CONFLICT-FREE HYPERGRAPH MATCHINGS AND COVERINGS
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ABSTRACT. Recent work showing the existence of conflict-free almost-perfect hypergraph match-
ings has found many applications. We show that, assuming certain simple degree and codegree
conditions on the hypergraph H and the conflicts to be avoided, a conflict-free almost-perfect
matching can be extended to one covering all vertices in a particular subset of V(#), by using
an additional set of edges; in particular, we ensure that our matching avoids all additional
conflicts, which may consist of both old and new edges.

This setup is useful for various applications in design theory and Ramsey theory. For ex-
ample, our main result provides a crucial tool in the recent proof of the high girth existence
conjecture due to Delcourt and Postle. It also provides a black box which encapsulates many
long and tedious calculations, greatly simplifying the proofs of results in generalised Ramsey
theory.

1. INTRODUCTION

Hypergraph matching problems can be used to model various central questions in combin-
atorics, and consequently have been studied for many years. Notably, Frankl and Rdl [11], as
well as Pippenger [16], proved that any k-uniform hypergraph (k fixed) on n vertices, in which
each vertex belongs to roughly d edges and any pair of edges belongs to at most o4(d) edges,
contains a matching covering (1 — o4(1))n vertices. These theorems have undoubtedly had a
vast number of applications.

More recently, Delcourt and Postle [7], as well as Glock, Joos, Kim, Khn, and Lichev [12],
generalised this result by introducing so-called conflict-free matchings. Here a conflict is a set
of disjoint edges which is forbidden to be a subset of the matching. The main contribution
in [7, 12] is as follows: under the same conditions as Frankl, Rdl, and Pippenger, and under
sensible conditions on the set of conflicts, one can find an almost perfect matching that avoids all
conflicts. This can again be applied to a number of problems, such as high girth decompositions,
problems considered by Brown, Erdés and Sés [4] and various questions in generalised Ramsey
theory [1, 3, 13, 14, 15].

The unfortunate drawback of these theorems is that they deal only with almost-perfect match-
ings, whereas in many applications it is desirable to obtain perfect matchings or at least almost
perfect matchings that cover a specified vertex subset entirely. Delcourt and Postle describe a
setup in which this obstacle can be overcome in a particular setting. Specifically, they consider
hypergraphs which are bipartite in the sense that the vertex set can be partitioned into two
parts A and B with each edge containing exactly one vertex from A (and they assume that
the vertex degrees in A are slightly higher than in B), in which case they find a conflict-free
matching covering all vertices of A (the matching is A-perfect). The primary limitation of the
bipartite hypergraphs in [7] is the fact that edges are only allowed to contain exactly one vertex
from A, whereas in several applications this is not the case.

Our main contribution is to obtain a stronger theorem in a more general setup: we work with
a ‘tripartite’ hypergraph for which the vertex set has a partition into three sets P, Q, R, and we
seek a P-perfect matching. The edge set is divided into two parts: edges containing p vertices
from P and q vertices from @), and edges containing one vertex from P and r vertices from R. In
this setup we prove the existence of a P-perfect matching, avoiding conflicts which may consist
of both types of edges (almost all vertices in P are covered by edges of the first type and a few
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FI1GURE 1. Two matchings M1 C H; and My C Hs in the hypergraph H, whose
union forms a P-perfect matching M; here p =2,q =4,r = 2.

vertices in P are covered by edges of the second type). This generalises a ‘two-stage method’
for constructions in generalised Ramsey theory, first introduced by Bennett, Cushman, Dudek,
and Praat [2], and subsequently used to prove various other results in this area; our theorem
simplifies all such proofs significantly so that all technical computations are no longer needed,
and mostly back-of-the-envelope calculations are sufficient.

This framework also turns out to be useful in other settings, including high-girth coverings
and designs; these applications are discussed further in Section 2. We expect that there will be
further applications in future.

1.1. Tripartite Matching Theorem.

1.1.1. Setup. Given two hypergraphs H and C, say that C is a conflict hypergraph for H if
V(C) = E(H), and in this case call the edges of C conflicts. In this section, suppose that we are
given the following setup:

integers ¢ > 2,d > 0 and real € > 0;
disjoint sets P, Q, R with d° < |P| < |[PUQ| < exp(d®");
hypergraph H; whose edges consist of p > 1 vertices from P and ¢ > 0 vertices from Q;
hypergraph Hs whose edges consist of a single vertex from P and r > 1 vertices from R;
conflict hypergraph C for Hy;
conflict hypergraph D for ‘H :— H1 U Hs.

Assume that H satisfies suitable degree conditions, and further that both C and D satisfy
suitable boundedness conditions, all of which are specified in 1.1.3-1.1.5 in terms of d and ¢.

Theorem 1.1. For p+ q =k > 2, there exists g > 0 such that for all € € (0,eq), there exists
do such that given the above setup, the following holds for all d > dy: there exists a P-perfect
matching M C H which contains none of the conflicts from CUD. Furthermore, at most d—" | P|
vertices of P belong to an edge in Ho N M.

