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Abstract

We consider the maximum chromatic number of hypergraphs consisting of cliques

that have pairwise small intersections. Designs of the appropriate parameters produce

optimal constructions, but these are generally known to exist only when the number of

cliques is exponential in the clique size [13, 18, 20]. We construct near designs where

the number of cliques is polynomial in the clique size, and show that they have large

chromatic number.

The case when the cliques have pairwise intersections of size at most one seems

particularly challenging. Here we give lower bounds by analyzing a random greedy

hypergraph process. We also consider the related question of determining the max-

imum number of caps in a finite projective/affine plane and obtain nontrivial upper

and lower bounds.

1 Introduction

For 1 ≤ ℓ < k ≤ q, an ℓ-(q, k)-system is a k-uniform hypergraph (henceforth k-graph)

whose edge set is the union of cliques with q vertices that pairwise share at most ℓ vertices.

Such hypergraphs are ubiquitous in combinatorics. Here are some examples:

� ℓ-(q, k)-systems are extremal examples for many well-studied questions in extremal

set theory, for example, an old open conjecture of Erdős [10] states that the maximum

number of triples in an n-vertex triple system with no two disjoint pairs of edges

with the same union is achieved by 1-(5, 2)-systems.

� Recently, Liu, the first author and Reiher [19] constructed the first family of hyper-

graphs that fail to have the stability property and ℓ-(q, k)-systems were a crucial

ingredient in constructing the extremal examples.

*Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL,

60607 USA. email: mubayi@uic.edu. Research partially supported by NSF awards DMS-1763317, DMS-

1952767, DMS-2153576, a Humboldt Research Award and a Simons Fellowship.
�Department of Mathematics, University of California, San Diego, CA, 92093-0112 USA. email: jver-

straete@ucsd.edu. Research supported by NSF award DMS-1952786.

1



� Classical old open questions in projective geometry ask for the maximum size of

caps in various projective spaces. The triple system of collinear triples in projective

space is a 1-(q, 3)-system by letting the q-sets be lines. Hence results about the

independence number and chromatic number of 1-(q, 3)-systems have connections to

questions about large caps in projective spaces, which is a fundamental problem in

finite geometry.

The chromatic number χ(H) of a hypergraph H is the minimum number of colors required

to color the vertex set of H so that no edge of H is monochromatic. A fundamental

question about hypergraphs, first systematically investigated in the seminal work of Erdős

and Lovász [12], is to determine the maximum chromatic number of a hypergraph with

a specified number of edges. In this paper, we consider this problem for ℓ-(q, k)-systems.

Call a clique with q vertices a q-clique.

Definition 1. Given integers 1 ≤ ℓ < k ≤ q and e ≥ 1, let fℓ(e, q, k) be the maximum

chromatic number of an ℓ-(q, k)-system where the number of q-cliques is e.

Perhaps the most natural and interesting case is ℓ = k − 1 so in this case we use the

simpler terminology (q, k)-system and write f(e, q, k) = fk−1(e, q, k). We are interested in

fℓ(e, q, k) when k is fixed and both q and e are large. Special cases of this function have

been extensively studied in the past. For example, the celebrated Erdős-Faber-Lovász

conjecture [11, 16, 17] for graphs, which states that the maximum chromatic number

of a collection of q almost disjoint q-cliques is q, is the statement f(q, q, 2) = q. Another

example when k > 2 is fixed, is fℓ(e, k, k), the largest possible chromatic number of partial

designs, a classical question first studied by Erdős and Lovász [12], and subsequently by

Ajtai et.al. [1] whose results were sharpened by Rödl and Šiňajová [21] and many others.

It is well-known that for k fixed, every k-graph with m edges has chromatic number

O(m1/k). Indeed, color the vertices randomly and independently with O(m1/k) colors.

The expected number of monochromatic edges is O(m1−(k−1)/k) = O(m1/k). Now assign

new colors one by one to some vertex inside each monochromatic edge to get a proper

coloring. Altogether we used at most O(m1/k) colors and there are no monochromatic

edges.

