t)$ denote the maximum integer N such that there is a q-coloring of the triples of an N-element set V with the property that every subset of V of size n induces at least t distinct colors. Thus when $t=2$, we have

$$
f(n ; q, 2)=r_{3}(n ; q)-1,
$$

and for $q \geq t \geq 3$, we have $f(n ; q, t)<r_{3}(n ; q)$. When $t=3$, Conlon, Fox, and Rödl raised the following problem [2].

[^0]Problem 1.1 (Conlon-Fox-Rödl). Is there an integer $q \geq 3$ and a positive constant c such that $f(n ; q, 3)>2^{2^{c n}}$ holds for all $n>2$?

A simple application of the Probabilistic Method (see [1]) shows that $f(n ; q, 3)>2^{c n^{2}}$, where $c=c(q)$. Our main result is the following.

Theorem 1.2. There is an absolute constant $c>0$ such that for all integers $n>q \geq 9$,

$$
f(n ; q, 3) \geq 2^{n^{2+c \cdot q}} .
$$

For larger values of t, we show the following.
Theorem 1.3. Given integers $q \geq t \geq 2$, there is an $n_{0}=n_{0}(q, t)$ such that for all integers $n>n_{0}$,

$$
f(n ; q, t) \geq 2^{n^{\log (q /(t-1))} / 4}
$$

Both proofs are based on a stepping-up argument introduced by Erdős and Hajnal [3]. We start with the proof of Theorem 1.3 in the next section, as it is a direct application of the stepping-up method. The proof of Theorem 1.2 combines a more general stepping-up argument with induction, and is given in Section 3. Throughout this paper, all logarithms are in base 2.

2 Forcing many colors

In this section, we prove Theorem 1.3. We will need the following lemma.
Lemma 2.1. Given integers $q \geq t \geq 2$, there is an integer m_{0} such that the following holds. For every $m \geq m_{0}$, there is a q-coloring ϕ of the pairs of $U=\left\{0,1, \ldots,\left\lfloor(q /(t-1))^{m / 4}\right\rfloor-1\right\}$ such that every subset of size m induces at least t distinct colors.

Proof. Given $q \geq t \geq 2$, let $m_{0}=m_{0}(q, t)$ be a sufficiently large integer that will be determined later. Color the pairs of $U=\left\{0,1, \ldots,\left\lfloor(q /(t-1))^{m / 4}\right\rfloor\right.$ uniformly independently at random with colors $\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$. Let X denote the number of subsets $A \subset U$ of size m that have less than t distinct colors among their pairs. Then we have

$$
\mathbb{E}[X] \leq\binom{|U|}{m}\binom{q}{t-1}\left(\frac{t-1}{q}\right)^{\binom{m}{2}} \leq\left(\frac{q}{t-1}\right)^{m^{2} / 4} q^{t-1}\left(\frac{t-1}{q}\right)^{m^{2} / 2}=q^{t-1}\left(\frac{q}{t-1}\right)^{-m^{2} / 4} .
$$

By setting $m_{0}=m_{0}(q, t)$ sufficiently large, we have for all $m \geq m_{0}, \mathbb{E}[X]<1$. Hence, there is a q-coloring $\phi:\binom{U}{2} \rightarrow\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ such that every subset $A \subset U$ of size m has at least t distinct colors among its pairs.

Proof of Theorem 1.3. Given $q \geq t \geq 2$, let $n_{0}=n_{0}(q, t)$ be a sufficiently large integer that will be determined later. Set $M=\left\lfloor(q /(t-1))^{m / 4}\right\rfloor, U=\{0,1, \ldots, M-1\}$, and let $\phi:\binom{U}{2} \rightarrow\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ be a q-coloring of the pairs of U with the properties described in Lemma 2.1. Set $V=\left\{0,1, \ldots, 2^{M}-1\right\}$. In what follows, we will use ϕ to define a q-coloring $\chi:\binom{V}{3} \rightarrow\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ of the triples of V with the desired properties.