The proof of Theorem 1.1, given in Section 4, consists of two stages, as mentioned: we first
apply Theorem 3.2, a variant of the original conflict-free hypergraph matching theorem [12], to
the hypergraph H; in order to obtain a conflict-free matching covering most of the vertices of P
with edges from H;. To extend this to a P-perfect matching, for each vertex x € P which is not
already covered, we randomly choose some edge from Ho to cover x, and use the Lovsz Local
Lemma to show that with non-zero probability the resulting set of edges is indeed a matching,
and the union of our two matchings is conflict-free.

1.1.2. Notation. Write [i,n] = {i,...,n}, so [n] = [1,n]. Unless otherwise stated we identify
hypergraphs with their edge sets, writing e € G to mean e € E(G). Given a set of vertices
U C V(G) in a hypergraph G, write dg(U) for the degree of U in G, that is the number of
edges of G containing U; in the cases U = {u} and U = {u, v}, where U consists of one or two
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vertices, we just write dg(u) and dg(u,v) respectively. We omit the subscript if G is obvious
from context. Write A;(G) for the maximum degree dg(U) among sets U C V(G) of j vertices.
Given a subset of the vertices V' C V(G), write Ay (G) for the maximum degree dg(u) of any
single vertex u € V, and similarly dy(G) for the minimum degree; assume V = V(G) if not
specified. Given j € N, write GU) :— {E € G : |E| = j} for the subhypergraph of G containing
only those edges of size j.
We omit ceiling and floor symbols whenever they do not affect the argument.

1.1.3. Degree conditions on H. We require that the hypergraph H = H; U Hy with Hi, Ho # ()
satisfies the following conditions.

(H1) (1 —=d9)d<dp(H1) < A(H1) <d

( ) AQ Hl) dlfE

(H3) Ag(Ms) < d'0p(Ha);

(H4) d(z,v) < dcdp(Hs) for each zz € P and v € R.

This means that H; is essentially regular for vertices in P and has small codegrees, although
vertices in ) are allowed to have much lower (but not higher) degrees. Meanwhile in Hs, every
vertex in P must have degree at least a d—<' proportion of the maximum degree in R, and few
edges in common with any particular vertex in R. These conditions are used to ensure that
we may choose an edge of Ho containing each z € P such that the set of edges chosen do not
overlap.

1.1.4. Boundedness conditions on C. The conflicts of C consist only of edges from H;, and are
avoided directly by Theorem 3.2, so require the same boundedness conditions as in [12]; the
conditions we present here are not the most general possible, but suffice for most applications.
For any edge e € H1, we write NC(Q)(e) —{feHi:{e f} €C}. Given ¢ > 2 and d,e > 0, say
that C is (d, ¢, e)-bounded if
(C1) 2<\C]<£f0rallC€C
(C2) A ) <=1 for all j € [2,4];
(C3) A ( ) < d/=7'=¢ for all j € [2,4] and j' € [2,7 — 1];
(C4) |{f e N§ >( ) ve fH <d = foralle € E(Hy) and v € V(H1);
(C5) [N(e) N NP (f)] < di=< for all disjoint e, f € E(H,).

Note that, in many applications, all conflicts of C have size at least 3, so conditions (C4) and
(C5) are vacuously true.

1.1.5. Boundedness conditions on D. The conflicts of D may consist only of edges from Ho,
or of two parts from H; and Hs, and so must satisfy a new set of conditions to be avoided.
We extend our previous notation by writing DU172) for the set of conflicts in D consisting of j;
edges from H; and j2 edges from Hs. Similarly, we now write A (D) for the maximum degree
among sets F' = Fy U Fy C H consisting of |Fy| = j1 edges from Hy and |Fy| = j5 edges from Ha.
Given a vertex x € P, write also D, for the set of conflicts in D containing = in their Ho-part,
and likewise D, , for those containing both = and y. Then say that D is (d, ¢, €)-simply-bounded

if the following hold for all z,y € P, and j; € [0,4], j2 € [2,4].
(Dl) 2< |D N 7—[2| < ]D| </ for each conflict D € D;
(D3) (D(Jl’h)) < i _Eép(Hg)jz for each j' € [j1];
(D4) |D o) | < A 26p(Ha) 2.

We actually prove Theorem 1.1 for a slightly more general set of conditions, given in Sec-
tion 3.3, which in particular allow for conflicts with jo = 1; in many applications, however, this
type of conflict does not occur.