An (e, q, k)-system is a (q, k)-system where the number of q-cliques is e. An (e, q, k)-system

has exactly e
(
q
k

)
edges, so for fixed k, the argument above yields

f(e, q, k) = O(e1/kq).

If there is an n-vertex q-graph H such that every k-set of vertices lies in exactly one edge,

then the chromatic number of the (q, k)-system comprising the q-cliques of H is exactly

n/(k− 1). The number of q-sets in H is e =
(
n
k

)
/
(
q
k

)
= (n)k/(q)k and hence the chromatic

number of this (q, k)-system is of order e1/kq. This shows that f(e, q, k) = Θ(e1/kq) for

e = (n)k/(q)k. These designs are generally known to exist only when the number of cliques

is exponential in the clique size – see Glock, Kühn, Loh and Osthus [13] and Keevash [18],
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and even near designs are generally known only to exist when the number of cliques is

exponential in the clique size – see Rödl [20]. In this paper, we construct near designs

where the number of cliques is polynomial in the clique size, and show that they have

large chromatic number.

Our first result below is a similar lower bound (construction) for f(e, q, k) when e is

polynomial in q, which we prove in Section 2. The construction combines algebraic and

probabilistic ideas, by taking a random restriction of (q, 2)-systems obtained from an affine

plane – see also [2].

Theorem 2. Fix k ≥ 2. Suppose that q > k is sufficiently large and 2q > e > (50q)k. Then

there exists an (e, q, k)-system with chromatic number at least Ω(e1/kq). Consequently, for

this choice of parameters, f(e, q, k) = Θ(e1/kq).

The case k = 2 deserves further mention. Hindman [14] was the first to observe that

the determination of f(q, q, 2) is equivalent to determining the edge chromatic number of

the dual hypergraph, and using this formulation Chang and Lawler [4] gave the following

nontrivial upper bound:

Proposition 3. ([4]) Suppose that 2 < q < e < q2. Then e/4 < f(e, q, 2) < 3e/2.

The lower bound in the proposition is proved as follows: let p be a prime such that

e1/2/2 < p ≤ e1/2 and let A(2, p) be the affine plane of order p. Form H by enlarging

each line of A(2, p) by adding q − p ≥ q − e1/2 ≥ 0 new vertices such that distinct lines

have disjoint enlargements. The resulting (q, 2)-system H has p2 ≤ e q-cliques, and we

may add disjoint q-sets arbitrarily so that we have exactly e cliques. In a proper coloring,

every two vertices in A(2, p) must receive distinct colors, and hence χ(H) ≥ p2 > e/4.

If we use the prime number theorem, then as q → ∞, this construction yields f(e, q, 2) ≥
(1+ o(1))e. Kahn [16] proved an upper bound for f(e, q, 2) that is asymptotically optimal

in the range e < q2 so as q → ∞,

f(e, q, 2) = (1 + (1))e for q ≤ e ≤ q2.

There is a further improvement f(e, q, 2) ≤ e for e sufficiently large [17].

The next case k = 3 seems wide open in the case that e is small. For e > q3, we have

f(e, q, 3) = Θ(e1/3q) by Theorem 2. For q3/2 < e < q3, we have the lower bound Ω(e2/3)

using circles in an inversive plane – see Dembowski [8] for background on inversive planes.

We take the circles in an inversive plane of order (1+ o(1))e1/3 and adding disjoint sets of

new points to the circles to create q-sets. Any three points in the inversive plane lie in a

circle and hence an edge of our hypergraph, so the independence number is at most two,

and the chromatic number is at least half the number of vertices in the inversive plane

which is Θ(e2/3). Apart from this we have no nontrivial lower or upper bounds in the

range q < e < q3.

Problem 4. Determine the order of magnitude of f(e, q, 3) in the range q < e < q3.
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Another interesting case is f1(e, q, k) when k > 2 (the q-sets form a linear q-graph). Here

we prove the following theorem which gives bounds that get closer as k increases. The lower

bound is obtained via a random greedy algorithm. It is one of the few instances where a

constrained random q-graph process on n vertices is analyzed where q is polynomial in n.

