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Abstract

Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is
the infimum of all non-negative reals c such that the subfamily of F comprising hy-
pergraphs H with minimum degree at least c

(|V (H)|
r−1

)
has bounded chromatic number.

This parameter has a long history for graphs (r = 2), and in this paper we begin its
systematic study for hypergraphs.

 Luczak and Thomassé recently proved that the chromatic threshold of near bipartite
graphs is zero, and our main contribution is to generalize this result to r-uniform
hypergraphs. For this class of hypergraphs, we also show that the exact Turán number
is achieved uniquely by the complete (r + 1)-partite hypergraph with nearly equal
part sizes. This is one of very few infinite families of nondegenerate hypergraphs
whose Turán number is determined exactly. In an attempt to generalize Thomassen’s
result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds
for the chromatic threshold of the family of 3-uniform hypergraphs not containing
{abc, abd, cde}, the so-called generalized triangle.

In order to prove upper bounds we introduce the concept of fiber bundles, which can
be thought of as a hypergraph analogue of directed graphs. This leads to the notion
of fiber bundle dimension, a structural property of fiber bundles which is based on
the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow
from explicit constructions, many of which use a generalized Kneser hypergraph. Using
methods from extremal set theory, we prove that these generalized Kneser hypergraphs
have unbounded chromatic number. This generalizes a result of Szemerédi for graphs
and might be of independent interest. Many open problems remain.
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1 Introduction

An r-uniform hypergraph on n vertices is a collection of r-subsets of V , where V is a
set of n elements. If r = 2 then we call it a graph. The r-sets in a hypergraph are called
edges, and the n elements of V are called vertices. For a hypergraph H let V (H) denote
the set of vertices. We denote the set of edges by either E(H) or simply H. The chromatic
number of a hypergraph H, denoted χ(H), is the least integer k for which there exists a
map f : V (H) → [k] such that if E is an edge in the hypergraph then there exist v, u ∈ E
for which f(v) 6= f(u). For a vertex v in a hypergraph H we let d(v) denote the number
of edges in H that contain v. We let δ(H) = min{d(v) : v ∈ V (H)}, called the minimum
degree of H.

Definition. Let F be a family of r-uniform hypergraphs. The chromatic threshold of F ,
is the infimum of the values c ≥ 0 such that the subfamily of F consisting of hypergraphs
H with minimum degree at least c

(|V (H)|
r−1

)
has bounded chromatic number.

We say that F is a subhypergraph of H if there is an injection from V (F ) to V (H) such
that every edge in F gets mapped to an edge of H. Notice that this is only possible if both
H and F are r-uniform for some r. If H is an r-uniform hypergraph, then the family of
H-free hypergraphs is the family of r-uniform hypergraphs that do not contain H as a (not
necessarily induced) subgraph.

The study of the chromatic thresholds of graphs was motivated by a question of Erdős and
Simonovits [6]: “If G is non-bipartite, what bound on δ(G) forces G to contain a triangle?”
This question was answered by Andrásfai, Erdős, and Sós [3], who showed that the answer
is 2/5 |V (G)|, achieved by the blowup of C5. Andrásfai, Erdős, and Sós’s [3] result can be
generalized to construct triangle-free graphs with chromatic number at least k and large
minimum degree. As k increases, these constructions have minimum degree approaching
1/3. This led to the following conjecture: if δ(G) > (1/3 + ε) |V (G)| and G is triangle-free,
then χ(G) < kε, where kε is a constant depending only on ε.

Note that the conjecture is equivalent to the statement that the family of triangle-free
graphs has chromatic threshold 1/3. The conjecture was proven by Thomassen [35]. Subse-
quently, there have been three more proofs of the conjecture: one by  Luczak [22] using the
Regularity Lemma, a result of Brandt and Thomassé [4] proving that one can take kε = 4,
and a recent proof by  Luczak and Thomassé [23] using the concept of Vapnik-Chervonenkis
dimension (which is defined later in this paper).

For other graphs, Goddard and Lyle [14] proved that the chromatic threshold of the
family of Kr-free graphs is (2r − 5)/(2r − 3) while Thomassen [36] showed that the chro-
matic threshold of the family of C2k+1-free graphs is zero for k ≥ 2. Recently,  Luczak and
Thomassé [23] gave another proof that the class of C2k+1-free graphs has chromatic threshold
zero for k ≥ 2, as well as several other results about related families, such as Petersen-free
graphs. The main result of Allen, Böttcher, Griffiths, Kohayakawa and Morris [1] is to
determine the chromatic threshold of the family of H-free graphs for all H.

We finish this section with some definitions. For an r-uniform hypegraph H and a set
of vertices S ⊆ V (H), let H[S] denote the r-uniform hypergraph consisting of exactly those
edges of H that are completely contained in S. We call this the hypergraph induced by
S. A set of vertices S ⊆ V (H) is called independent if H[S] contains no edges and
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strongly independent if there is no edge of H containing at least two vertices of S. A
hypergraph is s-partite if its vertex set can be partitioned into s parts, each of which is
strongly independent.

If H is a family of r-uniform hypergraphs, then the family of H-free hypergraphs is the
family of r-uniform hypergraphs that contain no member of H as a (not necessarily induced)
subgraph. For an r-uniform hypergraph H and an integer n, let ex(n,H) be the maximum
number of edges an r-uniform hypergraph on n vertices can have while being H-free and let

π(H) = lim
n→∞

ex(n,H)(
n
r

) .

We call π(H) the Turán density of H.
Let Tr,s(n) be the complete n-vertex, r-uniform, s-partite hypergraph with part sizes as

equal as possible. When s = r, we write Tr(n) for Tr,r(n). Let tr(n) be the number of
edges in Tr(n). We say that an r-uniform hypergraph H is stable with respect to Tr(n)
if π(H) = r!/rr and for any ε > 0 there exists δ > 0 such that if G is an H-free r-
uniform hypergraph with at least (1 − δ)tr(n) edges, then there is a partition of V (G) into
U1, U2, . . . , Ur such that all but at most εnr edges of G have exactly one vertex in each part.

Let TKr(s) be the r-uniform hypergraph obtained from the complete graph Ks by en-
larging each edge with r − 2 new vertices. The core vertices of TKr(s) are the s vertices
of degree larger than one. For s > r, let T Kr(s) be the family of r-uniform hypergraphs
such that there exists a set S of s vertices where each pair of vertices from S are contained
together in some edge. The set S is called the set of core vertices of the hypergraph. For
s ≤ r, let T Kr(s) be the family of r-uniform hypergraphs such that there exists a set S of s
vertices where for each pair of vertices x 6= y ∈ S, there exists an edge E with E∩S = {x, y}
(the definition is different when s ≤ r so that a hypergraph which is just a single edge is not
in T Kr(s)). It is obvious that TKr(s) ∈ T Kr(s).

2 Results

Motivated by the above results, we investigate the chromatic thresholds of the families of
A-free hypergraphs for some r-uniform hypergraphs A. One of our main results concerns a
generalization of cycles to hypergraphs.

Definition. Let H be an r-uniform hypergraph. We say that H is near r-partite if there
exists a partition V1 ∪ . . . ∪ Vr of V (H) such that all edges of H either cross the partition
(have one vertex in each Vi) or are contained entirely in V1, and in addition H[V1] is a partial
matching. The edges in H[V1] are called the special edges. Say that H is mono near
r-partite if H[V1] contains exactly one edge.

Our main theorem claims that for an infinite family of hypergraphs H the chromatic
threshold of the family of H-free hypergraphs is 0. This is the first (non-trivial) family of
hypergraphs whose chromatic threshold is determined.

Theorem 1. Let H be an r-uniform, near r-partite hypergraph. If H is T Kr(3)-free, then
the chromatic threshold of the family of H-free hypergraphs is zero.
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The proof of Theorem 1 requires a slightly weaker condition on H, so we actually prove a
statement slightly stronger than Theorem 1. The proof does not require that H is T Kr(3)-
free, just that any copy of a hypergraph in T Kr(3) in H has at most one core vertex in a
special edge of H.

For a subfamily of the hypergraphs considered in Theorem 1 we determine the exact
extremal hypergraph. For many hypergraphs H (for example the Fano plane), at first only
asymptotic extremal results were proved and later the precise structure of extremal hyper-
graphs was determined. We prove that if a mono near r-partite hypergraph H has Turán
density r!/rr and is stable with respect to Tr(n), then its unique extremal hypergraph is the
complete r-partite hypergraph. Similar phenomena occur for graphs; see Simonovits [33],
where for critical graphs the Erdős-Stone Theorem [8] was sharpened.

Definition. Let H be an r-uniform hypergraph. We say that H is critical if

• H is mono near r-partite,

• the special edge of H has at least r − 2 vertices of degree one,

• π(H) = r!/rr,

• H is stable with respect to Tr(n).

Theorem 2. Let H be an r-uniform critical hypergraph. Then there exists some n0 such
that for n > n0, Tr(n) is the unique H-free hypergraph with the most edges.

A particularly interesting critical family is one that generalizes cycles to hypergraphs.

Definition. Let Cr
m be the r-uniform hypergraph with m edges on n vertices v1, . . . , vn for

which

1. the n vertices are arranged consecutively in a circle,

2. each edge contains r consecutive vertices,

3. if m = 2k+ 1 for some integer k > 0 then n = rk+ (r−1), and if m = 2k then n = rk,

4. edges Ei and Ej share vertices if and only if i ∈ {j − 1, j + 1} or i = 1 and j = m,

5. for i ≤ m− 1, if i is odd then |Ei ∩Ei+1| = 1; if i is even then |Ei ∩Ei+1| = r− 1, and

6. if m is even then |E1 ∩ Em| = 1; if m is odd then |E1 ∩ Em| = r − 1.

We say that Cr
m is odd if m is odd, and even otherwise.

Lemma 3. If m is odd then Cr
m is not r-partite.

Proof. Suppose m = 2k + 1 for some integer K. Notice that edge E2k+1 consists of the
vertices vrk+1, vrk+2, . . . , vrk+r−1, v1. Suppose f : V → [r] is an r-coloring of the vertices
of Cr

2k+1 such that each color class induces a strongly independent set. Then vertices
v1, vr+1, v2k+1, . . . , vrk+1 must all have the same color. In particular, f(v1) = f(vrk+1), which
is a contradiction because v1 and vrk+1 are both in E2k+1.

It is easy to see that Cr
2k+1 is mono near r-partite. A theorem of Keevash and the last

author [18], combined with a theorem of Pikhurko [28], the supersaturation result of Erdős
and Simonovits [7], and the hypergraph removal lemma of Gowers, Nagle, Rödl, and Skokan
[15, 26, 29, 30, 34] prove that C3

2k+1 and C4
2k+1 are critical.
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Figure 1: Hypergraph Cycles

For r larger than four, however, Cr
2k+1 is not critical. A result of Frankl and Füredi [10]

can easily be extended to prove that if r ≥ 5 then π(Cr
2k+1) ≥ 1

(r2)e1+1/(r−1)
> r!

rr
. Using

techniques similar to those in Section 6, it can in fact be shown that π(C5
2k+1) = 6!

114 >
5!
55

and π(C6
2k+1) = 11·6!

125 > 6!
66 .

Theorem 4. The cycles C3
2k+1 and C4

2k+1 are critical for every k ≥ 2.

Theorems 1, 2, and 4 together with the simple observation that Cr
2k+1 is near r-partite

and T Kr(3)-free for all r, k ≥ 2 proves the following corollary, which extends the results
in [36] and [23] that the chromatic threshold of the family of C2k+1-free graphs is zero.

Corollary 5. For r = 3 or r = 4, there exists some n0 such that for n > n0, the unique
n-vertex, r-uniform, Cr

2k+1-free hypergraph with the largest number of edges is Tr(n). For all
r, k ≥ 2, the chromatic threshold of the family of Cr

2k+1-free hypergraphs is zero.

Note that  Luczak and Thomassé [23] proved Theorem 1 for graphs, and they conjectured
that the family of H-free graphs has chromatic threshold zero if and only if H is near acyclic
and triangle free. (A graph G is near acyclic if there exists an independent set S in G such
that G− S is a forest and every odd cycle has at least two vertices in S.) This conjecture is
announced to have been verified in [1]. We pose a similar question for hypergraphs.

Problem 6. Characterize the r-uniform hypergraphs H for which the chromatic threshold
of the family of H-free hypergraphs has chromatic threshold zero.

Another way to generalize the triangle to 3-uniform hypergraphs is the hypergraph F5,
which is the hypergraph with vertex set {a, b, c, d, e} and edges {a, b, c}, {a, b, d}, and {c, d, e}.
Frankl and Füredi [9] proved that ex(n, F5) is achieved by T3(n) for n > 3000 (recently
Goldwasser has determined ex(n, F5) for all n). We prove the following bounds on the
chromatic threshold of the family of F5-free 3-uniform hypergraphs.
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Theorem 7. The chromatic threshold of the family of F5-free 3-uniform hypergraphs is
between 6/49 and (

√
41− 5)/8 ≈ 7/40.

The rest of the paper is organized as follows. First, in Section 3 we define and motivate
fiber bundles and fiber bundle dimension, the main tools in the proofs of Theorem 1 and 7.
Next, in Section 4 we show the power of fiber bundle dimension by giving a relatively short
proof of Theorem 1. We prove our key theorem about fiber bundle dimension, Theorem 8,
in Section 5. In Section 6, we prove that C3

2k+1 and C4
2k+1 are critical (Theorem 4), and then

prove Theorem 2. The proof of Theorem 7 is given in Section 7. The final section gives lower
bounds for several other families of hypergraphs, along with conjectures and open problems.
The lower bounds all follow from specific constructions, some of which use a generalized
Kneser hypergraph; this graph is defined and discussed in Section 8.

Throughout this paper, we occasionally omit the floor and ceiling signs for the sake of
clarity.