2. APPLICATIONS

We briefly discuss here two applications of Theorem 1.1.
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2.1. Conflict-free coverings and large girth designs. For a hypergraph H, we call a set
of edges M C H a covering of H if all vertices belong to some edge in M, and say it is perfect
if each vertex belongs to exactly one edge. In the setting of Frankl, Rdl and Pippenger, the
existence of almost perfect matchings and almost perfect coverings (coverings in which most
vertices belong to exactly one edge) is equivalent and one object can easily be transformed into
the other one. However, it is not obvious that just greedily adding edges to turn an almost
perfect matching into an almost perfect covering can be done without introducing conflicts;
Theorem 2.1, which follows easily from Theorem 1.1, resolves this problem. It represents the
natural analogue of Theorem 3.1, providing a covering in place of a matching. Say that a set
of edges EE C H is C-free if it does not contain any conflict from C.

Theorem 2.1. Fiz {,k > 2. There exists €y such that for all € € (0,e0), there exists dy such
that for all d > dy the following holds. Suppose H is a k-graph on n < exp d=* wvertices. Assume
that (1 —d=°)d < 6(H) < A(H) < d and Ax(H) < d*¢. Let C be a (d, £, )-bounded conflict
hypergraph for H. Then there is a C-free covering M C H such that all but d=="n vertices are
covered exactly once, and no vertex is covered more than twice.

One of the original motivations for studying hypergraph matchings, and in particular conflict-
free matchings, was the problem of finding almost-perfect Steiner systems of large girth. In
general, a partial (m, s,t)-Steiner system is a collection S of subsets of [m], each of size s, such
that every subset of [m] of size t is contained in at most one element of S; it is approzimate if
it has size (1 —0(1))("})/(;). The girth of S is the smallest integer g > 2 such that some set of
(s —t)g + t vertices induces at least g sets in S.

Recently, Delcourt and Postle [8] proved the existence of perfect (m, s, t)-Steiner systems of
large girth, via a new refined absorption method. Their result provides a common generalization
of the existence conjecture for designs originating from the 1800s and Erdds conjecture from
1973 on the existence of high girth Steiner triple systems. Our main result, Theorem 1.1, is a
crucial tool in their proof (Theorem 2.10 in [8]). As noted earlier, our proof method uses the
main result of [12] which employs the random greedy process. On the other hand, Delcourt
and Postle’s proof (to appear in a forthcoming version of [7]) of their Theorem 2.10 from [§]
uses the nibble method. A simpler version of Theorem 1.1, without conflicts, is also used by
Delcourt and Postle [9], as well as by Delcourt, Postle, and Kelly [5, 6] in other applications of
their refined absorption method.

Conflict-free hypergraph matchings can also be used to find approximate systems for a much
more general class of quasirandom hypergraphs, where, for example, we restrict the choice of
elements of S to a randomly chosen subset of ([T]); see Theorem 1.4 of [12]. The following
analogous covering result can be easily deduced from our Theorem 2.1. Given real numbers
a,b,c, we writea=b+tctomeanb—c<a<b+ec

Theorem 2.2. For all cg > 0,f{ > 2 and s > t > 2, there exists eg > 0 such that for all
e € (0,e9), there exists mo such that the following holds for all m > mgy and ¢ > ¢o. Let G be a
t-graph on m vertices and let IC be a collection of sets of size s which induce cliques in G such
that any edge is contained in (1 +m~)em®™t elements of K.

Then, there exists a subset S C K such that every edge of G is contained in at least one
element of S, the proportion of edges of G contained in more than one element of S is op (1),
none are contained in more than two, and any subset of S of size j, where j € [2,(], whose
elements have pairwise intersections of size at most t — 1, spans more than (s —t)j + t points.

2.2. Generalised Ramsey numbers. Given graphs G and H, and g € N, define the general-
ised Ramsey number r(G, H, q) to be the minimum number of colours needed to colour the edges
of G in such a way that every copy of H receives at least ¢ distinct colours. Bennett, Cushman,
Dudek, and Praat [2] showed that r(K,, K4,5) = 5n/6+0(n), answering a question of Erdés and
Gyarfas, by introducing the aforementioned two-stage method in which they first colour most
of the edges of K, using a modified triangle removal process (requiring complicated technical
analysis), and then complete this to a full colouring using the Lovsz Local Lemma. Joos and
Mubayi [14] simplified this method greatly by encoding the first stage as a suitable conflict-free
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hypergraph matching problem and applying the main theorem from [12] as a black box, and
demonstrated its versatility further by showing that r(K,,C4,3) = n/2 + o(n). This approach
has subsequently been used to prove various similar and more general results [1, 3, 13, 14, 15].

Our main theorem (Theorem 1.1) formalises this two-stage method in a single statement,
from which all of these colouring results follow; another main contribution of this paper is
to consolidate all of the calculations required for the second stage, so that applications need
only focus on constructing appropriate hypergraphs and conflicts satisfying our conditions. This
massively simplifies the proofs of all existing results, since it now suffices to only check the orders
of magnitude of the numbers of different types of conflicts. We illustrate this by providing in our
appendix a concise proof of the following result which was stated (without proof) very recently
by Bal, Bennett, Heath, and Zerbib [1]. Given k > 2, write K* for the complete k-graph on n
vertices, and Cé“ for the k-uniform tight cycle of length ¢; that is, edges e1,...,ep on vertices
v1,...,vp such that e; = {v;,...,v;1x—1} (modulo ¢) for each i € [].