Theorem 5. Let k, e ≥ 3 and q ≥ 1. There exist positive constants c, C such that

c

(
e1/2

log e

) 1
k−1

q1−
2

k−1 < f1(e, q, k) < C

(
e1/2

log e

) 1
k−1

q

where the lower bound holds for e > q2k+3.

We prove the upper bound in Theorem 5 in Section 3 and the lower bound in Section 4.

If q is fixed and e → ∞, then this theorem gives

f1(e, q, k) = Θ

(
e1/2

log e

) 1
k−1

thereby determining the order of magnitude of f1(e, q, k) as e → ∞. We believe that the

upper bound in Theorem 5 is sharp in order of magnitude for q sufficiently large and e at

least a polynomial function of q.

Conjecture 6. Fix k ≥ 3. There exists C = Ck > 0 such that if e > qC , then

f1(e, q, k) = Θ

(( e1/2

log e

) 1
k−1

q

)
(q → ∞).

In a forthcoming paper we will prove the conjecture up to a polylogarithmic factor in e. It

is an interesting wide open problem to study the behavior of f1(e, q, k) for smaller values

of e. The smallest case k = 3 naturally gives rise to a particular class of 1-(e, q, 3) systems,

namely the collection of collinear triples in lines in finite projective or affine planes. In fact,

one possible way to obtain 1-(q, 3) systems is to take projective planes with few caps, and

then take a random restriction of the points. This suggests another fundamental question,

namely to count the number of caps in a finite projective/affine plane.

Define Iq to be the maximum number of caps in any projective plane of order q. In a

Desarguesian plane the normal rational curve yields a cap of size at least q + 1 and since

all subsets of a cap are caps, we have at least 2q+1 caps. However, in general projective

planes, the largest known caps that are guaranteed to exist are of order (q log q)1/2 giving

Iq > 2c (q log q)
1/2

. We give an improvement of this lower bound:

Theorem 7. There is an absolute constant c such that for all sufficiently large q for which

Iq is defined,

Iq > 2c q
1/2(log q)3/2 .

We prove Theorem 7 in Section 5. It is a challenging open problem to construct projective

planes of order q where the largest caps have size substantially less than q + 1 – see
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Hirschfeld and Storme [15] for a survey on the sizes of caps in planes. For the known

projective planes and affine planes there are at least 2q+1 caps, and this is tight up to

a factor 2o(q) due to the results of Bhowmick and Roche-Newton [3] and Liu, Nie and

Zeng [9]. If the bound in Theorem 7 is tight for some projective plane P , then the

hypergraph of collinear triples in such a plane is a 1-(e, q, 3)-system with e = q2 + q + 1

and independence number at most cq1/2(log q)3/2, and therefore chromatic number at

least Ω(e1/4/(log e)3/2 · q), and this would be an explicit construction giving f1(e, q, 3) =

Ω(e1/4/(log e)3/2 ·q). It may be that there is a projective plane of order q whose largest cap

has size of order (q log q)1/2, which would determine the order of magnitude of f1(e, q, 3)

to be e1/4/(log e)1/2 · q.

2 Random restrictions of affine planes

We will use the following version of the Chernoff bounds.

Lemma 8 (Multiplicative Chernoff Bounds). Suppose X1, . . . , Xn are independent random

variables taking values in {0, 1}. Let X denote their sum and let µ = E[X] denote the

expected value of X. Then for any δ > 0,

Pr(X ≤ (1− δ)µ) < exp(−δ2µ/2)

Pr(X ≥ (1 + δ)µ) < exp(−δ2µ/(2 + δ)).

Proof of Theorem 2. By the prime number theorem, there is a prime number Q ≥ q

such that (1/2)e < Qk +Q ≤ e. Let V = FQ × FQ. Given a polynomial p(x) over FQ let

S(p(x)) = {p(x) : x ∈ FQ}. Let HQ be the Q-graph with vertex set V and edge set

{S(p(x)) : deg(p(x)) < k)} ∪ {Cx : x ∈ FQ}

where Cx = {(x, y) : y ∈ FQ} is the column of x. The number of edges inHQ is Qk+Q ≤ e.