For each $v \in V$, write $v=\sum_{i=0}^{M-1} v(i) 2^{i}$ with $v(i) \in\{0,1\}$ for each i. For $u \neq v$, let $\delta(u, v) \in U$ denote the largest i for which $u(i) \neq v(i)$. Notice that we have the following stepping-up properties (see [6])

Property I: For every triple $u<v<w, \delta(u, v) \neq \delta(v, w)$.
Property II: For $v_{1}<\cdots<v_{r}, \delta\left(v_{1}, v_{r}\right)=\max _{1 \leq j \leq r-1} \delta\left(v_{j}, v_{j+1}\right)$.
Using $\phi:\binom{U}{2} \rightarrow\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$, we define $\chi:\binom{V}{3} \rightarrow\left\{\alpha_{1}, \ldots, \alpha_{q}\right\}$ as follows. For vertices $v_{1}<v_{2}<v_{3}$ in V and $\delta_{i}=\delta\left(v_{i}, v_{i+1}\right)$, we define $\chi\left(v_{1}, v_{2}, v_{3}\right)=\alpha_{j}$ if and only if $\phi\left(\delta_{1}, \delta_{2}\right)=\alpha_{j}$. We now need the following lemma.

Lemma 2.2. For $m \geq 2$ set $n=2^{m}$. Then for any set of n vertices $v_{1}, \ldots, v_{n} \in V$, where $v_{1}<\cdots<v_{n}$, there is a subset $B \subset\left\{\delta\left(v_{i}, v_{i+1}\right): 1 \leq i \leq n-1\right\}$ with at least m distinct elements such that for each pair $\left(\delta_{r}, \delta_{s}\right) \in\binom{B}{2}$, there is a triple $v_{i}<v_{j}<v_{k}$ in $\left\{v_{1}, \ldots, v_{n}\right\}$ such that $\chi\left(v_{i}, v_{j}, v_{k}\right)=\phi\left(\delta_{r}, \delta_{s}\right)$.

Proof. We proceed by induction on m. The base case $m=2$ follows from Property I. For the inductive step, assume that the statement holds for all $m^{\prime}<m$. Let $v_{1}, \ldots, v_{n} \in V$ such that $v_{1}<\cdots<v_{n}$ and $n=2^{m}$. Let $\delta_{i}=\delta\left(v_{i}, v_{i+1}\right)$, for $i=1, \ldots, n-1$. Set $\delta_{w}=\max \left\{\delta_{i}: 1 \leq i \leq n-1\right\}$ and notice that, by Properties I and II above, $\delta_{w}>\delta_{i}$ for all $i \neq w$. Set $S=\left\{v_{1}, \ldots, v_{w}\right\}$ and $T=\left\{v_{w+1}, \ldots, v_{n}\right\}$. Then either $|S|$ or $|T|$ has size at least 2^{m-1}. Without loss of generality, we can assume that $|S| \geq 2^{m-1}$ since a symmetric argument would follow otherwise. By the induction hypothesis, there is a subset $B_{0} \subset\left\{\delta_{1}, \ldots, \delta_{w-1}\right\} \subset U$ with at least $m-1$ distinct elements and for each pair $\left(\delta_{r}, \delta_{s}\right) \in\binom{B_{0}}{2}$, there is a triple $v_{i}<v_{j}<v_{k}$ in S such that

$$
\chi\left(v_{i}, v_{j}, v_{k}\right)=\phi\left(\delta_{r}, \delta_{s}\right) .
$$

Set $B=\left\{\delta_{w}\right\} \cup B_{0}$, which implies $|B| \geq m$. Then notice that for each pair $\left(\delta_{w}, \delta_{r}\right)$, where $\delta_{r} \in B_{0}$, by Property I above, we have

$$
\chi\left(v_{r}, v_{r+1}, v_{w+1}\right)=\phi\left(\delta_{w}, \delta_{r}\right) .
$$

Hence $B \subset U$ has the desired properties, and this completes the proof of the claim.
Set $n_{0}=\left\lceil 2^{m_{0}}\right\rceil$ where m_{0} is defined in Lemma 2.1. Then for all $n>n_{0}$ we have $m>m_{0}$. Thus, by Lemma 2.1 and Lemma 2.2, any set of n vertices in V induces at least t distinct colors with respect to χ. Since $|V|=2^{(q /(t-1))^{m / 4}}$ and $n=2^{m}$, we have $|V|=2^{n^{\log (q /(t-1))} / 4}$.