Theorem 2.3. For all k > 2 and £ > k + 2, we have r(KF,C¥ k+1) <n/({ — k) + o(n).

We remark that the factor £ — k above is best possible assuming a well-known conjecture
about the Turdn number of tight paths in hypergraphs.

3. PREPARATION FOR THE PROOF

In this section, we begin by deducing our required variant of the conflict-free hypergraph
matchings theorem of [12], as well as giving the more general set of conditions under which we
prove Theorem 1.1. We then proceed with the proof itself in Section 4.

3.1. The Conflict-Free Hypergraph Matchings Theorem. To state the theorem we need,
we must first make a further definition; assume £ is a given integer, as in Section 1.1.1. Given
j € NU{0},! say that w: (7;) — [0, /] is a j-uniform test function for H if w(E) = 0 whenever
E ¢ (7]{) is not a matching. Write w(X) :— >y w(x) for X C (7;), and w(E) :— w((?)) for
general £ C H.

Given a vertex v in a hypergraph H, the link of v in H is the hypergraph H, = {E \ {v} :
E € H,v € E} on vertex set V(H) \ {v}, that is the set of all partial edges which are completed
by v to form an edge of H. If C is a conflict hypergraph for H, then we refer to the edges of
the link hypergraphs C. as semiconflicts which are completed by e (for e € H). Now say that a
pair of edges e, f € H is an (g,C)-conflict-sharing pair (or just e-conflict-sharing pair since C is
usually obvious from context) if [(Ce)U") N (C;)U")| > d/' == for some j' € [¢ — 1]. Then given a
conflict hypergraph C for H and d,e > 0, we say that w is (d, e, C)-trackable if

(W1) w(H) > d/*;

(W2) w({E € (*): ED E'}) <w(H)/d"/ for all j' € [j — 1] and E' € ();
(W3) w({FE € (7]'[) e, f € E}) =0 for any 2e-conflict-sharing pair e, f € H;
(W4) w(E) =0 forall E € (7]'[) which are not C-free.

We may now state the original theorem, a simplified variant of the main result from [12]. Note
that the absence of conflict-sharing pairs in the matching is not given by any of the theorem
statements in the original paper, but follows from the proof, in which such pairs are added as
conflicts of size 2.2

INote that in the original paper j is assumed to be strictly positive, but the conclusion of the theorem still
holds in the trivial case j = 0. This will simplify our notation later.

2See Lemmas 8.5 and 8.6 in [12], which refer to conflict-sharing pairs as bad pairs; note that while the
statements given there only avoid e/4-conflict-sharing pairs, this can easily be improved to €/2 by being more
conservative with ¢, provided that all test functions are zero on sets containing an ¢/2-conflict-sharing pair; this
follows from (W3), noting that our condition (W3) uses 2¢ in place of ¢, unlike in the original paper. Similarly,
taking such extra care allows us to require only that test functions are (d,e/4,C)-trackable, rather than with e
as in the original statement, and to replace € by €/2 in condition (W2).
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Theorem 3.1. For all k.0 > 2, there exists eg > 0 such that for all € € (0,e9), there exists dy
such that the following holds for all d > dy. Suppose H is a k-graph onn < exp(dsg) vertices with
(1—-d#)d < §(H) < A(H) < d and Ay(H) < d—¢ and suppose C is a (d, {, €)-bounded conflict
hypergraph for H. Suppose also that Y is a set of (d,e/4,C)-trackable test functions for H of
uniformity at most ¢ with |Y| < exp(dag). Then, there exists a C-free matching M C H of size
at least (1 — d_Q‘ES)% with w(M) = (1 £d="YdJw(H) for all j-uniform w € Y. Furthermore,
M contains no (¢/2,C)-conflict-sharing pairs.

In order to prove Theorem 1.1, we require a slight extension, for which we make another
definition; we say a test function w is (d,e,C)-almost-trackable if it satisfies the alternative
conditions
(W1*) w(H) < dI+2;

(W2*) w{E e () : EDE'}) <e 'd= for all j € [j — 1] and E' € (%);
as well as (W3) and (W4). Observe also here that, if (W1) holds, then (W2*) implies (W2), so
we will usually just check (W2*) when proving that test functions are trackable.

For such functions, it is not in general possible to guarantee the same estimate for w(M),
because the heuristically expected value is too small and therefore subject to outlying events;
for a simple example, let v € V(H), choose Z to be some set of size d(v)/2 of edges that contain
v, and take w as the indicator function of Z, then the expected value of w(M) is 1/2 but clearly
we cannot guarantee concentration close to 1/2 since w takes values in {0,1}. It is however
obvious in this case that w(M) can be bounded from above, namely by 1. More generally, we
might hope that for almost-trackable test functions, we can make use of the bound on w(#) to
guarantee that at least w(M) is not too large; indeed, this turns out to be possible.