3 Fiber Bundles and Fiber Bundle Dimension

The proofs of Theorems 1 and 7 are based on an idea pioneered by  Luczak and Thomassé [23]
to color graphs, which itself was based on the Vapnik-Chervonenkis dimension. Let H be
a hypergraph. A subset X of V (H) is shattered by H if for every Y ⊆ X, there exists
an E ∈ H such that E ∩X = Y . Introduced in [32] and [37], the Vapnik-Chervonenkis
dimension (or VC-dimension) is the maximum size of a vertex subset shattered by H.

Definition. A fiber bundle is a tuple (B, γ, F ) such that B is a hypergraph, F is a finite
set, and γ : V (B)→ 22F . That is, γ maps vertices of B to collections of subsets of F , which
we can think about as hypergraphs on vertex set F . The hypergraph B is called the base
hypergraph of the bundle and F is the fiber of the bundle. For a vertex b ∈ V (B), the
hypergraph γ(b) is called the fiber over b.

We should think about a fiber bundle as taking a base hypergraph and putting a hyper-
graph “on top” of each base vertex. There is one canonical example of a fiber bundle. Given
a hypergraph B, define the neighborhood bundle of B to be the bundle (B, γ, F ) where
F = V (B) and γ maps b ∈ V (B) to {A ⊆ F : A ∪ {b} ∈ E(B)}.

Why define and use the language of fiber bundles? We can consider that in some sense
fiber bundles are a generalization of directed graphs to hypergraphs, where we think of γ(x)
as the “out-neighborhood” of x. In the neighborhood bundle, γ(x) is related to the neighbors
of x so we can consider the neighborhood bundle as some sort of directed analogue of the
undirected hypergraph B, where each edge is directed “both ways”. By thinking of the
“out-neighborhood” of x as γ(x) and not requiring any dependency between γ(x) and γ(y)
for x 6= y, we have no dependency between the neighborhood of x and the neighborhood of
y, which is one of the defining differences between directed and undirected graphs. Note that
the definition of a fiber bundle differs from the usual definition of directed hypergraph used
in the literature, which is the reason we use the term “fiber bundle” instead of “directed
hypergraph.”

A fiber bundle (B, γ, F ) is (rb, rγ)-uniform if B is an rb-uniform hypergraph and γ(b)
is an rγ-uniform hypergraph for each b ∈ V (B). Given X ⊆ V (B), the section of X is
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the hypergraph with vertex set F and edges ∩x∈Xγ(x). In other words, the section of X is
the collection of subsets of F that appear in every fiber over x for x ∈ X. Motivated by a
definition of  Luczak and Thomassé [23], we define the dimension of a fiber bundle. Let H be
a hypergraph and define dimH(B, γ, F ) to be the maximum integer d such that there exist d
disjoint edges E1, . . . , Ed of B (i.e. a matching) such that for every x1 ∈ E1, . . . , xd ∈ Ed, the
section of {x1, . . . , xd} contains a copy of H. Our definition of dimension will coincide with
the definition of paired VC-dimension in [23] when (B, γ, F ) is (2, 1)-uniform and H = {{x}},
the complete 1-uniform, 1-vertex hypergraph.

Let A be an r-uniform hypergraph. Our method of proving an upper bound on the
chromatic threshold of the family of A-free hypergraphs, used in Theorems 1 and 7, is the
following. Let G be an A-free r-uniform hypergraph with minimum degree at least c

(|V (G)|
r−1

)
.

We now need to show that G has bounded chromatic number, which we do in two steps. Let
(G, γ, F ) be the neighborhood bundle of G. First, we show that the dimension of (G, γ, F )
is bounded by showing that if the dimension is large then we can find A as a subhypergraph.
Given that dimH(G, γ, F ) is bounded, we use the following theorem to bound the chromatic
number of G. In most applications, we will let H be an (r − 1)-uniform, (r − 1)-partite
hypergraph.

Theorem 8. Let rb ≥ 2, rγ ≥ 1, d ∈ Z+, 0 < ε < 1, and H be an rγ-uniform hypergraph
with zero Turán density. Then there exists constants K1 = K1(rb, rγ, d, ε,H) and K2 =
K2(rb, rγ, d, ε,H) such that the following holds. Let (B, γ, F ) be any (rb, rγ)-uniform fiber
bundle where dimH(B, γ, F ) < d and for all b ∈ V (B),

|γ(b)| ≥ ε

(
|F |
rγ

)
.

If |F | ≥ K1, then χ(B) ≤ K2.

The above theorem is sufficent for our purposes, but our proof of Theorem 8 proves
something slightly stronger. The conclusion of the above theorem can be reworded to say
that either F is small, the chromatic number of B is bounded, or dimH(B, γ, F ) is large,
which means that we can find d hyperedges E1, . . . , Ed such that every section of x1 ∈
E1, . . . , xd ∈ Ed contains a copy of H. In fact, the proof shows that if F is large and the
chromatic number of B is large, we can guarantee not only one copy of H but at least Ω(|F |h)
copies of H in each section, where h is the number of vertices in H.

We conjecture a similar statement for all rγ-uniform hypergraphs H, instead of just those
hypergraphs with a Turán density of zero.

Conjecture 9. Let rb ≥ 2, rγ ≥ 1, d ∈ Z+, 0 < ε < 1, and H be an rγ-uniform hypergraph.
Then there exists a constants K1 = K1(rb, rγ, d, ε,H) and K2 = K2(rb, rγ, d, ε,H) such that
the following holds. Let (B, γ, F ) be any (rb, rγ)-uniform fiber bundle where dimH(B, γ, F ) <
d and for all b ∈ V (B),

|γ(b)| ≥ (π(H) + ε)

(
|F |
rγ

)
.

If |F | ≥ K1, then χ(B) ≤ K2.
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The motivation behind defining and using the language of fiber bundles rather than using
the language of hypergraphs is that in the course of the proof of Theorem 8, we will modify
B and γ and apply induction. As mentioned above, fiber bundles can be thought of as
a directed version of a hypergraphs. When applying Theorem 8 in Sections 4 and 7, we
start with the neighborhood bundle, which carries no “extra” information beyond just the
hypergraph B. But if we tried to prove Theorem 8 in the language of hypergraphs, we would
run into trouble when we needed to modify γ. In the neighborhood bundle, γ is related to the
neighborhood of a vertex and if we restricted ourselves to neighborhood bundles or just used
the language of hypergraphs, modifying γ(x) would imply that some γ(y)’s would change at
the same time. The notion of a fiber bundle allows us to change the “out-neighborhood” of
x independently of changing the “out-neighborhood” of y 6= x, and this power is critical in
the proof of Theorem 8.

4 Chromatic threshold for near r-partite hypergraphs

In this section we show an application of Theorem 8 by proving Theorem 1. Fix ε > 0 and
let G be an n-vertex, r-uniform, H-free hypergraph with δ(G) ≥ ε

(
n
r−1

)
. We would like to

use Theorem 8 to bound the chromatic number, so we need to choose an appropriate bundle.
We will not use the neighborhood bundle of G, but rather a closely related bundle. Once we
have defined this bundle, we show it has bounded dimension by proving that if the dimension
is large then we can find a copy of H in G.

As preparation, we need the following lemma, which tells us something about the struc-
ture of near r-partite graphs.

Lemma 10. Let H be an r-uniform, near r-partite, T Kr(3)-free hypergraph. Let E1, . . . , Ek
be the special edges of H. For x ∈ V (H), let γ(x) = {E − x : x ∈ E ∈ H}. Let N1, . . . , Nrk

be the rk possible hypergraphs γ(x1) ∩ γ(x2) ∩ . . . ∩ γ(xk) where x1 ∈ E1, . . . , xk ∈ Ek. Then

• V (Ni) ∩ V (Nj) = ∅ for i 6= j (let V (A) = ∪E∈AE).

• Ni is (r − 1)-partite for every i.

Proof. Assume x ∈ V (Ni)∩V (Nj) and let Et be a special edge such that Ni selects y from Et
and Nj selects z from Et with y 6= z. Then x, y, z are the core vertices of some hypergraph in
T Kr(3), a contradiction. Secondly, Ni is (r− 1)-partite because H \E1 \ . . . \Ek is r-partite
by the definition of near r-partite.

Proof of Theorem 1. Let H be an r-uniform, near r-partite, m-vertex, T Kr(3)-free hyper-
graph, and let ε > 0 be fixed. Let G be an n-vertex, H-free hypergraph with δ(G) ≥ ε

(
n
r−1

)
.

We need to show that the chromatic number of G is bounded by a constant depending only
on ε and H.

First, choose an equitable partition X1, . . . , Xr of V (G) such that the sizes of X1, . . . , Xr

are as equal as possible and for every x ∈ V (G) the number of edges containing x and
one vertex from each Xi is at least 1

2rr
ε
(
n
r−1

)
. (This can be done by randomly choosing the

partition X1, . . . , Xr.) We will show how to bound the chromatic number of G[X1]; the
same argument can be applied to bound the chromatic number of each G[Xi] and thus the
chromatic number of G.
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Ed

Figure 2: The structure guaranteed by dimension d.

Define the (r, r − 1)-uniform fiber bundle (B, γ, F ) as follows. Let B = G[X1], let
F = X2 ∪ . . . ∪Xr, and for x ∈ X1 define

γ(x) = {{x2, . . . , xr} ⊆ F : x2 ∈ X2, . . . , xr ∈ Xr, {x, x2, . . . , xr} ∈ G} .

Then γ(x) has size at least 1
2rr
ε
(
n
r−1

)
. Let L be the complete (r− 1)-uniform, (r− 1)-partite

hypergraph on (rm)m vertices. Let V1, . . . , Vr be the r-partition of V (H) guaranteed by the
definition of near r-partite and let d be the size of V1. Using that the Turán density of a
complete (r−1)-uniform (r−1)-partite hypergraph is zero, we apply Theorem 8 to show that
there exists constants K1 = K1(r, ε,H) and K2 = K2(r, ε,H) such that one of the following
holds: either |F | ≤ K1, χ(B) ≤ K2, or dimL(B, γ, F ) ≥ d. Since |F | = (1 − 1/r) |V (G)|, if
either of the first two possibilities occur then the chromatic number of G[X1] is bounded. It
must therefore be the case that dimL(B, γ, F ) ≥ d.

We now show this implies that G contains a copy of H, which follows from Lemma 10.
Since dimL(B, γ, F ) ≥ d, there are d edges E1, . . . , Ed such that for each x1 ∈ E1, . . . , xd ∈
Ed, we have that γ(x1) ∩ . . . ∩ γ(xd) contains a complete (r − 1)-uniform, (r − 1)-partite
hypergraph on (rm)m vertices, see Figure 2. Since m = |V (H)|, from each γ(x1)∩ . . .∩γ(xd)
we can pick a copy of the complete (r−1)-uniform, (r−1)-partite hypergraph on m vertices
so that all these copies are vertex disjoint. Assume V1 = A1 ∪ . . .∪A` ∪ {a`+1} ∪ . . .∪ {a`′},
where A1, . . . , A` are the special edges of H. Using Lemma 10, we can embed a copy of H in
G by mapping Ai to Ei for 1 ≤ i ≤ `, mapping ai to any vertex in Ei for `+ 1 ≤ i ≤ `′, and
mapping Ni to a subhypergraph of the corresponding complete (r−1)-uniform, (r−1)-partite
hypergraph on m vertices.

5 Coloring hypergraphs with bounded dimension

5.1 An insightful attempt at proving Theorem 8

The proof of Theorem 8, which appears in Sections 5.2 and 5.3, is complex, but it started as
a simple idea built on three key ideas. In this section we attempt to motivate the essential
ingredients behind the proof.

9



Consider the following proof strategy for Theorem 8: assume the chromatic number of B
is large and give an algorithm that produces d edges which witness that dimH(B, γ, F ) ≥ d.
The first key idea is to use the greedy algorithm, which selects the edges one by one while
maintaining that all sections are large enough to force a copy of H. Initially, we can pick
any edge E1, since any section of x ∈ E1 is the set γ(x), and by assumption γ(x) is large
enough to force a copy of H. So where could the greedy algorithm get stuck? Assume the
greedy algorithm selected E1, . . . , Ei but cannot continue. That is, for every other edge E,
there exists some section S of x1 ∈ E1, . . . , xi ∈ Ei and there exists some x ∈ E such that
S ∩ γ(x) is too small to force a copy of H.

The second key idea in the proof is to assume that every edge of B has small overlap;
that is, we assume that (B, γ, F ) satisfies the condition that for every x 6= y ∈ E ∈ B, the
number of edges in the hypergraph γ(x)∩γ(y) is small. With this assumption, the ri sections
S1, . . . , Sri of x1 ∈ E1, . . . , xi ∈ Ei are almost disjoint. Let Sri+1 =

(
F
r−1

)
\S1\ . . .\Sri so that

S1, . . . , Sri+1 almost form a partition. Recall that the greedy algorithm could not continue
because for every edge E disjoint from E1, . . . , Ei, there existed some Sj and some x ∈ E
with Sj ∩ γ(x) small. Because S1, . . . , Sri+1 is almost a partition, this implies that there is
some other Sj′ with Sj′ ∩ γ(x) large. In other words, the greedy algorithm cannot continue
if there exists sets S1, . . . , St+1 such that for every edge E, there exists some Sj and some
x ∈ E such that Sj ∩ γ(x) is large.

The third key idea is to use this in a density increment argument, similar to that used in
the proof of the Regularity Lemma. If we have a partition P of (B, γ, F ) (a partition will be
formally defined later), we apply the greedy algorithm from the last two paragraphs in each
part of P to refine the partition; the sets S1, . . . , St are used to refine each part. If we define
the density of a partition correctly, we can show that each time when we apply the greedy
algorithm the density will increase by a constant amount and add only a constant number
of new parts in the partition.

The last part of the proof is to reduce the full theorem to the case where (B, γ, F ) satisfies
the condition that for every x 6= y ∈ E ∈ B, γ(x) ∩ γ(y) is small.