3 Forcing three colors

In this section, we prove Theorem 1.2. We will need the following lemma.
Lemma 3.1. Let $r>3$ and set $V_{3}=\left\{0,1, \ldots,\left\lfloor 2^{r^{2} / 24}\right\rfloor-1\right\}$. Then there is a 3-coloring $\phi_{3}:\binom{V_{3}}{3} \rightarrow$ $\left\{\beta_{1}, \beta_{2}, \beta_{3}\right\}$ of the triples of V_{3} such that every subset of size r induces at least three distinct colors.

We omit the proof of Lemma 3.1 as it follows by the same probabilistic argument used for Lemma 2.1. Hence, Lemma 3.1 implies that $f(n ; 3,3) \geq 2^{n^{2} / 24}$. Together with the following recursive formula, Theorem 1.2 quickly follows.

Theorem 3.2. For integers $n>q \geq 9$, we have

$$
f(n ; q, 3) \geq(f(\lfloor n / \log n\rfloor, q-6,3))^{n^{1 / 4} / 2} .
$$

We will also need the following lemma, whose proof is also omitted since it follows from the same probabilistic argument as in Lemma 2.1.

Lemma 3.3. Let $s>3$ and set $V_{2}=\left\{0,1, \ldots,\left\lfloor 2^{s / 4}\right\rfloor\right\}$. Then there is a 3-coloring $\phi_{2}:\binom{V_{2}}{2} \rightarrow$ $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ of the pairs of V_{2} such that every subset of size s induces at least three distinct colors.
Proof of Theorem 3.2. Given $n>q \geq 9$, let $r=\lfloor n / \log n\rfloor$ and $s=\lfloor\log n\rfloor$. Set $N_{2}=\left\lfloor 2^{s / 4}\right\rfloor$, $N_{3}=f(r ; q-6,3)$, and

$$
V_{2}=\left\{0,1, \ldots, N_{2}-1\right\} \quad \text { and } \quad V_{3}=\left\{0,1, \ldots, N_{3}-1\right\} .
$$

Using Lemma 3.3, we obtain $\phi_{2}:\binom{V_{2}}{2} \rightarrow\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ such that every subset of V_{2} of size s induces at least three colors. Likewise, by definition of $f(r, q-6,3)$, we obtain $\phi_{3}:\binom{V_{3}}{3} \rightarrow$ $\left\{\beta_{1}, \ldots, \beta_{q-6}\right\}$ such that every subset of V_{3} of size r induces at least three distinct colors. We now apply the following more general stepping-up procedure.

Set $N=N_{3}^{N_{2}}$ and $V=\{0,1, \ldots, N-1\}$. For each $v \in V$, write $v=\sum_{i=0}^{N_{2}-1} v(i)\left(N_{3}\right)^{i}$ with $v(i) \in V_{3}$ for each i. For $u, v \in V$ with $u<v$, let $\delta(u, v) \in V_{2}$ denote the largest i for which $u(i) \neq v(i)$. Notice that we no longer have Property I from the previous stepping-up procedure, but we do have the following properties.

Property II: For $v_{1}<\cdots<v_{r}, \delta\left(v_{1}, v_{r}\right)=\max _{1 \leq j \leq r-1} \delta\left(v_{j}, v_{j+1}\right)$.
Property III: For $v_{1}<v_{2}<v_{3}$ such that $\delta\left(v_{1}, v_{2}\right)=\delta\left(v_{2}, v_{3}\right)=i, v_{1}(i)<v_{2}(i)<v_{3}(i)$.
Using ϕ_{2} and ϕ_{3}, we define $\chi:\binom{V}{3} \rightarrow\left\{\gamma_{1}, \ldots, \gamma_{q}\right\}$ as follows. For vertices $v_{1}<v_{2}<v_{3}$ in V, let $\delta_{1}=\delta\left(v_{1}, v_{2}\right)$ and $\delta_{2}=\delta\left(v_{2}, v_{3}\right)$. Then for $i \in\{1,2,3\}$,