Let W be a random subset of V obtained by picking each element of V independently with

probability p = q
10Q . Given an edge f ∈ HQ, the expected size of f ∩W is q/10 and the

multiplicative Chernoff bound with m = q/10 and δ = 9 implies that the probability that

|f ∩W | > q is at most exp(−81q/110). The number of edges f in HQ is Qk +Q ≤ e < 2q,

so the union bound implies that

Pr(∃f : |f ∩W | > q) < 2q exp(−81q/110) < (0.96)q.

For C a sufficiently large constant, the multiplicative Chernoff bound (with m = pQ2 and

δ = 1− 1/C) yields

Pr(|W | < pQ2/C) ≤ exp(−0.49pQ2) = exp(−0.049qQ).

Since e > (50q)k, we have Q > (e/4)1/k ≥ 25q, and exp(−0.049qQ) < exp(−q2). Since

(0.96)q +exp(−q2) < 1, there is a set W such that |f ∩W | ≤ q for all f and |W | = Ω(qQ).

Let H ′ be the k-graph with vertex set W whose edges are the Qk +Q cliques
(
f∩W
k

)
.
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We now prove that α(H ′) ≤ (k − 1)2.

Claim. Given (x1, y1), . . . , (xk, yk) in FQ × FQ with the xis distinct, there is a (unique)

polynomial p(x) of degree less than k with p(xi) = yi for i ∈ [k].

Proof of Claim. Write p(x) =
∑k−1

j=0 ajx
j . Then the conclusion of the Claim is equivalent

to the matrix equation Ba = y, where B is the k by k Vandermonde matrix with param-

eters x1, . . . , xk, a = (a0, . . . , ak−1)
T and y = (y1, . . . , yk)

T . Since the xis are distinct, B

is invertible and hence there is a unique solution a.

Pick a set I ⊂ W of vertices of size at least (k−1)2+1. If I has at least k vertices in some

column Cx, then these k vertices lie in Cx ∩W and hence lie in an edge of H ′. Therefore,

by the pigeonhole principle, I has at least k vertices in distinct columns. By the Claim,

these k vertices lie in a unique S(p(x)) and hence lie in an edge of H ′. This proves that

α(H ′) ≤ (k − 1)2.

We now modify H ′ by adding q − |f ∩ W | new vertices to each set f ∩ W to make a

clique of size exactly q (these new sets of vertices are pairwise disjoint). This produces an

(e, q, k)-system with chromatic number at least |W |/(k − 1)2 = Ω(qQ) = Ω(e1/kq).

3 The upper bound in Theorem 5

Here we prove the upper bound in Theorem 5. We will need the following result.

Theorem 9 ([6]). Fix k ≥ 3. Let H be a k-graph with maximum degree at most d such

that for each s ∈ {2, . . . , k − 1}, the maximum number of edges containing an s-set of

vertices is O(d(k−s)/(k−1)/f). Then the chromatic number of H is O((d/ log f)1/(k−1)).

Note that the number of k-sets in a (q, k)-system where the number of q-cliques is e is

e
(
q
k

)
so the trivial bound is f1(e, q, k) = O(e1/kq).

Theorem 10. Fix k ≥ 3. For e > q, f1(e, q, k) = O(q(e1/2/ log e)1/(k−1)) as q → ∞.

Proof. Let H be a 1-(q, k)-system with e edges. Put d := e1/2qk−1. Let A = {v ∈ V (H) :

d(v) ≤ d} and B = V (H) \ B, and denote by ∆(H) the maximum degree of H. By

definition, ∆(H[A]) ≤ d. For each s-set S in A with 2 ≤ s ≤ k − 1, the number of edges

in H[A] containing S is at most
(
q−s
k−s

)
< qk−s ≤ d(k−s)/(k−1)/eϵ for ϵ = (k − s)/(2k − 2).