5.2 A conditional proof of Theorem 8

Condition 1. Throughout this section, fix rb, rγ ≥ 1, d ∈ Z+, 0 < ε < 1
4
r−db , and H an

rγ-uniform hypergraph with zero Turán density. Also, let (B, γ, F ) be an (rb, rγ)-uniform

fiber bundle for which dimH(B, γ, F ) < d and if b ∈ V (B), then |γ(b)| ≥ ε
(|F |
rγ

)
.

In this section, we will prove the following theorem.

Theorem 11. Let (B, γ, F ) be a fiber bundle satisfying Condition 1. Then there exists con-
stants 0 < λ = λ(rb, rγ, d, ε,H) < ε, L1 = L1(rb, rγ, d, ε,H), and L2 = L2(rb, rγ, d, ε,H) such
that the following holds. Assume |F | ≥ L1 and for every x 6= y ∈ E ∈ B, |γ(x) ∩ γ(y)| ≤
λ
(|F |
rγ

)
. If rb = 1, then |B| ≤ L2 and if rb ≥ 2 then χ(B) ≤ L2.

The only differences between this theorem and Theorem 8 are that we allow rb = 1 and
also assume a restriction on γ(x) ∩ γ(y) for x 6= y ∈ E ∈ B. We will remove the need for
this assumption in the next section.
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Define the following constants.

α =
1

1000

( ε
4

)d+1

, η =
1

4
ε2α, β = α1/η, L2 =

⌈
rbd(rdb + 2)1/η

⌉
.

Next, pick L1 large enough so that if |F | ≥ L1 and S ⊆
(
F
rγ

)
with |S| ≥ 4−dεd+1β

(|F |
rγ

)
, then

S contains a copy of H. Lastly, pick λ = εd+1β
dr2b4

d .

Condition 2. If (B, γ, F ) is a fiber bundle, then for every edge E in B and every x 6= y ∈ E,
the section of x, y has at most λ

(|F |
rγ

)
edges.

If (B, γ, F ) is a fiber bundle, a partition P of (B, γ, F ) is a family P = {(X1, S1),
. . . , (Xp, Sp)} such that X1, . . . , Xp is a partition of V (B) and S1, . . . , Sp is a partition of(
F
rγ

)
, where we allow Xi = ∅ or Si = ∅. A partition Q is a refinement of a partition P if for

each (X,S) ∈ P , there exist (Y1, T1), . . . , (Yq, Tq) ∈ Q such that X = ∪Yi and S = ∪Ti. For
X ⊆ V (B) and S ⊆ 2F , the density of (X,S) is

d(X,S) =

{
1 S = ∅ or X = ∅,
min

{
|γ(x)∩S|
|S| : x ∈ X

}
otherwise,

and define

d(P ) = min {d(X,S) : (X,S) ∈ P} .

A partition P is a partial coloring if for every (X, ∅) ∈ P , we have that B[X] independent.
The rank of a partition P is the minimum of |S| over all (X,S) ∈ P with S 6= ∅.

Recall from the sketch in Section 5.1 that the general structure of our proof is to show
how to refine a partial coloring P to a partial coloring Q where d(Q) ≥ η + d(P ). This
will imply that we can only refine the partition a constant number of times, at which point
we will have a coloring with a bounded number of parts. The key lemma to facilitate this
refinement is the following.

Lemma 12. Let (B, γ, F ) be a fiber bundle satisfying Conditions 1 and 2. Let X ⊆ V (B)
and S ⊆

(
F
rγ

)
with X 6= ∅, d(X,S) ≥ ε, |F | ≥ L1, and |S| ≥ β

(|F |
rγ

)
. Then there exists a

partition Y1, . . . , Yn, Z of X and a partition T1, . . . , Tn of S such that n ≤ rdb + 1 and

• |Ti| ≥ α |S|,

• d(Yi, Ti) ≥ min {1, η + d(X,S)},

• B[Z] is independent.

This lemma has an easy corollary.

Corollary 13. Let (B, γ, F ) be a fiber bundle satisfying Conditions 1 and 2 and |F | ≥ L1.
Let P be a partial coloring of (B, γ, F ) where P has rank at least αk

(|F |
rγ

)
with k ≤ 1

η
. Then

there exists a refinement Q of P such that

11



• |Q| ≤ (rdb + 2) |P |,

• Q is also a partial coloring,

• the rank of Q is at least αk+1
(|F |
rγ

)
,

• d(Q) ≥ min {1, η + d(P )}.

Proof. For each pair (X,S) ∈ P with X 6= ∅ and S 6= ∅, apply Lemma 12. Since k ≤ 1
η
,

|S| ≥ αk
(|F |
rγ

)
≥ α1/η

(|F |
rγ

)
≥ β

(|F |
rγ

)
. Lemma 12 produces Y1, . . . , Yn, Z and T1, . . . , Tn with

n ≤ rdb + 1. We replace the pair (X,S) with the pairs (Y1, T1), . . . , (Yn, Tn), (Z, ∅). The
resulting partition satisfies all the required properties.

We can now easily prove Theorem 11.

Proof of Theorem 11. By assumption, (B, γ, F ) satisfies Conditions 1 and 2. Start with the

partition P =
{

(V (B),
(
F
rγ

)
)
}

and apply Corollary 13 repeatedly until the partition satisfies

d(P ) = 1. Since the value of d(P ) increases by η at each step, the partition is refined at
most 1/η times, and so the resulting partition P has at most (rdb + 2)1/η parts. Consider a
part (X,S) ∈ P . If S = ∅, then since P is a partial coloring B[X] must be independent, so
χ(B[X]) = 1. If S 6= ∅, we know that |S| ≥ β

(|F |
rγ

)
, which by the choice of β and L1 forces

a copy of H in S. Since d(X,S) = 1 we must have S ⊆ γ(x) for every x ∈ X, so that a
matching of size d in B[X] witnesses that dimH(B, γ, F ) ≥ d. Therefore, the maximum size
of a matching in B[X] is d − 1. If rb = 1, then B[X] has at most d − 1 edges, so the total
number of edges of B is d(rdb + 2)1/η. If rb ≥ 2, then since the size of a maximal matching in
B[X] is d− 1, it is the case that χ(B[X]) ≤ rb(d− 1) + 1. This implies that the chromatic
number of B is at most rbd(rdb + 2)1/η.

All that remains is to prove Lemma 12. Before proving this lemma, we make some
definitions. If E1, . . . , Et ∈ B and S ⊆

(
F
rγ

)
, then the minimum section density of

E1, . . . , Et with respect to S is

δ(E1, . . . , Et, S) = min

{
|γ(x1) ∩ . . . ∩ γ(xt) ∩ S|

|S|
: x1 ∈ E1, . . . , xt ∈ Et

}
.

Notice that if E1, . . . , Ed are disjoint, δ(E1, . . . , Ed, S) > 0, S is a constant fraction of
(
F
rγ

)
,

and F is large, then E1, . . . , Ed witness that dimH(B, γ, F ) ≥ d. Define constants ψ1, . . . , ψd
with ψ1 = 1 by ψm+1 = 1

4
εψm for 1 ≤ m ≤ d− 1.

For the proof of Lemma 12, recall the outline from Section 5.1. We will greedily select
edges E1, . . . , Ei as long as we can maintain that (using our new notation) δ(E1, . . . , Ei, S)
is large enough to force a copy of H. Since dimH(B, γ, F ) < d, the greedy algorithm
must terminate before choosing d edges. Once the greedy algorithm terminates, we will
let the sets T1, . . . , Tn−1 (the sets that we must find to prove Lemma 12) be all sections of
x1 ∈ E1, . . . , xi ∈ Ei. If we let Yi be the set of vertices y such that |γ(y) ∩ Ti| / |Ti| is at least
d(X,S) + η, we will satisfy almost all of the requirements in Lemma 12. We need only prove
that if Z are the vertices not in any Yi then B[Z] is independent. We do this by showing that
if B[Z] contained an edge E we could have continued the greedy algorithm by selecting E.
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In order for this to be true, we need the greedy algorithm to require a weaker lower bound
on δ(E1, . . . , Ei+1, S) than the algorithm required on δ(E1, . . . , Ei, S). The constants ψi are
used to define the greedy algorithm: the greedy algorithm will select edges while maintaining
δ(E1, . . . , Ei, S) ≥ εψi. Since ψi+1/ψi = 1

4
ε, we lose a fraction of ε in each step. The careful

choice of L1 guarantees that even after losing a fraction of ε for the d steps per refinement
over a maximum of 1/η refinements we still have enough edges to force a copy of H.

Proof of Lemma 12. Start by greedily selecting disjoint edges E1, . . . , Ei of B[X] such that
δ(E1, . . . , Ei, S) ≥ εψi. Since for every x ∈ V (B)

|γ(x) ∩ S|
|S|

≥ d(X,S) ≥ εψ1,

the greedy algorithm can start with any edge E1 in B[X]. Assume the greedy algorithm
has selected E1, . . . , Em with δ(E1, . . . , Em, S) ≥ εψm but for every other edge E in B[X]
disjoint from E1, . . . , Em, we have δ(E1, . . . , Em, E, S) < εψm+1.

First, we prove that dimH(B, γ, F ) ≥ m. Since d(E1, . . . , Em, S) ≥ εψm ≥ εψd, we have
that every section of x1 ∈ E1, . . . , xm ∈ Em has size at least εψd |S| ≥ εψdβ

(|F |
rγ

)
. By the

choice of L1, the section of x1, . . . , xm contains a copy of H, and so m ≤ d. We make the
following definitions.

• Let R1, . . . , Rt be all rmb sections of v1 ∈ E1, . . . , vm ∈ Em intersected with S. If some
I ⊆ F appears in more than one Ri, remove it from all but the least indexed Ri.

• For 1 ≤ i ≤ t, start with Ti = Ri and remove elements from Ti (recall that elements
of Ti are subsets of F ) until |Ti| is smaller than 2ε |S|. (If Ri is already smaller than
2ε |S|, nothing needs to be removed.)

• Let Tt+1 = S \ T1 \ . . . \ Tt.

• For 1 ≤ i ≤ t+ 1, define

Yi =

{
x ∈ X :

|γ(x) ∩ Ti|
|Ti|

≥ min {1, η + d(X,S)}
}
.

If some x appears in more than one Yi, remove it from all but the least indexed Yi.

• Let Z = X \ Y1 \ . . . \ Yt+1.

By the definition of Yi, d(Yi, Ti) ≥ min{1, η + d(X,S)}. Therefore, to finish the proof we
need to check that |Ti| ≥ α |S| and B[Z] is independent.

Claim: |Ti| ≥ α |S| for all 1 ≤ i ≤ t+ 1.

Proof. Since δ(E1, . . . , Em, S) ≥ εψm, before removing anything from Ri, each Ri has size at
least εψm |S|. Consider some I ∈ Ri ∩ Rj for some j 6= i. Since j 6= i, there must be some
Ek such that Ri selects γ(x) and Rj selects γ(y) for x 6= y ∈ Ek. Thus I ∈ γ(x) ∩ γ(y),

which has size at most λ
(|F |
rγ

)
by Condition 2. In other words, every element removed from

Ri is contained in γ(x) ∩ γ(y) for some x 6= y ∈ Ek. There are at most mrb(rb − 1) choices

13



of x 6= y ∈ Ek, so the maximum number of elements removed from Ri is mr2
bλ
(|F |
rγ

)
. Since

m ≤ d and |S| ≥ β
(|F |
rγ

)
, we remove at most dr2

bλβ
−1 |S| elements from Ri. By the choice of

constants, dr2
bλβ

−1 ≤ 1
2
εψd ≤ 1

2
εψm, so

|Ri| ≥
1

2
εψm |S| . (1)

Since ψm ≤ 1 and we remove elements from Ri to form Ti only if |Ri| ≥ 2ε |S|, equation (1)
implies

|Ti| ≥
1

2
εψm |S| , (2)

which is at least α |S| by the choice of α. Now consider the size of Tt+1. Since each Ti with
i ≤ t has size at most 2ε |S| and we assumed that ε < 1

4
t−1 in Condition 1, the set Tt+1 has

at least 1
2
|S| ≥ α |S| elements.

Claim: B[Z] is independent.

Proof. Assume E is an edge in B[Z]. We would like to show that there exists some x ∈ E
and some Tj such that

|γ(x) ∩ Tj|
|Tj|

≥ min {1, η + d(X,S)} , (3)

since this would show that x ∈ Yj, contradicting that x ∈ Z. Assume E intersects some Ei
for some 1 ≤ i ≤ m, with x ∈ E ∩ Ei. Since x ∈ Ei there are many sections Rj that select
x, since the sections Rj were formed by choosing one vertex from each of E1, . . . , Ed. Fix
some such section Rj that selects x, in which case Rj ⊆ γ(x). Then Tj ⊆ Rj ⊆ γ(x) and
|γ(x) ∩ Tj| / |Tj| = 1 so (3) is satisfied.

Now assume E is disjoint from E1, . . . , Em. Since the greedy algorithm could not continue,
δ(E1, . . . , Em, E, S) < εψm+1, which implies that there exists some v1 ∈ E1, . . . , vm ∈ Em, x ∈
E such that

|γ(v1) ∩ . . . ∩ γ(vm) ∩ γ(x) ∩ S| < εψm+1 |S| .

By the definition of Ti, there exists some Ti such that Ti ⊆ γ(v1)∩ . . .∩γ(vm)∩S. Therefore,

|γ(x) ∩ Ti| < εψm+1 |S| ≤
2ψm+1

ψm
|Ti| ,

where the last inequality uses (2). Assume that for every j 6= i, (3) fails. Then

|γ(x) ∩ S| = |γ(x) ∩ Ti|+
∑
j 6=i

|γ(x) ∩ Tj| ≤
2ψm+1

ψm
|Ti|+

∑
j 6=i

(η + d(X,S)) |Tj| .