- set $\chi\left(v_{1}, v_{2}, v_{3}\right)=\gamma_{i}$ if and only if $\delta_{1}>\delta_{2}$ and $\phi_{2}\left(\delta_{1}, \delta_{2}\right)=\alpha_{i}$,
- set $\chi\left(v_{1}, v_{2}, v_{3}\right)=\gamma_{3+i}$ if and only if $\delta_{1}<\delta_{2}$ and $\phi_{2}\left(\delta_{1}, \delta_{2}\right)=\alpha_{i}$,
and for $i \in\{1, \ldots, q-6\}$,
- set $\chi\left(v_{1}, v_{2}, v_{3}\right)=\gamma_{6+i}$ if and only if $\delta_{1}=\delta_{2}=j$ and $\phi_{3}\left(v_{1}(j), v_{2}(j), v_{3}(j)\right)=\beta_{i}$,

Notice that $n \geq \max \left\{s \cdot r, 2^{s}\right\}$. We claim that any set of n vertices $v_{1}, \ldots, v_{n} \in V$ induces at least 3 distinct colors with respect to χ. For sake of contradiction, let $A=\left\{v_{1}, \ldots, v_{n}\right\} \subset V$ such that $v_{1}<\cdots<v_{n}$ and $\chi\left(v_{i}, v_{j}, v_{k}\right) \in\left\{\gamma_{x}, \gamma_{y}\right\}$ for all triples $\left(v_{i}, v_{j}, v_{k}\right) \in\binom{A}{3}$. Set $\delta_{i}=\delta\left(v_{i}, v_{i+1}\right)$ for $i=1, \ldots, n-1$. The proof now falls into the following cases.

Case 1. Suppose $\gamma_{x}, \gamma_{y} \in\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$. Then we have $\delta_{1}>\delta_{2}>\cdots>\delta_{n-1}$. However, $\delta_{i} \in$ $U=\left\{0,1, \ldots,\left\lfloor 2^{s / 4}\right\rfloor-1\right\}$ and $n=2^{s}$ which is a contradiction. A similar argument follows if $\gamma_{x}, \gamma_{y} \in\left\{\gamma_{4}, \gamma_{5}, \gamma_{6}\right\}$.
Case 2. Suppose $\gamma_{x}, \gamma_{y} \in\left\{\gamma_{7}, \ldots, \gamma_{q-6}\right\}$. Then we must have $\delta_{1}=\cdots=\delta_{n-1}=i$ and $v_{1}(i)<\cdots<$ $v_{n-1}(i)$. Since $n \geq r$, by definition of χ and ϕ_{3}, the set $\left\{v_{1}, \ldots, v_{n}\right\}$ induces at least three distinct colors, contradiction.
Case 3. Suppose $\gamma_{x} \in\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}$ and $\gamma_{y} \in\left\{\gamma_{4}, \gamma_{5}, \gamma_{6}\right\}$. Then in this case, for any triple $v_{i}<v_{j}<v_{k}$, we have $\delta\left(v_{i}, v_{j}\right) \neq \delta\left(v_{j}, v_{k}\right)$ and $\phi_{2}\left(\delta\left(v_{i}, v_{j}\right), \delta\left(v_{j}, v_{k}\right)\right)=\alpha_{z}$ for some fixed z. Set $\delta_{w}=\max \left\{\delta_{i}: 1 \leq\right.$ $i \leq n-1\}$ and notice that, by Property II above, $\delta_{w}>\delta_{i}$ for all $i \neq w$. Therefore, a straight-forward adaptation of Lemma 2.2 gives us the following claim.