Hence Theorem 9 with f = eϵ implies that there is a proper coloring of H[A] with at most

O((d/ log e)1/(k−1)) = O((e1/2/ log e)1/(k−1) · q) colors. Since

ke

(
q

k

)
≥
∑
v∈B

d(v) ≥ |B|d = |B|e1/2qk−1

we obtain |B| = O(e1/2q). Now consider v ∈ B. The edges in H containing v that lie

within B are all in subsets of q-cliques containing v. Let A1, . . . , Ap be the set of q-cliques

containing v that have at least k vertices in B and let ai = |Ai ∩ B|. Then the degree of
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v in H[B] is
∑

i

(
ai−1
k−1

)
. Since Ai ∩ Aj = {v}, we have

∑
(ai − 1) < |B| = O(e1/2q). The

quantity
∑

i

(
ai−1
k−1

)
subject to this constraint is maximized when as many of the ai are as

large as possible and the rest are as small as possible. Since ai ≤ q, we obtain∑
i

(
ai − 1

k − 1

)
≤ |B| − 1

q − 1

(
q − 1

k − 1

)
= O(e1/2qk−1) = O(d).

Hence the maximum degree of H[B] is O(d). As we argued within H[A], for 2 ≤ s ≤ k−1,

each s-set in B lies in at most d(k−s)/(k−1)/eϵ edges of H[B], so we can properly color

H[B] with O((e1/2/ log e)1/(k−1) · q) colors. We always use colors that have not been used

in H[A]. In particular, this implies that if there is a k-set that has vertices in both A and

B, then it will not be monochromatic in our coloring. The resulting coloring is a proper

coloring of H with O((e1/2/ log e)1/(k−1) · q) colors.

4 The lower bound for Theorem 5

In this section we prove the lower bound in Theorem 5 using a randomized greedy algo-

rithm: f(e, q, k) = Ω((e1/2/ log e))1/(k−1) · q1−2/(k−1)) for e > q2k+3.

Fix k ≥ 3. Consider the random greedy (q, k)-process on n = ⌊(q − 1)
√
e⌋ points: We

pick a q-set e1 of [n] at random. Given that we have picked e1, . . . , ei, we pick a q-set

ei+1 randomly (with equal probability) from all other q-sets that do not intersect any of

e1, . . . , ei in more than one point. Eventually we obtain a (random) q-graph Gq with e

edges, and also a random k-graph H = Hk = ∪e
i=1

(
ei
k

)
, which has e

(
q
k

)
edges.

We write f ≫ g to mean that there is a (large) positive constant c = ck such that f ≥ cg.

From now on, we select t such that

n ≫ tq2 and t ≫ 10k

(
nk−2 log n

qk−4

) 1
k−1

.

A short calculation shows this is possible, since e > q2k+3 and n = ⌊(q − 1)
√
e⌋.

Fix a t-set I of [n] and let us calculate the probability that I is an independent set in Hk.

For i ≥ 0, let

Wj =

{
S ∈

(
[n]

q

)
: |S ∩ I| = j

}
and put M = ∪q

j=kWj and m := |M |. Here M stands for missing q-sets since these q-sets

cannot be present in Gq as I is an independent set in Hk. Note that wj := |Wj | ≤
(
t
j

)(
n

q−j

)
.

Say that A ∈ Wj blocks B ∈ M if |A ∩ B| ≥ 2 and let bj be the number of sets in M

blocked by an A ∈ Wj (it is the same for all A).

We then have

b0 < q2tk
(

n

q − k − 2

)
b1 ≤ q

(
t

k − 1

)(
n

q − k − 1

)
+ q2tk

(
n

q − k − 2

)
< qtk−1

(
n

q − k − 1

)
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and for 2 ≤ j ≤ k − 1,

bj ≤
(
j

2

)(
t

k − 2

)(
n

q − k

)
+ jqtk−1

(
n

q − k − 1

)
+ q2tk

(
n

q − k − 2

)
< 2tk−2

(
n

q − k

)
,

where we use n/tq2 → ∞ in the last two displays. Note that m = Θ(tk
(

n
q−k

)
). Let

aj = m/bj so that

a0 = Θ

(
n2

q4

)
a1 = Θ

(
tn

q2

)
aj = Θ(t2) for 2 ≤ j ≤ k − 1.