Dividing through by |γ(x) ∩ S| we obtain

1 ≤ 2ψm+1

ψm

|Ti|
|S|

|S|
|γ(x) ∩ S|

+ (η + d(X,S))

(
1− |Ti|
|S|

)
|S|

|γ(x) ∩ S|
.
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Because |S| / |γ(x) ∩ S| ≤ 1
d(X,S)

≤ 1
ε
,

1 ≤ 2ψm+1

ψmε

|Ti|
|S|

+
(η
ε

+ 1
)(

1− |Ti|
|S|

)
. (4)

Let w = |Ti| / |S|. The right hand side of the above inequality is a weighted average of 2ψm+1

ψmε

and (1 + η
ε
):

2ψm+1

ψmε
w +

(
1 +

η

ε

)
(1− w).

Since 2ψm+1/(ψmε) = 1
2
< 1 + η

ε
, this will be maximized when w is as small as possible. By

(2), w ≥ α, so

2ψm+1

ψmε
α +

(
1 +

η

ε

)
(1− α) <

1

2
α + 1 +

η

ε
− α ≤ 1 +

η

ε
− 1

2
α < 1.

This implies that for any w ≥ α, the inequality in (4) is false. This contradiction shows that
there must be some j 6= i such that |γ(x) ∩ Tj| / |Tj| is at least η+d(X,S), which contradicts
that E is contained in B[Z].

Thus B[Z] is independent and the proof is complete.

5.3 Fiber bundles with large overlap

In the previous section, we proved Theorem 8 restricted to fiber bundles that satisfy Con-
dition 2. To prove Theorem 8, we will divide the edges of B into two pieces. Let B′ be
the subset of edges of B that satisfy Condition 2; that is for every x 6= y ∈ E ∈ B′,
γ(x) ∩ γ(y) has density at most λ. We apply Theorem 11 to (B′, γ, F ) to bound the chro-
matic number of B′. For the remaining edges, we will merge x and y into a new vertex z
if γ(x) ∩ γ(y) has density at least λ (we define γ(z) to be γ(x) ∩ γ(y)). Let (M,ψ, F ) be
the fiber bundle after merging all such vertices. Since all edges of B − B′ have some such
pair x, y, all edges of M will have size at most rb − 1. Then we apply induction on rb to
bound the chromatic number of M . To be able to apply induction, we need to verify that
dimH(M,ψ, F ) ≤ dimH(B, γ, F ) and that there is a lower bound on the density of γ(m)
for m ∈ V (M). The definition of γ(z) = γ(x) ∩ γ(y) satisfies both of these requirements.
First, dimH(M,ψ, F ) ≤ dimH(B, γ, F ) because any copy of H in γ(z) will be in both γ(x)
and γ(y). Also, there is a lower bound on the density of γ(z) because we only merge if
γ(x) ∩ γ(y) has density at least λ. The magic in this proof is that Condition 2, the extra
requirement needed in the previous section, fits exactly with the requirements to be able to
apply induction after merging.

For technical reasons, our induction statement needs to be slightly stronger than Theo-
rem 8; we no longer assume B is a uniform hypergraph. Instead, we allow the edges of B to
have size between one and rb. This is because after merging, all we know is that the edges
have size between one and rb − 1. This is also why we need to allow 1-uniform hypergraphs
in Theorem 11.
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Theorem 14. Let rb, rγ ≥ 1, d ∈ Z+, 0 < ε < 1, and H be an rγ-uniform hypergraph
with zero Turán density. Then there exists constants K1 = K1(rb, rγ, d, ε,H) and K2 =
K2(rb, rγ, d, ε,H) such that the following holds. Let (B, γ, F ) be any fiber bundle where the
edges of B have size between 1 and rb, dimH(B, γ, F ) < d, and for all b ∈ V (B), γ(b) is
an rγ-uniform hypergraph and |γ(b)| ≥ ε

(|F |
rγ

)
. Let A be the set of edges of size 1 in B. If

|F | ≥ K1, then |A| ≤ K2 and χ(B − A) ≤ K2.

Proof. The proof is by induction on rb. When rb = 1, we can directly apply Theorem 11,
since Condition 2 is trivially satisfied. So assume rb ≥ 2, and let λ = λ(rb, rγ, d, ε,H) be the
constant from Theorem 11. Define a subhypergraph B′ of B as follows:

B′ =

{
E ∈ B : |E| = rb and ∀x 6= y ∈ E |γ(x) ∩ γ(y)| ≤ λ

(
|F |
rγ

)}
.

Then (B′, γ, F ) is an (rb, rγ)-uniform fiber bundle to which we can apply Theorem 11 to
bound the chromatic number of B′. To complete the proof, we will bound the chromatic
number of B −B′.

Initially, let B0 = B − B′ and γ0 = γ. At stage i, assume we have defined (Bi, γi, F ).
Let E be some edge of Bi with |E| = rb, where there exists x 6= y ∈ E be such that
|γi(x) ∩ γi(y)| ≥ λ

(|F |
rγ

)
. We form (Bi+1, γi+1, F ) by merging the vertices x and y. More

precisely, let z be a new vertex and define

V (Bi+1) = V (Bi)− x− y + z,

E(Bi+1) = {E ∈ Bi : E ∩ {x, y} = ∅} ∪ {E − x− y + z : E ∈ Bi, E ∩ {x, y} 6= ∅} ,

γi+1(w) =

{
γi(w) w 6= z,

γi(x) ∩ γi(y) w = z.

We do this until every edge of Bi has size at most rb − 1; say this occurs at step s.
Through this modification, the dimension cannot increase. Consider step i, when we

merge the vertices x and y in (Bi, γi, F ) to form (Bi+1, γi+1, F ). Let S be any section in
(Bi, γi, F ) that selects x or y, and let S ′ be a section in (Bi+1, γi+1, F ) that is identical to S
except that it selects z instead of x or y. If S ′ contains a copy of H, then this copy of H is
in γ(z), which implies it is in both γ(x) and γ(y). Therefore, H is in S.

For each vertex z we add, we have |γ(z)| ≥ λ
(|F |
rγ

)
. Therefore, we can apply induction

on rb to (Bs, γs, F ) using ε = λ to bound the chromatic number of Bs. We now consider
“un-merging” the vertices of Bs to obtain a coloring of B0. Consider un-merging z ∈ V (Bi)
to obtain x, y ∈ V (Gi−1). If z was contained in an edge of size one, we color x and y using
two new colors. Otherwise, we color x and y the same color as z. After the un-merging, we
will have a proper coloring of B0 = B − B′. By induction, there is a bounded number of
edges of size one, so we will use a bounded number of new colors.

The colorings on B0 and B′ can be combined to obtain a coloring of B using a bounded
number of colors. Let K1 (the minimum size of F ) be the maximum between the required
size from Theorem 11 and the size required by induction. Lastly, any edge of size one in B
will also appear in Bs, and by induction Bs has a bounded number of edges of size one.
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6 Extremal results for critical hypergraphs

In this section, we prove Theorems 2 and 4. First, it is easy to see that Cr
2k+1 is mono near

r-partite; the edge E2k+1 in Cr
2k+1 will be the special edge. Also, E2k+1 has r − 2 vertices,

vrk+2, . . . , vrk+r−1, that have degree one. Thus to complete the proof of Theorem 4 we need
only prove that C3

2k+1 and C4
2k+1 are stable with respect to T3(n) and T4(n). One tool we will

use is the hypergraph removal lemma of Gowers, Nagle, Rödl, and Skokan [15, 26, 29, 30, 34].

Theorem 15. For every integer r ≥ 2, ε > 0, and r-uniform hypergraph H, there exists a
δ > 0 such that any r-uniform hypergraph with at most δn|V (H)| copies of H can be made
H-free by removing at most εnr edges.

The second tool we will use is supersaturation, proved by Erdős and Simonovits [7]. There
are several equivalent formulations of supersaturation, the one we will use is the following.

Theorem 16. [7, Corollary 2] Let Kr
t1,...,tr

be the complete r-uniform, r-partite hypergraph
with part sizes t1, . . . , tr. Let t =

∑
ti. For every ε > 0, there exists a δ = δ(r, t, ε) such that

any r-uniform hypergraph with at least εnr edges contains at least δnt copies of Kr
t1,...,tr

.

For any hypergraph H, let H(t) denote the hypergraph obtained from H by blowing up
each vertex into an independent set of size t. An easy extension of supersaturation is the
following (see Theorem 2.2 in the survey by Keevash [16]).

Corollary 17. For every r, t ≥ 2, ε > 0, and r-uniform hypergraph H, there exists an n0

such that if n ≥ n0 and G is an n-vertex, r-uniform hypergraph which contains at least
εn|V (H)| copies of H, then G contains a copy of H(t).

Next, we will need stability results for F5 and the book B4,2, proved by Keevash and
the last author [18] and Pikhurko [28] respectively. Let the book Br,m be the r-uniform
hypergraph with vertices x1, . . . , xr−1, y1, . . . , yr and hyperedges {x1, . . . , xr−1, yi} for 1 ≤
i ≤ m and {y1, . . . , yr}. Note that F5 = B3,2.

Theorem 18. [18] F5 is stable with respect to T3(n).

Theorem 19. [28] B4,2 is stable with respect to T4(n).

The last piece of the proof of Theorem 4 is the following lemma.

Lemma 20. If H is an r-uniform hypergraph that is stable with respect to Tr(n), and F is
a subhypergraph of H(t) for some t, then F is also stable with respect to Tr(n).

Proof. If F is contained in Tr(n), then for large n there is no r-uniform, F -free hypergraph
with at least (1− δ)tr(n) edges, so F is vacuously stable with respect to Tr(n). So assume F
is not a subhypergraph of Tr(n). Let h denote the number of vertices in H and let ε > 0 be
fixed. We need to show how to define δ such that if G is a F -free hypergraph with at least
tr(n)− δnr edges, it differs from Tr(n) in at most εnr edges.

Since H is stable with respect to Tr(n), there exists an α ≤ ε/2 such that if G′ has at
least tr(n) − 2αnr edges and contains no copy of H, then G′ differs from Tr(n) in at most
εnr/2 edges. By Theorem 15, there exists β = β(α) such that if there are at most βnh copies
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of H in G then by deleting at most αnr edges of G we can remove all copies of H. Lastly,
choose δ � β.

Now, fix some G that contains no copy of F and has at least tr(n)− δnr edges. Because
G contains no copy of F it contains no copy of H(t). Therefore, by Corollary 17 there are
at most βnh copies of H in G. By Theorem 15, we may therefore delete αnr edges in order
to find a subhypergraph G′ of G that contains no copy of H. Notice that G′ has at least
tr(n)− (δ + α)nr edges, and (δ + α) < 2α, so G′ differs from Tr(n) in at most εnr/2 edges.
Therefore, G differs from Tr(n) in at most (α + ε/2)nr edges, and α + ε/2 < ε.

It is easy to see that Cr
2k+1 is a subhypergraph of Br,2(k). Thus Theorem 18 combined

with Lemma 20 shows that C3
2k+1 is stable with respect to T3(n) and similarly Theorem 19

combined with Lemma 20 shows that C4
2k+1 is stable with respect to T4(n), which completes

the proof of Theorem 4.
For r ≥ 5, a result of Frankl and Füredi [10] can be used to show that Cr

2k+1 is not
critical.

Lemma 21. For r ≥ 5 and every k ≥ 1, π(Cr
2k+1) >

r!
rr

.

Proof. LetHn be the family of r-uniform hypergraphs H on n vertices that satisfy |E1∩E2| ≤
r− 2 whenever E1 and E2 are distinct edges of H. It is easy to check that for any t > 0 the
blow-up H(t) of H is Cr

2k+1-free. Therefore, ex(n,Cr
2k+1) ≥ maxH∈Hn/t{|H(t)|}. Frankl and

Füredi [10] showed that for r ≥ 7,

max
H∈Hn/t

{|H(t)|} > nr

r!

1(
r
2

)
e1+1/(r−1)

.

Thus for r ≥ 7, π(Cr
2k+1) >

r!
rr

.
All that remains is the case when r = 5 or 6. Let F be an n-vertex, r-uniform hypergraph

where no three edges E1, E2, E3 satisfy |E1 ∩ E2| = r − 1 and E1∆E2 ⊆ E3. Frankl and
Füredi [10] proved that if r = 5 then |F | ≤ 6

114n
5, with equality holding only if 11 divides n.

They also proved that if r = 6 then |F | ≤ 11
125n

6, with equality holding only if 12 divides n.
Using supersaturation and an argument similar to that used in the proof of Lemma 20,

it follows that

π(C5
2k+1) =

6!

114
>

5!

55
and π(C6

2k+1) =
11 · 6!

125
>

6!

66
,

as claimed.

Proof of Theorem 2. Let H be a critical n-vertex, r-uniform hypergraph. Suppose H has h
vertices and assume that E is the special edge of H. Suppose G is an H-free, r-uniform,
n-vertex hypergraph with |G| ≥ tr(n). We would like to show that G = Tr(n). Partition the
vertices of G into parts X1, . . . , Xr such that the number of edges with one vertex in each
Xi is maximized. Let ε1 = (2r)−h, let ε2 = ε1/8r

3, let δ = δ(r, h, ε2) from Theorem 16, and
let ε < 2−2rε1ε2δ. Organize r-sets of vertices into the following sets.

• Let M be the set of r-sets with one vertex in each of X1, . . . , Xr that are not edges of
G (the missing cross-edges).

• Let B be the collection of edges of G that have at least two vertices in some Xi (the
bad edges).
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• Let G′ = G−B +M , so that G′ is a complete r-partite hypergraph.

• Let Bi = {W ∈ B : |W ∩Xi| ≥ 2}.

Since B = ∪iBi, there is some Bi which has size at least 1
r
|B|. Assume without loss of

generality that |B1| ≥ 1
r
|B|. For a ∈ X1, make the following definitions.

• Ba = {W ∈ B1 : a ∈ W}.

• Let Ca,i be the edges in Ba which have exactly two vertices in B1 and exactly one
vertex in each Xj with j ≥ 1 and j 6= i.