Theorem 3.2. Assume the setup of Theorem 3.1, but allow Y to contain also some (d,e/4,C)-
almost-trackable test functions. Then there exists a C-free matching M C H of size at least
(1- d_ag)%, containing no (£/2,C)-conflict-sharing pairs, with w(M) = (1+d~")d~Jw(#H) for
all j-uniform trackable w € Y and w(M) < d?/3 for all almost-trackable w € Y.

Proof. Our strategy will be to extend H using some new dummy vertices and edges, allowing
us to extend w to a new test function w’ which agrees with w on #, but is also positive on
sufficiently many subsets of the new edges to satisfy (W1). We then obtain the usual estimate
for the value of w'(M), which in particular gives us the required crude upper bound for w(M).

Let S be a set of m new vertices, disjoint from V' (#), with m chosen such that (1 —d™)d <
(7,?:11) < d. Note that m < kd"/* =1 and d° < m < n. Let K be the complete k-graph on
vertex set S, and define H' to be the (disjoint) union of H with ¢ vertex-disjoint copies of K, say
K1,...,K; on vertex sets Sy, ..., Sy, respectively. Then, by definition, H' is essentially regular
as required for Theorem 3.1, and A(K) < mk=2 < gh=2q1-1/(k-1) < d'~¢, as we can choose
g0 < (k—1)71/2.

For each i € [{], choose any subset T; C s; of size t :— 2d°/?, and enumerate its vertices
arbitrarily as v¢,...,v{. For each j € [¢], define

Zi— {{el,...,ej} € C[/) : 3s € [t] such that e; N T; = {v'} Vi € [j]} C C[/)

We claim that the indicator function 1(Z;) is a (d,e/2,C)-trackable test function, for each
j € 4.

Clearly every element of Z; is a matching. For (W1), observe that &/5/2 < |Z;| < 2d775/2
since there are t = 2d°/? possible choices of s, and then at least (1 — d=¢/3)d (and at most
d) choices for each edge e;. Indeed, the number of choices for e; is exactly the number of
edges containing v¢ but no other element of Tj; by the codegree condition, the number of edges
containing v% and any other element u € T} is bounded by 2d5/% . 1= < 2d'~¢/2, so the desired
bound follows.

For (W2*), note that given a set E’ € (7;,/) for some j' € [j — 1], which belongs to some set

E € Z;, the choice of s € [t] is fixed by E’, as are j' of the edges of E. Hence 1(Z;)({E €
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(7;) : E D E'}) <d’~7'. The conditions (W3) and (W4) are trivial since there are no conflicts
containing edges from H' \ H.

Now we may define, for each® j € [¢] and each j-uniform almost-trackable w € ), a new test
function w': (7;) — [0,1] by w'(E) :— w(E) + 1(Z;)(E), and observe that w' is (d,e/4,C)-
trackable. Indeed, w'(H) > |Z| > di*e/? S0 (Wl) is satisfied, and (W2) follows from (W2*)
for w and 1(Z ) using the fact that 20d—7" < d=7'=¢/4w'(#H). The remaining conditions (W3)
and (W4) for v’ follow immediately from the fact that they hold for w and 1(Z;). Since also
w'(H) < 3d7t¢/2, applying Theorem 3.1 to M’ with each w replaced by the corresponding w’
gives us a matching M’ C H/ such that w/(M') = (1 +d~=")d~Iw'(H') < 4d°/2.

Let M :— M'NH. Then w(M) < w'(M’) < d*/3 as required. Clearly M is C-free and
contains no conflict-sharing pairs. Since |V (H')| < (¢4 1)|V(H)], it follows that M covers all
but a d~="-fraction of H. O

3.2. The Lovsz Local Lemma. We now state our other prerequisite, the well-known Lovsz
Local Lemma, a version of which was originally introduced by Erds and Lovsz [10]. The form
we use is an immediate corollary to the general form proved by Spencer [17].

Lemma 3.3. Let A = {A;,..., A,} be a finite set of events in a probability space, and suppose
that, for each z’ € [n], there exists a set B(i) C [n] such that A; is mutually independent
from {A; : j € [n]\ B()}. Suppose also that for each i € [n] we have P[A;] < 1/2 and
> jen (i) P[Aj] <1/4. Then P[AY N .- - N AY] >

3.3. More general conditions. We prove Theorem 1.1 using slightly weaker conditions than
those given in Section 1.1, allowing the case jo = 1, and giving more freedom to high-degree
vertices in P; the intuition behind this is explained at the start of Section 4. Given a set of
edges E C H, write Vp(E) :— {y € P : y € e for some e € E N Ha} for the set of vertices of P
found in edges of Ho in E. Define the unavoidability of E to be

(3.1) - I i

yeEVp(E)

and extend this definition to a conflict hypergraph D by taking the sum over all conflicts, that
is A(D) = > pep A(E). This has a natural interpretation. Suppose we select at each vertex in
P one edge in H; independently and uniformly at random. Then A(D) is the expected number
of conflicts in D of which all edges are selected.