Claim 3.4. For $s \geq 2$, any set of 2^{s} vertices $v_{1}, \ldots, v_{2^{s}} \in V$, with the properties described above, there is a subset $B \subset\left\{\delta\left(v_{i}, v_{i+1}\right): 1 \leq i \leq 2^{s}-1\right\}$ with at least s distinct elements such that $\phi_{2}\left(\delta_{i}, \delta_{j}\right)=\alpha_{z}$ for every pair $\left(\delta_{i}, \delta_{j}\right) \in\binom{B}{2}$.
However, this contradicts Lemma 3.3.
Case 4. Suppose $\gamma_{x} \in\left\{\gamma_{1}, \ldots, \gamma_{6}\right\}$ and $\gamma_{y} \in\left\{\gamma_{7}, \ldots, \gamma_{q}\right\}$. Without loss of generality, we can assume that $\gamma_{x}=\gamma_{1}$ and $\gamma_{y}=\gamma_{7}$ since a symmetric argument would follow otherwise. Notice that there is an integer $w_{1} \in\{1, \ldots, r\}$ such that $\delta\left(v_{1}, v_{w_{1}}\right)>\delta\left(v_{w_{1}}, v_{w_{1}+1}\right)$. Indeed, otherwise if $\delta_{1}=\cdots=\delta_{r}$, by the definition of χ and the properties of ϕ_{3} described above, the set $\left\{v_{1}, \ldots, v_{r}\right\}$ induces at least three distinct colors with respect to χ, contradiction.

The same argument shows that there must be an integer $w_{2} \in\left\{w_{1}+1 \ldots, w_{1}+r\right\}$ such that $\delta\left(v_{w_{1}}, v_{w_{2}}\right)>\delta\left(v_{w_{2}}, v_{w_{2}+1}\right)$. Since $n \geq s \cdot r$, a repeated application of the argument above shows that there are integers $w_{1}<\cdots<w_{s-1}$, such that

$$
\delta\left(v_{1}, v_{w_{1}}\right)>\delta\left(v_{w_{1}}, v_{w_{2}}\right)>\delta\left(v_{w_{2}}, v_{w_{3}}\right)>\cdots>\delta\left(v_{w_{s-1}}, v_{w_{s-1}+1}\right) .
$$

By Property II, χ colors every triple in $\left\{v_{1}, v_{w_{1}}, \ldots, v_{w_{s-1}}, v_{w_{s-1}+1}\right\}$ with color γ_{1}. However, this implies that the set

$$
S=\left\{\delta\left(v_{1}, v_{w_{1}}\right), \delta\left(v_{w_{1}}, v_{w_{2}}\right), \ldots, \delta\left(v_{w_{s-2}}, v_{w_{s-1}}\right), \delta\left(v_{w_{s-1}}, v_{w_{s-1}+1}\right)\right\} \subset U
$$

has the property that $|S|=s$ and $\phi_{2}:\binom{S}{2} \rightarrow \alpha_{1}$, which is a contradiction. Since $|V|=N_{3}^{N_{2}}$,

$$
f(n ; q, 3) \geq|V| \geq(f(\lfloor n / \log n\rfloor ; q-6,3))^{n^{1 / 4} / 2} .
$$

This completes the proof of Theorem 3.2.
Combining Theorem 3.2 with the fact that $f(n ; 3,3)>2^{n^{2} / 24}$ gives the following.
Theorem 3.5. For fixed $q \geq 3$ and for all $n>3$ we have

$$
f(n ; q, 3)>2^{n^{2+\frac{1}{4}\left\lfloor\frac{q-3}{6}\right\rfloor-o(1)}} .
$$

References

[1] N. Alon, J. Spencer, The Probabilistic Method, John Wiley \& Sons, New York, NY, 1992.
[2] D. Conlon, J. Fox, V. Rödl, Hedgehogs are not colour blind, J. Combin. 8 (2017), 475-485.
[3] P. Erdős and A. Hajnal, On Ramsey like theorems, problems and results, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 123-140, Inst. Math. Appl., Southhend-on-Sea, 1972.
[4] P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
[5] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. Lond. Math. Soc. 3 (1952), 417-439.
[6] R. Graham, B. Rothschild, and J. Spencer, Ramsey Theory, 2nd ed., Wiley, New York, 1990.

[^0]: *Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF grant DMS-1763317. Email: mubayi@uic.edu.
 ${ }^{\dagger}$ Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Research partially supported by an NSF CAREER award, NSF award DMS-1952786, and an Alfred Sloan Fellowship. Email: asuk@ucsd.edu.