• Let Da = Ba \ Ca,2 \ · · · \ Ca,r.

First, |B| < εnr because G is stable with respect to Tr(n). Also, since |G| ≥ tr(n), the
number of r-sets in M is at most the number of edges in B, so |M | ≤ |B| < εnr.

In the rest of the proof, we will assume that B is non-empty and then count the r-
sets in M in several different ways. Our counting will imply that |M | ≥ εnr, and this
contradiction will force B = ∅ and so G = Tr(n). We will count r-sets in M by counting
embeddings of H − E into G′ that also map E to some element of B. Since G is H-free,
each embedding must use at least one edge in M . Let Φ be the collection of embeddings
φ : V (H) → V (G′) of H − E into G′, by which we mean that φ is an injection and for all
F ∈ H, φ(F ) = {φ(x) : x ∈ F} ∈ G′. We say that φ ∈ Φ is W -special if φ(E) = W and
a-avoiding if a ∈ V (G) and some degree one vertex in E is mapped to a. If W ∈ B and φ
is W -special, then φ must use at least one edge of M . Call one of these edges the missing
edge of φ.

Claim 1: For φ ∈ Φ and v ∈ V (H), there are at least 1
2r
n embeddings φ′ ∈ Φ where

φ(x) = φ′(x) for x 6= v and φ(v) 6= φ′(v).

Proof. This follows easily because G′ is a complete r-partite hypergraph for which each class
has size about n/r, and φ(v) can be replaced by any unused vertex in the Xi that contains
φ(v).

Fix some W ∈ B, and consider when there exists a W -special embedding of H − E.
Since W ∈ Bi for some i, let w1 6= w2 ∈ W ∩Xi. Then there exists an embedding of H −E
where w1 and w2 are used for the non degree one vertices in the special edge of H. Since the
other vertices in the special edge have degree zero in H −E, the vertices in the special edge
can then be embedded to W . Thus for any W ∈ B, by Claim 1 there are at least ε1n

h−r

W -special embeddings of H−E, since we can vary any vertex of H not in W . The situation
with a-avoiding is more complicated. If W ∈ Ca,i, then the only choice of w1 and w2 that we
are guranteed to have are the two vertices in W ∩X1, one of which is a. Thus in a W -special
embedding, the only way we can guarantee an embedding is by mapping a non-degree one
vertex to a. Therefore, only when W ∈ Da can we guarantee that there exists at least ε1n

h−r

W -special, a-avoiding embeddings of H − E.

Claim 2: For every a ∈ X1, |Da| ≤ ε2n
r−1.
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Proof. Assume there exists some a ∈ X1 with |Da| ≥ ε2n
r−1. We count a-avoiding, W -

special embeddings of H − E into G′ where W ∈ Da. For each W ∈ Da, we argued above
that there are at least ε1n

h−r embeddings. Since |Da| ≥ ε2n
r−1, the number of a-avoiding

embeddings which are W -special for some W ∈ Da is at least ε1ε2n
r−1 · nh−r = ε1ε2n

h−1.
Fix some L ∈ M . We want to count the number of a-avoiding embeddings which are

W -special for some W ∈ Da and have missing edge L. An upper bound on the number of
such embeddings will be the number of choices for W times the number of choices for the
h−|W ∪ L| vertices of H mapped outside W ∪L. Since all these embeddings are a-avoiding,
L cannot contain a. For each 0 ≤ ` ≤ r, there exists at least

(
r
`

)
choices for the intersection

between L and W , at most nr−`−1 choices of W ∈ Da with |W ∩ L| = ` (here it is crucial
that a ∈ W and a /∈ L), and at most nh−2r+` choices for the vertices of H not in W ∪ L.
Thus each L ∈ M can kill at most 2−rnh−r−1 embeddings. Since there are at least ε1ε2n

h−1

embeddings, M must have size at least 2−rε1ε2n
r, contradicting the choice of ε.

Claim 3: For every a ∈ X1 and every 2 ≤ i ≤ r, |Ca,i| ≤ ε2n
r−1.

Proof. Assume there exists some a and i with |Ca,i| ≥ ε2n
r−1. The proof is similar to the

proof of Claim 2, except now we cannot count a-avoiding embeddings. In the previous claim,
we used the a-avoiding property to imply that the missing edge does not contain a. In this
proof, we will instead guarantee that the missing edge cannot contain a by only counting
embeddings which map all neighbors of φ−1(a) into G.

Let v be one of the non degree one vertices in the special edge of H, and define Hv =
{F ∈ H : v ∈ F, F 6= E}, that is all edges of H containing v which are not the special edge.
Let Za = {F ∈ G \B : a ∈ F}, that is all cross-edges of G which contain a. We now count
embeddings φ ∈ Φ which are W -special for some W ∈ Ca,i, map v to a, and all edges of Hv

are mapped to edges in Za. For these embeddings, since edges in Hv are mapped to edges
in Za ⊆ G, the missing edge cannot contain a.

First, |Za| ≥ |Ca,i|, because otherwise we could move a to Xi and increase the number
of edges across the partition and we chose the partition X1, . . . , Xr to maximize the number
of cross-edges. Let H ′ = {F − v : F ∈ Hv} and Z ′ = {F − a : F ∈ Za}. Then H ′ and Z ′

are (r − 1)-uniform, (r − 1)-partite hypergraphs, and Z ′ has at least |Ca,i| ≥ ε2n
r−1 edges.

Let t = |V (H ′)|. Then Theorem 16 shows that Z ′ contains at least δnt copes of H ′, so there
are at least ε2n

r−1 · δnt · ε1nh−r−t = ε1ε2δn
h−1 embeddings of H −E which are W -special for

some W ∈ Ca,i, map v to a, and the edges in Hv are embedded into Za.
Now fix L ∈M , and consider how many of these embeddings have L as their the missing

edge. The computation is almost the same as in the previous claim. For each `1, `2, there are(
r
`1

)
choices for L ∩W , there are

(
r
`2

)
choices for L ∩ φ(Hv), there are nr−1−`1 choices for W

(here we use that L does not contain a), nt−`2 choices for φ(Hv), and nh−2r−t+`1+`2 choices
for the other vertices of H. Thus each L can kill at most 22rnh−r−1 embeddings. Since there
are at least ε1ε2δn

h−1 embeddings, M must have size at least 2−2rε1ε2δn
r, contradicting the

choice of ε.

Claims 2 and 3 imply that |Ba| < 2rε2n
r−1 for each a. Define

A =
{
a ∈ X1 : dM(a) ≥ 2r2ε2n

r−1
}
.
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As in the proofs of the previous two claims, we would like to count embeddings of H −E to
obtain a lower bound on |M |. Once again, the main difficulty is controlling how the missing
edge can intersect W . If there were some W with W ∩A = ∅, there will be few missing edges
intersecting this W , which is how we will overcome this difficulty in this part of the proof.

Claim 4: There exists some W ∈ B1 with W ∩ A = ∅.

Proof. Assume that every W ∈ B1 contains an element of A. Then
∑

a∈A |Ba| ≥ |B1|. Since
|Ba| < 2rε2n

r−1 for every a, we have the following contradiction.

2rε2n
r−1 |A| >

∑
a∈A

|Ba| ≥ |B1| ≥
1

r
|B| ≥ 1

r
|M | ≥ 1

r

∑
a∈A

dM(a) ≥ 2r2ε2
r

nr−1 |A| .

We now finish the proof by counting the W -special embeddings whose missing edge does
not intersect W . There are at least ε1n

h−r embeddings which are W -special by Claim 1. If
at least half of these have missing edge intersecting W , then W would contain a vertex in
A. Thus there are at least ε1

2
nh−r W -special embeddings where the missing edge does not

intersect W . Each L ∈ M can kill at most nh−2r such embeddings, so M has at least ε1
2
nr

elements, contradicting the choice of ε.

7 Chromatic threshold of F5-free hypergraphs

7.1 An upper bound on the chromatic threshold of F5-free graphs

In this section, we prove the upper bound in Theorem 7. As in Section 4, we will give an
upper bound on the chromatic threshold by first proving that large dimension forces a copy
of F5, and then by applying Theorem 8. Let (B, γ, F ) be an (rb, rγ)-uniform fiber bundle,
and make the following definition. A cut in (B, γ, F ) is a pair (X,S) such that X ⊆ V (B),
S ⊆

(
F
rγ

)
, and if γ(x) ∩ S 6= ∅, then x ∈ X. In other words, the fibers that intersect S come

exclusively from X. A k-cut is a cut (X,S) with |X| ≤ k. The size of a k-cut is the size of
|S|.

We now sketch the proof of the upper bound in Theorem 7. Let G be an n-vertex,
3-uniform, F5-free hypergraph with minimum degree at least c

(
n
2

)
. Let (G, γ, F ) be the

neighborhood bundle of G, let H = Kq,q, and assume dimH(G, γ, F ) is large. We would
like to find a copy of F5 in G. We first use the fact that dimH(G, γ, F ) is large to find
a set U of vertices of G such that G[U ] has small strong independence number. We then
argue that because the minimum degree is large, there must be some vertices x, y such that
N(x, y) = {z : xyz ∈ G} has large intersection with U . Next, we show that since N(x, y)
has large intersection with U and G[U ] has small strong independence number, there must
be an edge E with at least two vertices in N(x, y) ∩ U , which gives a copy of F5.

The best upper bound on the chromatic threshold will come from the lowest required
minimum degree needed in the above proof. The minimum degree is used above to prove
that there exists some x, y with N(x, y) ∩ U large. If we can find a large cut (X,S) in
(G, γ, F ) and we make U large enough, we could remove X from U while still maintaining
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all the useful properties of U . Then for all {x, y} ∈ S, we know that N(x, y)∩ (U −X) = ∅.
Since there are now fewer pairs {x, y} in

(
F
2

)
with N(x, y) ∩ (U − X) 6= ∅, we can require

a weaker lower bound on the minimum degree of G to find {x, y} with N(x, y) ∩ U large.
In other words, the larger the cut of (G, γ, S) we can find, the better upper bound on the
chromatic threshold we can prove. This is encoded in the following theorem, which computes
the relationship between the minimum degree and the maximum size of a k-cut.

Theorem 22. Let 0 < c, s < 1 satisfy 5c ≥ 1− s, and fix an integer k and a constant c′ > c.
Then there exists a constant L = L(c, c′, k, s) such that the following holds. Let G be an
n-vertex, F5-free hypergraph with δ(G) ≥ c′

(
n
2

)
and let (G, γ, F ) be the neighborhood bundle

of G. Assume (G, γ, F ) contains a k-cut of size at least s
(
n
2

)
. Then χ(G) ≤ L.

Note that if s = 0 and c = 1/5, then 5c ≥ 1 − s and so this theorem directly proves an
upper bound of 1/5 on the chromatic threshold of F5-free hypergraphs. The first part of the
proof of Theorem 22 is to find a set U with small strong independence number.

Lemma 23. Let ε > 0 be fixed. Then there exists constants d = d(ε) and q = q(ε) such
that the following holds. Let G be an n-vertex, 3-uniform hypergraph and let (G, γ, F ) be the
neighborhood bundle of G. Let H = Kq,q and assume dimH(G, γ, F ) ≥ d. Then there exists
a vertex set U ⊆ V (G) such that |U | = 5d and the strong independence number of G[U ] is
at most (1 + ε)d.

Proof. Let d = 100 + 100/ε2 and q = 3d + 2 · 3d. Since dimH(G, γ, F ) ≥ d, there exists
a matching E1, . . . , Ed such that for each x1 ∈ E1, . . . , xd ∈ Ed the section of {x1, . . . , xd}
contains a copy of Kq,q. (See Figure 2 in Section 4 for a picture of this structure.) Since
q = 3d+ 2 · 3d, from each of these 3d copies of Kq,q we can pick a copy of K2 such that each
K2 is vertex disjoint from E1∪ . . .∪Ed and all these 3d copies of K2 are vertex disjoint. Now
choose randomly d copies of K2, {y1, z1}, . . . , {yd, zd} (with repetition) from these 3d vertex
disjoint copies of K2, and define Z = {y1, . . . , yd, z1, . . . , zd}, U = Z ∪E1 ∪ . . .∪Ed. Since Z
is disjoint from E1, . . . , Ed, |U | = 5d. We need only show that with positive probability the
strong independence number of G[U ] is at most (1 + ε)d.

Notice that any strong independent set in G[U ] contains at most d vertices from E1 ∪
. . . ∪ Ed and at most d vertices from Z. Thus any strong independent set in G[U ] with at
least (1 + ε)d vertices must have at least εd vertices in E1 ∪ . . . ∪Ed and at least εd vertices
in Z. We need to prove with positive probability that this does not occur.

For every P ⊆ Z with |P | = εd and every S ⊆ E1∪ . . .∪Ed with |S| = εd, let AP,S be the
event “P ∪ S is a strong independent set in G” and XP,S be its indicator random variable.
Let X be the sum of all indicator random variables. We claim that X is small.

For any u ∈ Z, any 1 ≤ i ≤ d, and any w ∈ Ei, let {u, v} be the copy of K2 containing
u. Then, because {u, v} is contained in some section of x1 ∈ E1, . . . , xd ∈ Ed, it is the case
that {u, v, w′} ∈ G for some w′ ∈ Ei. Therefore, Pr[{u, v, w} /∈ G] ≤ 2/3 so that

E[X] =
∑

XP,S ≤
(

2d

εd

)(
3d

εd

)
(2/3)ε

2d2 ≤

((
2ed

εd

)(
3ed

εd

)(
2

3

)εd)εd

< 1.

Also, since we have 3d copies of K2 and select only d of them, the probability some K2 is
selected twice is exponentially small. Thus with positive probability, every event AP,S fails
which implies the strong independence number of G[U ] is at most (1 + ε)d.
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We can now prove Theorem 22.