Claim. If I is an independent set, then at least aj/k edges of Wj must be present in Gq

for some 0 ≤ j ≤ k − 1.

Proof. If not, since no set of M is in Gq, the number of sets in M that are blocked is less

than
∑k−1

j=0 bj(aj/k) ≤ m. This means that some edge of M would be in Gq, contradicting

the fact that I is an independent set.

Let Gi = Gq
i be the (random) q-graph obtained after i edges have been added and let ei

be the q-set added at step i. Define

ℓ := min{i : |Wj ∩Gi| ≥ aj/3k for some j = 0, 1, . . . , k − 1}.

In words, ℓ is the smallest index such that Gi contains at least aj/3k edges from Wj for

some j.

For 0 ≤ j ≤ k − 1, let Aj be the event that I is an independent set and eℓ ∈ Wj . The

Claim, the definition of ℓ, and the union bound imply that

Pr(I is independent) ≤
k−1∑
j=0

Pr(Aj).

Let mi = |M \ Gi| . Since |Wj ∩ Gℓ| ≤ aj/3k for each j ∈ {0, 1, . . . , k − 1}, we have for

i ≤ ℓ,

mi ≥ mℓ ≥ m−
k−1∑
j=0

bj(aj/3k) ≥ m− km/3k > m/2.

For each S ⊂ {1, . . . , e}, define the event

A0(S) := {Gq ∈ A0 : ei ∈ W0 ⇔ i ∈ S}.

These events are disjoint for distinct S and hence

Pr(A0) =
∑
S⊂[e]

Pr(A0(S)).

If Pr(A0(S)) > 0, then since I is an independent set there is a subset S′ ⊂ S with

|S′| ≥ a0/3k and mi ≥ m/2 for all i ∈ S′. Hence we can further write

Pr(A0) =
∑

|S|≥a0/3k

Pr(A0(S)).
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Write wj,i = |Wj \Gi| and ri = w1,i + · · ·+ wk−1,i for j = 0, 1, . . . , k − 1. Then

Pr(A0) ≤
∑

|S|≥a0
3k

∏
i∈S

Pr(ei ∈ W0)
∏
i ̸∈S

Pr(ei ∈ W1 ∪ · · · ∪Wk−1)


=

∑
|S|≥a0

3k

∏
i∈S

(
w0,i

w0,i +mi + ri

)∏
i ̸∈S

(
ri

w0,i +mi + ri

)

=
∑

|S|≥a0
3k

∏
i∈S

(
w0,i

w0,i +mi

)(
w0,i +mi

w0,i +mi + ri

)∏
i ̸∈S

(
ri

w0,i +mi + ri

)

=
∑

|S|≥a0
3k

∏
i∈S

(
1− mi

w0,i +mi

)(
w0,i +mi

w0,i +mi + ri

)∏
i ̸∈S

(
ri

w0,i +mi + ri

)

≤ exp

(
− ma0
6kw0

) ∑
|S|≥a0

3k

∏
i∈S

(
w0,i +mi

w0,i +mi + ri

)∏
i ̸∈S

(
ri

w0,i +mi + ri

)

≤ exp

(
− ma0
6kw0

) ∑
S⊂[e]

∏
i∈S

(
w0,i +mi

w0,i +mi + ri

)∏
i ̸∈S

(
ri

w0,i +mi + ri

)

= exp

(
− ma0
6kw0

) e∏
i=1

(
w0,i +mi

w0,i +mi + ri
+

ri
w0,i +mi + ri

)
= exp

(
− ma0
6kw0

)
.

We observe that
(
n
t

)
Pr(A0) < 1/k since this follows from

ma0
6kw0

=
m2

6kb0w0
>

[
(
t
k

)(
n

q−k

)
]2

6kq2tk
(

n
q−k−2

)(
n
q

) > t log n

which holds due to tk−1 ≫ 10knk−2 log n/qk−4. Similarly,
(
n
t

)
Pr(A1) < 1/k follows from

m2

6kb1w1
>

[
(
t
k

)(
n

q−k

)
]2

6kqtk−1
(

n
q−k−1

)
t
(

n
q−1

) ≫ t log n

using the weaker bound tk−1 ≫ nk−2 log n/qk−3. Finally,
(
n
t

)
Pr(Aj) < 1/j for each

2 ≤ j ≤ k − 1 follows from

m2

6kbjwj
>

[
(
t
k

)(
n

q−k

)
]2

12ktk−2+j
(

n
q−k

)(
n

q−j

) ≫ t log n.