Given j1,j5 € [{] and sets C € (Hil) and D € (HQ), write Digp) ={F € D: CUD C E}.
Then we may define

(3-2) A% 4 (D) = oe IH;EB(G( ) A(Dic,p));

which can be thought of as analogous to the maximum (j],j5)-degree, but with each conflict
weighted by its unavoidability. Say that D is (d, ¢, e, d)-mized-bounded if the following hold for
all z,y € P and j; € [0,4], j2 € [£].
1) [IDNHz| > 1 and |D| € [2,/] for each conflict D € D;

( ]17]2)) < dj1+5;

35

E2)
E3) A’%O( ]1’”)) d=3'=¢ for each j' € [j1];
E4) A (D(]l’jz)) < d'~¢ whenever jp > 2;

E5) A ( DY) < fdir;

E6) Aji1(D Jh”) < d =3¢ for each j' € [j; — 1.

Observe that the conditions (E2), (E3), (E4) are analogous to (D2), (D3), (D4), except
conflicts are now weighted by their unavoidability; in particular, for a conflict E € DU1J2) it is

(E
(
(
(
(
(

3Note that the case 7 =0 is trivial.
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always the case that A(E) < dp(Ha) 72, so (d, £, €)-simply-bounded implies (d, ¢, ¢,*)-mixed-
bounded. For example, (D2) implies (E2) because

A(DUT2)) = Z H d;é (y) < |DYI2)|5p(Ha) 72 < dj1+54’
Eepfjl’jZ) yeVp(E)

where the first inequality follows by the definition of minimum degree and the second is exactly
the condition (D2). Note also that conditions (E5) and (E6) are stronger versions of (E2) and
(E3) in the case that jo = 1, requiring small degrees and codegrees for every individual edge
e € Ho, rather than just for the sum over all such e containing a particular vertex = € P.

In a similar fashion, we may also weaken the degree conditions (H3) and (H4) slightly. Define
analogously the unavoidability of a vertex v € R to be

Alv) — Z M

P d’Hz (x>

Then we may require only that for all z € P and v € R,

(H3") A(v) < a= (and in particular dp(Hz) > 1);

(H4) dyy(z,v) < d™dp, (2).

Note that by definition A(v)dp(H2) < > cpd(x,v) = dp,(v) so (H3) implies (H3'), and clearly
(H4) implies (H4"). Observe furthermore that (H3') and (H4") together imply that dp(Ha) > d°;
indeed, by (H3') we must have dy,(x) > 1, so there is some v € R with dy, (z,v) > 1, and then
by (H4') this means dyy, () > d°.

4. PROOF OF THEOREM 1.1

We assume the setting described in Theorem 1.1 and devote the entirety of this section to
its proof. However, write D’ in place of D, and assume that it is a (d, ¥, ¢, e*)-mixed-bounded
conflict hypergraph.

Recall our two-stage proof method outlined in Section 1.1. We first apply Theorem 3.2 to
H1 to give a conflict-free matching My C H; covering most of the vertices of P. We then
extend this to a covering of P by randomly choosing, for each vertex x € P which is not already
covered by M, some edge from Hso to cover z; call the resulting set of edges My C Ha. Using
the Lovsz Local Lemma, we can show that with non-zero probability M is indeed a matching,
and the full matching M :— M7 U M is conflict-free.

We start in Section 4.1 by adding dummy vertices and edges to increase the vertex degrees
in @ (making H; essentially vertex-regular), so that Theorem 3.2 can be applied. Next, in
Section 4.2, we show that we can force My to be a matching simply by adding non-disjoint
pairs of edges in Hs as additional conflicts of size 2, replacing D’ by a larger conflict hypergraph
D.

To show that Ms can be chosen such that M is conflict-free, we want to bound the number
of potential conflicts C'U D involving a given vertex x € P in some edge of D C Hjy. Note that
if C M then we may ignore this conflict, and likewise if any edge in D contains a vertex of
P which has already been chosen in My, then D is blocked and cannot be chosen in Mas; since
most vertices of P are already covered by My, this significantly reduces the number of conflicts
we need to consider. As such, we aim to bound the number of unblocked potential conflicts
C U D involving x. In Section 4.3, we define test functions to track the number of partial
conflicts appearing in the matching My, as well as the number of those which are blocked; by
taking the difference of these two values we later obtain the desired bound.