Proof of Theorem 22. Pick ε so that c′ = (1 + 2ε)c and let d = d(ε) and q = q(ε) be
given by Lemma 23, and also assume that d is large enough so that 5dε > k(1 + 2ε).
Suppose that if H = Kq,q then dimH(G, γ, F ) ≤ d. Then by Theorem 8, there exists
constants K1 = K1(ε, d,H) and K2 = K2(ε, d,H) (note that K1 and K2 depend only on
c, c′, k, s) such that either |F | < K1 or χ(G) < K2. Since |F | = |V (G)|, this implies that
χ(G) < max{K1, K2}.

We can therefore assume that dimH(G, γ, F ) ≥ d. By Lemma 23, there exists a set
U ⊆ V (G) such that |U | = 5d and the strong independence number of G[U ] is at most
(1 + ε)d. Let (X,S) be a k-cut of size s

(
n
2

)
. Let G′ be the bipartite graph with partite sets

A = U \X and B =
(
V (G)

2

)
\ S where {u, {v, w}} is an edge in G′ if and only if {u, v, w} is

an edge in G. |A| ≥ 5d− |X|, so G′ contains at least (5d− |X|)δ(G) edges. |B| =
(
n
2

)
− |S|,

so there is some x 6= y such that dG′ ({x, y}) is at least

(5d− |X|)δ(G)(
n
2

)
− |S|

≥
(5d− k)(1 + 2ε)c

(
n
2

)
(1− s)

(
n
2

) ≥ (5d− k)(1 + 2ε)c

5c
> (1 + ε)d.

This implies that there is some x, y with |N(x, y) ∩ U | > (1 + ε)d. Since the strong inde-
pendence number of G[U ] is at most (1 + ε)d, there exists some edge E with two vertices in
N(x, y). Then x, y together with E form a copy of F5 in G. This contradiction completes
the proof.

7.2 Finding a large cut in a F5-free hypergraph

In order to prove the upper bound in Theorem 7, we now need to show the existence of
a large cut. Note that in Theorem 22 the bound on the chromatic number depends on k
but there are no other restrictions on k. Thus to prove an upper bound on the chromatic
threshold of F5-free graphs, one can pick any fixed integer k and ask what is the size of the
largest k-cut. In the following lemma, we set k = 5 and prove that there exist a 5-cut of size
approximately 4c2

(
n
2

)
. Solving 5c = 1 − s = 1 − 4c2 gives c = (

√
41 − 5)/8, the bound in

Theorem 7.
We suspect that the bound on the chromatic threshold of F5-free hypergraphs can be

improved by finding a larger cut, perhaps by increasing k. In order to achieve a bound of
c = 6/49, we would need to find a cut of size s

(
n
2

)
with s = 1− 5c = 539/36c2 ≈ 15c2.

Lemma 24. Let 0 < c < c′ be fixed. There exists a constant n0 = n0(c, c
′) such that for

all n > n0 the following holds. Let G be an n-vertex, 3-uniform, F5-free hypergraph with
δ(G) ≥ c′

(
n
2

)
. Let (G, γ, F ) be the neighborhood bundle of G. Then (G, γ, F ) has a 5-cut of

size at least 4
(
c(n−1)

2

)
.

Combining Theorem 22 with Lemma 24, we can prove Theorem 7.

Proof of Theorem 7. Let c = (
√

41− 5)/8, let c′ > c be fixed, and let G be any n-vertex, 3-
uniform, F5-free graph with minimum degree at least c′

(
n
2

)
. Let (G, γ, F ) be the neighborhood

bundle of G. Let b = (c′ + c)/2 so that c′ > b > c. Then by Lemma 24, either |V (G)| is
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bounded or (G, γ, F ) contains a 5-cut of size at least 4
(
b(n−1)

2

)
. Since b > c, if n is large

enough this is at least 4c2
(
n
2

)
. Let s = 4c2 and notice that 5c = 1 − s, so that Theorem 22

implies that the chromatic number of G is bounded.

The first step in the proof of Lemma 24 is the following lemma.

Lemma 25. In a graph G, we call a non-edge uv /∈ E(G) good if N(u) ∩ N(v) 6= ∅. If
G is a triangle-free graph with n vertices and m edges, then G has at least m − n/2 good
non-edges.

Proof. We prove this by induction on n. It is obviously true for n = 1 and n = 2. Now assume
n > 2. If some component of G is not regular, then there exist vertices u, v in that component
such that u ∈ N(v) and d(u) < d(v). Then G−u has n− 1 vertices and m− d(u) edges. By
induction, G− u has at least m− d(u)− n−1

2
good non-edges. For any vertex w ∈ N(v)− u,

uw is a good non-edge, so G has at least m−d(u)− n−1
2

+d(v)−1 ≥ m−n/2 good non-edges.
If all components of G are regular, then pick one component K. Assume K is r-regular,
and pick a vertex v in Kand let N2(v) = {u : there exists a P3 connecting u and v}. If
|N2(v)| ≥ r, then by the induction hypothesis G−v has at least m−r− n−1

2
good non-edges,

and since for any vertex u ∈ N2(v) it is the case that uv is a good non-edge, G has at least
m−r− n−1

2
+ |N2(v)| ≥ m−n/2 good non-edges. If |N2(v)| < r, then since K is triangle-free

and r-regular, K = Kr,r which has r2 edges and r2 − r good non-edges. Now G − K has
n− 2r vertices and m− r2 edges, so by induction it has m− r2− (n− 2r)/2 good non-edges.
Then G has m− r2 − (n− 2r)/2 + r2 − r = m− n/2 good non-edges.

Proof of Lemma 24. We examine the copies of F4 in G where F4 is the hypergraph with
vertex set {1, 2, 3, 4} and edges {1, 2, 3}, {1, 2, 4}, and {2, 3, 4}.

Case 1 There exists a vertex v of G such that v is not contained in any copy of F4. Consider
L = γ(v)[V (G)−v], which is a triangle-free graph with n−1 vertices and at least c

(
n
2

)
edges.

By Lemma 25, L has at least c
(
n
2

)
− n−1

2
good non-edges. Let X = ∅ and S be the set of

these good non-edges. We claim that (X,S) is a cut in (G, γ, F ). Suppose for contradiction
that there exists some x ∈ V (G) and {u,w} ∈ S such that {u,w, x} ∈ G. Pick a vertex y
from NL(u) ∩NL(w). Then u, v, w, x, y form a copy of F5 in G, which is a contradiction.

Case 2 Every vertex of G is contained in some copy of F4. Pick some U ⊆ V (G) such
that G[U ] = F4, let U = {u1, u2, u3, u4}, and let G′ = ∪4

i=1γ(ui). Consider γ(ui) ∩ γ(uj)
for i 6= j. If γ(ui) ∩ γ(uj) contains a matching of size two, then G contains a copy of F5.
Say ab, cd ∈ γ(ui) ∩ γ(uj) with a, b, c, d distinct. Then since G[U ] = F4, there is some edge
E = {ui, uj, w} ∈ G. If w 6= a and w 6= b, then a, b, ui, uj, w form a copy of F5 and if w = a
or w = b, then c, d, ui, uj, w form a copy of F5. Thus γ(ui)∩ γ(uj) is a star so has at most n
elements. Since each γ(x) has size at least c′

(
n
2

)
, G′ has at least 4c′

(
n
2

)
−
(
4
2

)
n > 4c

(
n
2

)
edges

if n is large enough.
Then G′ has n vertices and at least 4c

(
n
2

)
edges, so there exist a vertex v whose degree

in G′ is at least 4c(n− 1). Let N denote the neighborhood of v in G′ and let N1, . . . , N4 be
a partition of N such that for every 1 ≤ i ≤ 4 and every vertex w ∈ Ni, vw ∈ γ(ui). Let
X = U ∪ {v} and S =

⋃4
i=1

(
Ni
2

)
, so that |X| = 5 and |S| ≥ 4

(|N |/4
2

)
= 4
(
c(n−1)

2

)
. We claim

that (X,S) is a cut in (G, γ, F ). Suppose for contradiction that there exists some z /∈ X
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such that γ(z) ∩ S 6= ∅. Pick {x, y} ∈ γ(z) ∩ S, then {x, y} ⊆ Ni for some 1 ≤ i ≤ 4. Now
v, ui, x, y, z form a copy of F5, which is a contradiction.

From these two cases we can see that (G, γ, F ) has a 5-cut of size at least min
{
c
(
n
2

)
− n−1

2
,

4
(
c(n−1)

2

)}
. G is F5-free, so c ≤ 2/9 and therefore min

{
c
(
n
2

)
− n−1

2
, 4
(
c(n−1)

2

)}
= 4

(
c(n−1)

2

)
.

7.3 A construction for the lower bound

To prove a lower bound on the chromatic threshold of the family of F5-free hypergraphs, we
need to construct an infinite sequence of F5-free hypergraphs with large chromatic number
and large minimum degree. Our construction is inspired by a construction by Hajnal [6] of
a dense triangle-free graph with high chromatic number. Hajnal’s key idea was to use the
Kneser graph to obtain large chromatic number. The Kneser graph KN(n, k) has vertex
set

(
[n]
k

)
, and two vertices F1, F2 form an edge if and only if F1 ∩ F2 = ∅. We use an

extension of Kneser graphs to hypergraphs. Alon, Frankl, and Lovász [2] considered the
Kneser hypergraph KNr(n, k), which is the r-uniform hypergraph with vertex set

(
[n]
k

)
, and

r vertices F1, . . . , Fr form an edge if and only if Fi ∩ Fj = ∅ for i 6= j. They gave a lower
bound on the chromatic number of KNr(n, k) as follows.

Theorem 26. If n ≥ (t− 1)(r − 1) + rk, then χ(KNr(n, k)) ≥ t.

We first show that KNr(n, k) is F5-free for n < 4k.

Lemma 27. If n < 4k, then KN3(n, k) is F5-free.

Proof. Say {a, b, c}, {a, b, d} and {c, d, e} are edges in KN3(n, k). Then by definition a, b, c,
and d are four disjoint k-sets in [n], which is impossible because n < 4k.

Proof of the lower bound in Theorem 7. Fix t ≥ 2 and ε > 0. Pick k ≥ 2t and n = 3k +
2(t− 1) and note that n < 4k. By Theorem 26, KN3(n, k) has chromatic number at least t
and by Lemma 27 is F5-free. For integers u, v, and w where n divides u, let U , V and W
be disjoint vertex sets of size u, v, and w respectively. Partition U into U1, . . . , Un such that
|Ui| = u

n
for each i. Let H be the hypergraph with vertex set V (KN3(n, k)) ∪ U ∪ V ∪W

and the following edges.

• For {S1, S2, S3} ∈ KN3(n, k), make {S1, S2, S3} an edge of H.

• For S ∈ V (KN3(n, k)), x ∈ Ui with 1 ≤ i ≤ n, and y ∈ V , make {S, x, y} an edge of
H if i ∈ S.

• For x ∈ U , y ∈ V , and z ∈ W , make {x, y, z} an edge of H.

Notice that H has chromatic number at least t because KN3(n, k) is a subhypergraph.

Claim 1: H contains no subgraph isomorphic to F5.

Proof. Suppose {a, b, c}, {a, b, d} and {c, d, e} are the hyperedges of a copy of F5 in H.
Notice that the hypergraph induced by U, V, V (KN3(n, k))∪W is 3-partite, apart from those
edges within KN3(n, k). Note that a 3-uniform, 3-partite hypergraph is F5-free, therefore
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any copy of F5 must contain an edge from KN3(n, k). If that edge is {a, b, c} then d must
also be contained in V (KN3(n, k)). But then c and d are both in V (KN3(n, k)), which
means e must be as well. Because KN3(n, k) is F5-free, this is a contradiction. Similarly,
{a, b, d} ( V (KN3(n, k)). Therefore, {c, d, e} ⊆ V (KN3(n, k)), and without loss of generality
b ∈ U and a ∈ V . Because {a, b, c} and {a, b, d} are edges, b must be in both c and d, which
contradicts the fact that {c, d, e} is an edge of KN3(n, k).

Claim 2: The minimum degree of H is at least (1− ε) 6
49

(|V (H)|
2

)
if |V (H)| is large enough.

Proof. Vertices in KN3(n, k) have degree at least k u
n
v = kuv

3k+2(t−1)
. Since t is fixed, we can

choose k large enough that vertices KN3(n, k) have degree at least (1 − ε/2)uv/3. Vertices
in A have degree at least vw, vertices in B have degree at least uw, and vertices in C have
degree at least uv. Thus the minimum degree of H is at least min

{
(1− ε/2)uv

3
, uw, vw

}
.

Choose u, v, and w so that uv
3

= uw = vw, we obtain that u = v and w = v/3 and the
minimum degree is at least (1−ε/2)u2/3. The number of vertices is u+v+w+

(
n
k

)
= 7

3
u+
(
n
k

)
.

Since u2/3 ≈ 6/49
(
7u/3

2

)
, we can choose u large enough so that the minimum degree of H is

at least (1− ε) 6
49

(|V (H)|
2

)
.

We have proved that for every fixed t ≥ 2 and every ε > 0, there is a constant N0 such that
for N > N0 there exists an N -vertex, 3-uniform, F5-free hypergraph with chromatic number
at least t and minimum degree at least (1 − ε) 6

49

(|V (H)|
2

)
. By the definition of chromatic

threshold, this implies that the chromatic threshold of the family of F5-free hypergraphs is
at least 6

49
.

8 Generalized Kneser hypergraphs

In Section 7.3, we used a generalization of the Kneser graph to hypergraphs to give a lower
bound on the chromatic threshold of the family of F5-free hypergraphs. In Section 9, we will
use similar constructions to give lower bounds on the chromatic threshold of the family of
A-free hypergraphs, for several other hypergraphs A. For some of these constructions, we
will need a more general variant of the Kneser hypergraph, which we explore in this section.