This is equivalent to

t >

(
nk−j log n

qk−j

) 1
k+1−j

.

Using t ≫ 10k(nk−2 log n/qk−4)1/(k−1) this follows from(
nk−2 log n

qk−4

)k+1−j

≫
(
nk−j log n

qk−j

)k−1

which is equivalent to nj−2 ≫ (log n)j−2q3j−2k−4 and this is trivial using n > q and j < k.
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So with positive probability, the independence number of Hk is less than t.

Certainly |E(Gq)| ≤
(
n
2

)
/
(
q
2

)
since Gq is a (q, k)-system. Recalling n = ⌊(q − 1)

√
e⌋, we

have |E(Gq)| ≤ e, and we may assume by adding disjoint edges if needed that |E(Gq)| = e.

The chromatic of Hk is at least

n

t
= Ω

((
nqk−4

log n

) 1
k−1

)
= Ω

(
e1/2

log e

) 1
k−1

· q1−
2

k−1 .

Consequently,

f1(e, q, k) = Ω

(
e1/2

log e

) 1
k−1

· q1−
2

k−1

which completes the proof of Theorem 5.

5 Counting caps in affine/projective spaces

In this section we prove Theorem 7. We require the following lemma from [6]. Recall that

τ(F ) is the minimum size of a vertex subset of F that intersects every edge of F .

Lemma 11. Suppose F is an s-uniform hypergraph, and zi, i ∈ V (F ) are independent

random indicator variables with Pr[zi = 1] = p, for all i ∈ V (F ). Let

F ′ = {A ∈ F : ∀i ∈ A, zi = 1}.

Suppose there exists α > 0 such that |F |ps(1−α) < 1. Then for any c ≥ e2ssα,

Pr[τ(F ′) > s2(c/α)s+1] ≤ s2|V (F )|s−1pc.

The reason we need to use the lemma above is to take care of codegrees that may be

of logarithmic size (the codegree of a pair of vertices is the number of edges containing

them both). We also need the following result from [7]; the result as stated in [7] applies

to linear hypergraphs but standard methods imply the same bound for hypergraphs with

bounded maximum codegree.

Theorem 12 ([7], Theorem 3). Fix s > 0. There exists a constant c = cs > 0 such

that the number of independent sets in every n-vertex 3-graph with average degree d and

maximum codegree s is at least 2c n(log d)
3/2/d1/2.

Proof of Theorem 7. A cherry is the 5 vertex 3-graph comprising three edges, every

two of which share the same two vertices. Let H be a (q, 3)-system with n = q2 vertices,

average degree at most q3, and maximum codegree at most q. Note that the collinear

triples of any affine plane of order q can be viewed as such a (q, 3)-system H.

Our plan is to take a random induced subgraph of H on q3/5−ϵ vertices where there is a

small set of vertices that touches every cherry. To this end we apply Lemma 11 with F

10



being the 5-graph of copies of cherries in H and p = q−7/5−ϵ. Letting α be sufficiently

small in terms of ϵ, we obtain

|F |p(1−α)s < n2q3p(1−α)s < q7q−5(1−α)(7/5+ϵ) = o(1).

Hence for c a large constant, Lemma 11 and standard Chernoff bounds yield that with

probability greater than 0.9 say, a random induced subgraph H ′ of H with p as above

has m = Θ(q3/5−ϵ) vertices, average degree d = O(p2q3) = O(q1/5−2ϵ) and has a set S of

O(1) vertices whose removal makes it F -free. Since H ′−S has no cherry, it has maximum

codegree at most two. Theorem 12 now implies that the number of independent sets in

H ′ − S, and hence also in H, is at least 2c q
1/2(log q)3/2 .
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