The intuition behind unavoidability is that, given some conflict £ € D, if the vertices in
Vp(FE) have high degrees in Hs, then it should be easier to avoid E because we have more
flexibility for the edges of Hy which are used to cover the vertices of Vp(FE) in Msy. As such,
we can afford to have more conflicts involving vertices of P with higher degrees in Hs, so when
bounding the number of these conflicts we weight them accordingly (this motivates the definition
of unavoidability in Section 3.3).
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It should be noted that this approach to blocking conflicts only works when jo > 2, since
otherwise the conflicts contain no other edges of Hs which might be blocked. In the case
j2 = 1, the condition (E5) says that there are at most £d’! conflicts of a given size containing
a given edge e € Ho. Under the assumption that edges in H; appear in the matching M
‘pseudorandomly with probability d~!’ in some suitable sense, this means that the ‘expected
number’ of potential conflicts (of any size) for each e can be up to £?; so choosing e purely at
random will not suffice. However, assuming that the Poisson paradigm applies to our concept
of pseudorandomness, there should be a constant proportion (specifically, at least exp(—¢?)) of
the edges e containing any given vertex x with no potential conflicts arising from M;. Hence
for each vertex x € P we may restrict our random choice of Ms to only these safe edges. We
encode this ‘pseudorandom’ behaviour in a further set of test functions, defined in Section 4.4.

Finally, we apply Theorem 3.2 in Section 4.5 to obtain our matching M, randomly choose
M, and use the previously defined test functions to bound the number of potential conflicts
in each case, so that Mo is conflict-free with non-zero probability.

4.1. Regularising ;. First, in order to apply Theorem 3.2 to the hypergraph H;, we need to
ensure that all vertices in H1 have degree roughly d, rather than just those in P; since we only
require a P-perfect matching, and make no statement about which vertices of ) are covered,
we can achieve this by simply adding dummy edges to boost the degrees of vertices in Q.

Assume that ¢ > 0 (otherwise we may skip this step), and let m :— |@Q|. For each vertex
v e Q,let d :— d—dy,(v) and add d’' new edges, each containing v and a set of k — 1 new
vertices, such that each new vertex is only ever contained in one edge. Refer to the set of new
vertices as Q" and the set of new edges as £g. Add further new vertices until Q' contains |Q|dm
vertices. Next, add a typical binomial random k-graph F with vertex set @' and expected
degree (1 —d~¢/2)d. It is routine to show that (1 —d=°)d < dr(v) < d—1 and dr(u,v) < d'~¢
for all distinct u,v € @’. Note that each v € @’ belongs to at most one edge in £g, so in total
dy(v) < d. Define the hypergraph #H} :— H1 U&g U F, which we will use in place of #; later in
the proof.

4.2. Ensuring a Matching in Hs. Let £ :— {{e,f} C H2 : 0 # en f C R} be the conflict
hypergraph containing as conflicts all pairs of edges in Ho that overlap (only) in R. We show
that € is a (d, ¢, ¢, *)-mixed bounded hypergraph by verifying that it satisfies (E1)-(E6). Note
that in particular this implies that D :— D' U is (d, £, e, 2¢*)-mixed-bounded.

Indeed, the condition (E1) is clear and (E3), (E5), (E6) are trivial. For (E2), note that
(j1,72) = (0,2) and suppose that D = {e, f} is a conflict containing x € P; say = € e,
and let v € enN fN R and y € f N P, noting that x # y. The number of such conflicts
D, given z,v,y, is exactly dy,(x,v)dy,(y,v). Moreover, as [eN P| = |f N P| = 1, we have
A(D) = dy, (z)"Ldy, (y) ™!, so we obtain

dq.[ x,v)dy, (Y, v) dy, (z,v) 4
DEE, veR yeP H(y) L A ()
as required, where we use the fact that A(v) < ac* by (H3'). For (E4), observe that similarly
Z d?—[2 €z, v de(ya H§4/ d- Z d’Hg x, ’U _ d_a,
dHQ ( vER

as required. The rest of the proof will show that all of the conflicts in D can indeed be avoided
when choosing Mo.

vER

4.3. Tracking mixed conflicts: the case jo > 2. In this section, we define a set of test
functions and show that they are either trackable or almost-trackable. These will be useful in
Section 4.5.4 for showing that the expected number of unblocked conflicts can be appropriately
bounded from above such that the Lovsz Local Lemma can be used to avoid them.

For the remainder of this section, we fix j; € [0,¢] and j3 € [2, /], and consider only conflicts
with j; and jo edges from #; and s respectively; for ease of notation, let G = DU72), For
i € [2], we write E;(G) :— {ENH,; : E € G} for the set of H;-parts of conflicts in G.
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4.3.1. Defining test functions. We extend our previous notation by writing Gic; = Giog); Y012 =
(G1c))z and Gy 2.y = (Gic))z,y, for any C C Hy and x,y € P. For the remainder of this section,
fix a vertex z € P. We first define w,: (7]'.[11) — R> by

wy(C) = A(Gjc),2)-

Given a matching M; C H; containing C' (but not covering x), if we choose Mo C Hg randomly,
then the function w,(C') represents the expected number of conflicts from G present in M =
M1 U Ms which have C' as their Hj-part and contain x in their Ho-part. As such, w,(M;j)
represents the expected number of conflicts containing z in their Hs-part for which the H;-part
is chosen in Mj.