Sarkaria [31] considered the generalized Kneser hypergraph KNr
s(n, k), which is the r-

uniform hypergraph with vertex set
(
[n]
k

)
, in which r vertices F1, . . . , Fr form an edge if

and only if no element of [n] is contained in more than s of them. Note that the Kneser
hypergraph KNr(n, k) is KNr

1(n, k). Sarkaria [31] and Ziegler [38] gave lower bounds on the
chromatic number of KNr

s(n, k), but Lange and Ziegler [21] showed that the lower bounds
obtained by Sarkaria and Ziegler apply only if one allow the edges of KNr

s(n, k) to have
repeated vertices. We conjecture that for KNr

s(n, k), a statement similar to Theorem 26 is
true.

Conjecture 28. There exists T (r, s, t) such that if n ≥ T (r, s, t)+rk/s, then χ (KNr
s(n, k)) ≥

t.

The following much weaker statement is sufficient for our purposes. The proof is similar
to an argument of Szemerédi which appears in a paper of Erdős and Simonovits [6], and the
proof of Claim 1 is motivated by an argument of Kleitman [20].
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Theorem 29. Let c > 0; then for any integers r, t, there exists K0 = K0(c, r, t) such that if
k ≥ K0, s = r − 1, and n = (r/s+ c)k, then χ (KNr

s(n, k)) > t.

Before we prove this theorem, we need two definitions. A family F of subsets of [n] is
monotone decreasing if F ∈ F and F ′ ⊆ F imply F ′ ∈ F . Similarly, it is monotone
increasing if F ∈ F and F ⊆ F ′ imply F ′ ∈ F .

Proof of Lemma 29. Fix an integer t. We would like to prove that if k is large enough
then it is impossible to t-color KNr

s(n, k). So let k be some integer and assume KNr
s(n, k)

can be t-colored. Then the k-subsets of [n] can be divided into t families, F1, . . . ,Ft, such
that F1 ∩ · · · ∩ Fr 6= ∅ for all distinct F1, . . . , Fr ∈ Fi, 1 ≤ i ≤ t. For 1 ≤ i ≤ t, let
F∗i = {A : A ⊆ [n],∃F ∈ Fi such that F ⊆ A}. Then F∗1 , . . . ,F∗t are monotone increasing
families of subsets of [n]. Let w = s/r; since s = r − 1, w = 1 − 1/r. For a family F of
subsets of [n], define the weighted size W [F ] of F by

W [F ] =
∑
F∈F

w|F |(1− w)n−|F |.

Claim 1: For 1 ≤ ` ≤ t,W [∪`i=1F∗i ] ≤ 1− 1/r`.

Proof. We prove this by induction on `. For ` = 1, Frankl and Tokushige [11] showed that
for a family F of subsets of [n], if F1 ∩ · · · ∩ Fr 6= ∅ for all distinct F1, . . . , Fr ∈ F , then
W [F ] ≤ w = 1 − 1/r. Now assume that the statement is true for `. Let U = ∪`i=1F∗i and
L = F∗`+1. Then W [U ] ≤ 1− 1/r`, U is a monotone increasing family of subsets of [n], and
L is a monotone decreasing family of subsets of [n]. By the FKG Inequality,

W [U ∩ L] ≤ W [U ]W [L].

Then

W [∪`+1
i=1F∗i ] = W [U ∩ L] +W [F∗`+1] ≤ W [U ]W [L] +W [F∗`+1]

≤ (1− 1/r`)W [L] +W [F∗`+1] = 1− (1−W [F∗`+1])/r
`.

Since W [F∗`+1] ≤ w = 1−1/r, we have 1−(1−W [F∗`+1])/r
` ≤ 1−1/r`+1, so W [∪`+1

i=1F∗i ] ≤
1− 1/r`+1.

Now we know that W [∪ti=1F∗i ] ≤ 1 − 1/rt, so W [∪ti=1F∗i ] ≥ 1/rt. We also know that

∪ti=1F∗i is the family of subsets of [n] whose size is less than k = n/(r/s+ c), so

W [∪ti=1F∗i ] =
∑

i< n
r/s+c

(
n

i

)
wi(1− w)n−i.

Since wn = n
r/s

> n
r/s+c

, by Chernoff’s inequality we have∑
i< n

r/s+c

(
n

i

)
wi(1− w)n−i ≤ e−( c

r/s+c)
2 sn

2r = e−
c2s

2(r/s+c)r
k.

Then if k is large and t is fixed, W [∪ti=1F∗i ] ≤ e−
c2s

2(r/s+c)r
k < 1/rt which contradicts Claim 1.

This contradiction implies that for any fixed t, there is no choice of K0 such that for all
k > K0 it is possible to t-color KNr

s(n, k). This completes the proof.
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(a) TK3(4) (b) S(7) (c) T5

Figure 3: Assorted Hypergraphs

For an r-uniform hypergraph A, we want to construct an infinite sequence of A-free hy-
pergraphs with KNr(n, k) or KNr

r−1(n, k) as a subhypergraph. This will imply that these
A-free hypergraphs have large chromatic number, but we must first show that for any in-
teger k and for some choice of n = n(k) one of KNr(n, k), KNr

r−1(n, k) is A-free. We now
show that KN3

2(n, k) is T5-free and S(7)-free under some conditions on n and k. Here T5

is a 3-uniform hypergraph with vertices v1, v2, v3, v4, v5 and edges {v1, v2, v3}, {v1, v4, v5},
{v2, v4, v5}, {v3, v4, v5}, and S(7) denotes the Fano plane (the S stands for Steiner Triple
System.)

Lemma 30. If n < (3/2 + 1/4)k, then KN3
2(n, k) is T5-free.

Proof. If n < 3k/2, then KN3
2(n, k) has no edge and of course is T5-free. Assume n =

(3/2 + ε)k with 0 ≤ ε < 1/4, and suppose T5 is a subhypergraph of KN3
2(n, k). Since

{v1, v4, v5}, {v2, v4, v5}, {v3, v4, v5} are edges of T5, the vertices v1, v2, and v3 all lie in v4 ∩ v5.
Because |v4 ∩ v5| ≤ 2n−2k = (1 + 2ε)k < 3k/2, by the pigeonhole principle, v1∩v2∩v3 6= ∅,
which means {v1, v2, v3} is not an edge, a contradiction.

Lemma 31. If n < (3/2 + 1/10)k, then KN3
2(n, k) is S(7)-free.

Proof. Just as in the proof of Lemma 30, assume n = (3/2 + ε)k with 0 ≤ ε < 1/10 and
suppose S(7) is a subhypergraph of KN3

2(n, k). Let A be a vertex in a copy of S(7) in
KN3

2(n, k) and let {A,B,C}, {A,D,E} , {A,F,G} be its incident edges in the copy of S(7).
Then B∩C,D∩E,F∩G ⊆ A. Since

∣∣A∣∣ = (1/2+ε)k, |B ∩ C| , |D ∩ E| , |F ∩G| ≥ (1/2−ε)k.
Then since 3(1/2−ε) > 2(1/2+ε), the pigeonhole principle implies that B∩C∩D∩E∩F∩G 6=
∅. Now the copy of S(7) cannot have an edge not containing A, a contradiction.

9 Open Problems and Partial Results

Many open problems remain; for most 3-uniform hypergraphs A the chromatic threshold for
the family of A-free hypergraphs is unknown. Interesting hypergraphs to study are those
for which we know the extremal number, ex(n,A), and we will examine a few of those here
along with partial results and conjectures. We conjecture that most of the lower bounds
given by the constructions in this section are tight.
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9.1 T Kr(s)-free hypergraphs

For s > r, recall that T Kr(s) is the family of r-uniform hypergraphs such that there exists
a set S of s vertices where each pair of vertices from S are contained together in some edge.
The set S is called the set of core vertices of the hypergraph. Recall also that Tr,s(n) is
the complete n-vertex, r-uniform, s-partite hypergraph with part sizes as equal as possible.

The last author [25] showed that if s > r then ex(n, T Kr(s)) = |Tr,s−1(n)| and ex(n,
TKr(s)) = (1 + o(1)) |Tr,s(n)|. Recently, Pikhurko [27] has shown that for large n and s > r,
ex(n,TKr(s)) = |Tr,s−1(n)| and that Tr,s−1(n) is the unique extremal example. Because F5

is a member of T K3(4) it follows that the chromatic threshold of T K3(4)-free hypergraphs
is at most (

√
41− 5)/8. The following simple variation on the construction from Section 7.3

provides a lower bound of 18/361 for both TK3(4)-free and T K3(4)-free hypergraphs.

Proposition 32. The chromatic threshold of T K3(4)-free hypergraphs is at least 18
361

.

Proof. The proof is very similar to the proof in Section 7.3, we only sketch it here. Choose
k, n, u, v, w, U, V,W as in the proof of the lower bound of Theorem 7 in Section 7.3; that is
k, n, u, v, w are integers and U, V,W are disjoint sets of vertices of size u, v, w respectively.
Divide U into U1, . . . , Un so that |Ui| = u/n and divide V into V1, . . . , Vn such that |Vi| = v/n.
Let H be the hypergraph formed by taking KN3(n, k) and adding the complete 3-partite
hypergraph on U, V,W and the following edges. For S ∈ V (KN3(n, k)) and x ∈ Ui and
y ∈ Vj, make {S, x, y} an edge if i, j ∈ S. The minimum degree is maximized when a = b

and c = a/9, which gives minimum degree approximately a2N2/9 ≈ 18
361
·
(
19a/9

2

)
N2, where

N = u+ v + w +
(
n
k

)
is the number of vertices in the hypergraphs.

Let F be any hypergraph in T K3(4) and assume that F is a subhypergraph of H in which
c1, c2, c3, c4 are the four core vertices. Because any 3-partite hypergraph is T K3(4)-free, it is
easy to see that some edge of F must lie in KN3(n, k), and so there must be at least two core
vertices in KN3(n, k). If c1, c2 ∈ KN3(n, k) and c3 ∈ U ∪ V then c3 is in either Ui or Vi for
some i. But then i ∈ c1 ∩ c2 (recall that vertices in KN3(n, k) are k-sets) which contradicts
the fact that c1 and c2 are contained together in some edge of KN3(n, k). Thus all four core
vertices must be in KN3(n, k), which is not possible because n < 4k.

This gives lower bounds on the chromatic thresholds of TK3(4)-free and T K3(4)-free
hypergraphs and leads to the following questions.

Question 33. What is the chromatic threshold for TK3(4)-free hypergraphs? It is between
18/361 and 2/9. What is the chromatic threshold for T K3(4)-free hypergraphs? It has the
same lower bound as for TK3(4)-free hypergraphs, and because F5 ∈ T K3(4) the upper bound
is (
√

41− 5)/8.

A similar construction provides a T K3(s)-free hypergraph for any s ≥ 5. We have not
optimized the values.

Lemma 34. When s ≥ 5, the chromatic threshold of T K3(s)-free hypergraphs is at least
(s−2)(s−3)(s−4)2

(s2−13)2
= 1− 13

s
+O( 1

s2
).

Proof. Fix t ≥ 2, k ≥ 2t, and let n = 3k + 2(t − 1). Notice that n < 4k. By Theorem 26,
the chromatic number of KN3(n, k) is therefore at least t. Fix N �

(
n
k

)
.
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Partition N vertices into one part of size u and s − 2 parts of size x, for some u that
is divisible by n. Include as an edge each triple that has at most one vertex in each part.
Further partition the part of size u into n sets, U1, . . . , Un, each of size u/n. From the
remaining s− 2 parts of size x, choose two and designate them W1,W2; label the remaining
s− 4 parts V1, . . . , Vs−4. Let H be the 3-uniform hypergraph formed by taking the disjoint
union of KN3(n, k) and the above complete (s − 1)-partite hypergraph, and adding the
following edges. If S ∈ V (KN3(n, k)), v ∈ Vi, and v′ ∈ Vj for i 6= j, add the edge {S, v, v′}.
If S ∈ V (KN3(n, k)) and u ∈ Ui and v ∈ Vj then add the edge {S, u, v} if and only if i ∈ S.
Notice that H has chromatic number at least t, and that V (H) = N +

(
n
k

)
.

Claim 1: H contains no element of T K3(s) as a subgraph.

Proof. Suppose there is such a subgraph; then at least one core vertex must be contained
in V (KN3(n, k)), because an (s − 1)-partite graph is T Ks(3)-free. In that case, no core
vertex can be in W1 ∪W2 because there is no edge that contains a vertex from W1 ∪W2

as well as a vertex from V (KN3(n, k)). There must therefore be at least 3 core vertices
in V (KN3(n, k)), which means that two of them must appear in an edge contained within
V (KN3(n, k)). Suppose they are S1, S2. If another core vertex is in U , say u ∈ Ui, then there
must be an edge of H containing u and S1, and there must be an edge containing u and S2.
This implies that i ∈ S1 ∩ S2, which contradicts the fact that S1 and S2 appear together in
an edge of KN3(n, k).

All core vertices must therefore be in V (KN3(n, k)) ∪ V , which means that there must
be at least four of them in V (KN3(n, k)). Because each pair of those four core vertices must
appear together in an edge, and that edge must be in KN3(n, k), those four sets must be
pairwise disjoint. This is impossible because n < 4k.

The minimum degree of this graph is approximately

min

{
1

3
(s− 4)ax+

(
s− 4

2

)
x2,

(
s− 2

2

)
x2, (s− 3)ax+

(
s− 3

2

)
x2

}
Notice that a vertex in W1 ∪W2 has degree strictly less than a vertex in KN3(n, k), and so

they do not enter into the above computation. This minimum is largest when u = 3(2s−7)x
s−4

,

which implies that x =
(
s−4
s2−13

)
N . The minimum degree of H is then

(s− 2)(s− 3)

2
· (s− 4)2

(s2 − 13)2
N2 =

(
1− 13

x
+O

(
1

s2

))
N2

2
.

The construction in Lemma 34 has one part of “type” U (which is partitioned into n sets),
s− 4 parts of “type” V (which are not partitioned, and whose vertices appear in edges that
intersect K), and two parts of “type” W (which are not partitioned and have no vertices that
appear in edges intersecting K). Using this strategy, one can generate similar constructions
for TKr(s); the above proof applies whenever there are x parts of type U , s− (r + 1) parts
of type V , and y parts of type W , where x + y = r and s − (r + 1) + x ≥ r − 1. This last
condition is needed for the edges intersecting K.
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Question 35. What is the chromatic threshold for TK3(s)-free hypergraphs for s > 3? It is

between (s−2)(s−3)(s−4)2

(s2−13)2
= 1 − 13

s
+ O

(
1
s2

)
and

(
1− 1

s−1

) (
1− 2

s−1

)
= 1 − 3

s−1
+ 2

(s−1)2
. The

upper bound comes from Tr,s−1(n).

9.2 S(7)-free hypergraphs

Next, consider the Fano plane S(7). de Caen and Füredi [5] showed that ex(n, S(7)) =
(3

4
+ o(1))

(
n
3

)
. The extremal hypergraph for S(7), proven to be extremal by Füredi and

Simonovits [13] and also by Keevash and Sudakov [19], is the hypergraph formed by taking
two almost equal vertex sets U and V and taking all edges which have at least one vertex in
each of U and V . We can modify the hypergraph from Section 7.3 to obtain a lower bound
on the chromatic threshold of S(7)-free hypergraphs.

Proposition 36. The chromatic threshold of S(7)-free hypergraphs is at least 9/17.

Proof. Fix t ≥ 2 and 0 < ε � 1. Then by Lemma 26 there exists k large enough that if
n = (3 + ε)k then KN3(n, k) has chromatic number at least t. Fix some such k, and fix
N �

(
n
k

)
.

Partition N vertices into two sets, U and V , with |U | = 9N/17 and |V | = 8N/17. Further
partition U into n parts, U1, . . . , Un, each of size |U |/n. Include as an edge each triple that
has at least one vertex in each of U , V . Let H be the hypergraph formed by taking the
disjoint union of this hypergraph and KN3(n, k) and adding the following edges. For u ∈ Ui,
u′ ∈ Uj, and X ∈ V (KN3(n, k)) include {X, u, u′} as an edge if i, j ∈ X (recall that vertices
in KN3(n, k) are subsets of [n]). Let K = V (KN3(n, k). Notice that H has chromatic number
at least t, and that V (H) = N +

(
n
k

)
.

Claim 1: H contains no subhypergraph isomorphic to S(7).

Proof. First notice that KN3(n, k) is S(7)-free because every pair of vertices in S(7) are
in an edge, which would require there to be 7 pairwise-disjoint k-subsets of [n]. Because
n = (3 + ε)k, this would be a contradiction. It is easy to see, by considering the partition
U, (K ∪ V ), that if H contains a copy of S(7) then it must involve an edge from H[K]
(otherwise the extremal S(7)-free hypergraph also contains a copy of S(7)). Call this edge
{A,B,C}.

There are four vertices in S(7)\{A,B,C}, and at least one must be outside K. No more
than one can be in V because there is no edge with one vertex in K and two in V . No more
than one can be in U otherwise one of A∩B, A∩C, B ∩C is non-empty, which contradicts
the assumption that {A,B,C} is an edge of H[K]. Therefore, there must be either 5 or 6
vertices of S(7) in K. Suppose v is a vertex of S(7) that is outside of K. Then v appears in
three edges that overlap only at v, say {v, S1, S2}, {v, S3, S4}, and {v, S5, S6}. At least one
of these edges must contain two vertices from K, but there is no such edge in H.

The minimum degree of H is at least

min

{
|U ||V |+

(
|U |/3

2

)
, |U ||V |+

(
|U |
2

)
, |U ||V |+

(
|V |
2

)}
=

9

34
N2 − 3

34
N.
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Question 37. What is the chromatic threshold of S(7)-free hypergraphs? It is at least 9/17
and at most 3/4, where the upper bound is from the extremal hypergraph of S(7).

9.3 T5-free hypergraphs

Recall that the 3-uniform hypergraph T5 has vertices A,B,C,D,E and edges {A,B,C},
{A,D,E}, {B,D,E}, and {C,D,E}.

Let B3(n) be the 3-uniform hypergraph with the most edges among all n-vertex 3-graphs
whose vertex set can be partitioned into X1, X2 such that each edge contains exactly one
vertex from X2. Füredi, Pikhurko, and Simonovits [12] proved that for n sufficiently large
the extremal T5-free hypergraph is B3(n). It follows that the chromatic threshold for the
family of T5-free hypergraphs is at most 4/9.

Proposition 38. The chromatic threshold of T5-free hypergraphs is at least 16/49.

Proof. Fix t ≥ 2 and 0 < ε � 1. Then by Lemma 26 there exists k large enough that if
n = (3/2 + ε)k then KN3

2(n, k) has chromatic number at least t. Fix some such k, and fix
N �

(
n
k

)
.

Partition N vertices into two parts, U and V , with |U | = 4N/7 and |V | = 3N/7. Further
partition U into n parts, U1, . . . , Un, each of size |U |/n. Include as an edge any triple with
two vertices in U and one in V . Let H be the hypergraph formed by taking the disjoint
union of this graph and KN3

2(n, k) and including the following edges. If X ∈ V (KN3
2(n, k))

and u ∈ Ui and v ∈ V then let {u, v,X} be an edge if i ∈ X (recall that vertices of KN3
2(n, k)

are subsets of [n]). Let K = V (KN3
2(n, k)). Notice that H has chromatic number at least t,

and that V (H) = N +
(
n
k

)
.

Claim 1: T5 is not a subhypergraph of H.

Proof. Let H ′ be the hypergraph obtained from H by deleting all edges contained in K, and
let X1 = K∪U and X2 = V . It is now easy to see that H ′ is a subhypergraph of the extremal
T5-free hypergraph; if H contains a copy of T5 it must therefore involve an edge from K. If
that edge is {A,D,E} (see the labelling of T5 above) then because {B,D,E} and {C,D,E}
are edges of T5 it must be the case that both of B,C are in K, but by Lemma 30 K does
not span a copy of T5. Similarly, neither {B,D,E} nor {C,D,E} can be contained in K.

We may therefore assume that {A,B,C} is contained in K. Because {A,D,E} is an
edge, and by Lemma 30, at least one of D,E is in U . Suppose that D ∈ Ui; then because
{A,D,E}, {B,D,E}, and {C,D,E} are all edges of T5 it must be the case that i ∈ A∩B∩C.
This contradicts the assumption that {A,B,C} is an edge.

The minimum degree of H is at least

min

{
2|U ||V |

3
, |U ||V |,

(
|U |
2

)}
=

8

49
N2 − 2

7
N.
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9.4 Co-chromatic thresholds

There is another possibility when generalizing the definition of chromatic threshold from
graphs to hypergraphs: we can use the co-degree instead of the degree. Recall that if H is
an r-uniform hypergraph and {x1, . . . , xr−1} ⊆ V (H), then the co-degree d(x1, . . . , xr−1)
of x1, . . . , xr−1 is |{z : {x1, . . . , xr1 , z} ∈ H}|. Let F be a family of r-uniform hypergraphs.
The co-chromatic threshold of F is the infimum of the values c ≥ 0 such that the sub-
family of F consisting of hypergraphs H with minimum co-degree at least c |V (H)| has
bounded chromatic number. More generally, the k-degree d(x1, . . . , xk) of x1, . . . , xk is
|{{zk+1, . . . , zr} : {x1, . . . , xk, zk+1, . . . , zr} ∈ H}| and we can define the k-chromatic thresh-
old similarly. Given a hypergraph H and subsets U, V,W of V (H), we say that an edge
{u, v, w} is of type UVW if u ∈ U, v ∈ V and w ∈ W .

The co-chromatic thresholds of F5-free hypergraphs and TK3(4)-free hypergraphs are
trivially zero because if the minimum co-degree of H is at least 10 then H contains a copy
of TK3(4) and a copy of F5. For the Fano plane, the last author proved [24] that for every
ε > 0 there exists n0 such that any 3-uniform hypergraph with n > n0 vertices and minimum
co-degree greater than (1/2 + ε)n contains a copy of S(7). In 2009, Keevash [17] improved
this by proving that any 3-uniform hypergraph with minimum co-degree greater than n/2
contains a copy of S(7) for n sufficiently large. Notice that the lower bound construction for
the chromatic threshold described above has non-zero minimum co-degree but the co-degree
depends on the parameter t. We can modify the construction to prove a better lower bound
on the co-chromatic threshold of S(7)-free hypergraphs.

Proposition 39. The co-chromatic threshold of S(7)-free hypergraphs is at least 2/5.

Proof. Fix t ≥ 2 and 0 < ε � 1. Then by Lemma 29 there exists k large enough that if
n = (3/2 + ε)k then KN3

2(n, k) has chromatic number at least t. Fix N �
(
n
k

)
.

Partition N vertices into two parts, U and V , of size 3N
5

and 2N
5

respectively. Include
as an edge any triple with at least one vertex in each part. Further partition U into n sets,
U1, . . . , Un, each of size |U |/n. Let H be the hypergraph formed by taking the disjoint union
of this hypergraph with KN3

2(n, k) and including the following edges. Include any edge of
type KUV , where K = V (KN3

2(n, k)). For any X, Y ∈ K, if |X ∩ Y | < k− 4εk then include
every edge of the form {X, Y, u} where u ∈ Ui for some i ∈ X ∪ Y . If |X ∩ Y | ≥ k − 4εk
then include every edge of the form {X, Y, u} where u ∈ Ui for some i ∈ X ∩ Y . Notice that
H has chromatic number at least t and that V (H) = N +

(
n
k

)
.

Claim 1: The above hypergraph contains no subgraph isomorphic to S(7).

Proof. First notice that the complete bipartite 3-uniform hypergraph contains no copy of
S(7). Therefore, by considering the partition U, V ∪ K, we can see that any copy of S(7)
must contain an edge induced by K. Call this edge {A,B,C}. It also follows from Lemma 31
that there is no copy of S(7) completely contained in K.
Claim 1a: Any copy of S(7) intersects U (or V ) in at most one vertex.

Proof. Notice that for any edge e in S(7), every other edge intersects e in at exactly one
vertex; therefore for any copy of S(7) in H every edge contains one of A,B,C. If there were
two vertices of S(7) in U (or in V ) then the edge of S(7) joining them would be unable to
intersect A,B, or C.
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Claim 1b: Any copy of S(7) contains no vertex from V .

Proof. Suppose for contradiction a copy of S(7) contains some vertex from V ; then by
Claim 1a it intersects V in exactly one vertex. Every vertex of S(7) is contained in three
edges, but because there is at most one vertex from U involved in the copy of S(7) there can
be only one edge that contains the vertex from V .

Any copy of S(7) must therefore have exactly six vertices in K and exactly one vertex in
U . Suppose they are A,B,C,D,E, F ∈ K and G ∈ Ui. Suppose also that the edges of S(7)
induced by K are

{A,B,C}, {A,E, F}, {C,D,E}, {B,D, F}.

Claim 1c: If {S1, S2, S3} is an edge in K then |Si ∩ Sj| ≤ k/2 + εk for all i 6= j.

Proof. This follows from the definition of the hypergraph on K:

k = |S1| ≤ n− |S2 ∩ S3| = (3/2 + ε)k − |S2 ∩ S3|, so |S2 ∩ S3| ≤ k/2 + εk,

and the claim follows through symmetry.

Claim 1d: The following intersections all have size at least 2k− 4εk: A∩D,B ∩E,C ∩ F .

Proof. We will prove that |A ∩D| ≥ 2k − 4εk; the rest follow through symmetry. Because
{B,D, F} is an edge, D ⊆ (B ∩F )∪ (B ∩F )∪ (B ∩F ). Also, because {A,B,C} is an edge,
|A∩B| = |A| − |A∩B| ≤ (k/2 + εk)− (k/2− εk) = 2εk. Similarly, because {A,E, F} is an
edge, |A ∩ F | ≤ 2εk. Therefore,

|D ∩ A| ≤ |A ∩B ∩ F |+ |A ∩B ∩ F |+ |A ∩B ∩ F | ≤ |A ∩B|+ |A ∩ F | ≤ 4εk,

and so |D ∩ A| ≥ |D| − 4εk = k − 4εk.

It follows from Claim 1d that S(7) cannot be a subgraph of H. Otherwise, the edges
{A,D, u}, {B,E, u}, {C,F, u} would all appear, and by the definition of H, because the
intersections mentioned in Claim 1d are large, it follows that i ∈ (A∩D)∩(B∩E)∩(C∩F ).
In that case, however, A ∩B ∩ C is not empty and so {A,B,C} is not an edge.

It remains only to compute the minimum degree of H. Vertices S1, S2 ∈ K have co-degree
at least k−4εk

n
|U | if |S1 ∩ S2| ≥ k − 4εk and at least k+4εk

n
|U | otherwise. Vertices u1, u2 ∈ U

have co-degree at least |V | and vertices v1, v2 ∈ V have co-degree at least |U |. All other
pairs of vertices have co-degree at least |U | or |V |. The minimum co-degree is therefore at
least

min

{
k(1− 4ε)

k(3/2 + ε)
|U |, |U |, |V |

}
=

{
2− 8ε

3 + 2ε
· 3

5
N,

3

5
N,

2

5
N

}
.

For some choice of ε, this is approximately 2
5
|V (H)|.

Question 40. What is the co-chromatic threshold of the Fano-free hypergraphs? It is between
2/5 and 1/2.
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In [1] it was proved that if a family F of graphs has positive chromatic threshold then
the chromatic threshold of F is in fact at least 1/3. We think that a similar statement holds
for hypergraphs. For 3-uniform hypergraphs, we believe that the least positive chromatic
threshold is achieved by the family of TK3(4)-free hypergraphs (see Section 9.1).

Conjecture 41. If a family F of 3-uniform hypergraphs has positive chromatic threshold
then the chromatic threshold of F is at least 18/361.
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to the Erdős-Simonovits problem. to appear in J. Combin. Theory Ser. B.
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