Next, in order to ensure that the test functions we define are trackable, we make an in-
termediate definition. Say that a set of edges E C H is testable if it satisfies the following
conditions:

e FNH; is a matching;
e F is C-free;
e E contains no ¢/2-conflict-sharing pairs of edges (as defined in Section 3.1).

Say that E is untestable if it is not testable. We assume without loss of generality that all of
the conflicts in D are testable (since no untestable set can be chosen in the matching obtained
from Theorem 3.2, and clearly removing any untestable conflicts maintains the (d,?,¢,2e*)-
mixed-boundedness of D). Similarly we may assume that w,(C) = 0 for any C' containing
T.

We may now define further w}: ( Y

Jji+1

w;(C’) — ]1(0/ testable) Z Z A(g[cr\{e}]’Ly).
ecC’ ye(enP)\{z}

) = Rx>q by

The function w)(C’) represents the sum, over each possible partition C' = C U {e}, of the
expected number of those conflicts counted by w,(C) whose Ha-part shares some vertex y €
P\ {z} with the edge e € H;. In particular this means w/ (M) represents the expected
number of those conflicts counted by wy;(M;1) whose Ho-part shares some vertex y € P with
some edge e € M. This is significant because such conflicts cannot belong to any matching
containing My, so we may ignore them later. Observe also that both function definitions still
make sense when j; = 0, in which case w, is defined only on the empty set, and w/, is defined
on single edges.

4.3.2. Ignoring untestable sets. The goal of this section is to prove (4.1) below; this is used in
Section 4.3.3 to show that ignoring untestable sets in the definition of w!, does not significantly
affect the value of w),(H1).

For any fixed C € E1(G), and any vertex y € P not contained in an edge of C, we write
bcy — |{e € H1:y € e and C Ue is testable}|, and claim that

(4.1) (1—d=*/?)d < bg, <d.

In other words, restricting to testable sets only removes a negligible proportion of the total
number of edges e containing y for which w/,(C'U{e}) > 0. Indeed, we estimate b¢c, by bounding
above the number of e € ‘H; such that y € e but C'Ue is untestable. Firstly, for an Hi-part C of
size j1, the number of such e for which C'Ue is not a matching is at most k|C|A2(H1) < j1kd ¢
by (H2). Secondly, by (C3), the number of such e for which C' U e contains a conflict from C is
at most

¢
ST ALYy <eivatE

1= re(;9)
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Thirdly, for each edge f € H; and j € [{], let PJZ i— {e € Hi : [(C)W) N (Cp)D| > d7—/?}.
Observe that by definition we may rewrite

Sl nepW= Y D a(Cueecit)< Y [eeHi:C'ueccUtVy

eEPJZ C'e (Cf)(J) eePJZ C’E(Cf)(j)

and applying conditions (C2) and (C3), we obtain that
> HeeHi:C'ueeccU™} < A(CY)A;(CUT) < di e,
Cre(Cy))
Then, by the definition of Pl , we see that

(4.2) [P < d?77 3 |(C)W 0 (Cp)W)| < dl el

J
eEPf

Hence, summing over each f € C' and j € [¢], this means that in total there are at most jrldi—e/?
edges e € H; for which C'U {e} contains a conflict-sharing pair. We finish by subtracting the
three bounds we have obtained from (H1) to see that (4.1) holds.

4.3.3. Estimating values of test functions. Next we evaluate w,(H1) and w,(H1) and show that
wl(H1) = (jo — 1)dw,(H1). Begin by rewriting

Z Z 1(C U e testable) Z A(Gic),2,y)

Ce (7;11) ecH, ye(enP)\{z}
> ) 1(CuUetestable) > Y Ay e Vp(D)A(D)
Ce(”;‘ll) e€Hy yE(eﬂP)\{a}} DEEQ(Q[CL%)
Z Z A(D) Z |{e € H1:y € e and C' U e testable}|
Ce(’fll) DeE2(G(01,0) yeVp(D)\{z}
= > AE) > boy
E€G, yEVR(E)\{z}

Now observe that by definition w;(H1) = A(Gz) = > peg, A(E). Therefore, recalling that
|[Vp(E) \ {z}| = j2 — 1 and applying each of the two bounds in (4.1) to the inner sum above,
we obtain that

(4.3) (1= d =) (j2 — Ddwy(H1) < wj(H1) < (jo — 1)dwg(H1).

We use these estimates in Section 4.5.4 to ensure that the choice of M; leaves very few
unblocked potential conflicts, by showing that (j2—1)w;(Mi) ~ w; (M), so that most potential
conflicts are in fact blocked; this will give an upper bound on the expected number of unblocked
conflicts containing x which are present in Mj.

4.3.4. Checking test function conditions. In order to use Theorem 3.2 to track the values of w,
and w!,, we must first scale them appropriately so that they take values in a constant bounded
interval. In order to do this, define «,, :— max{a/,a//}, where
o, i— max & AL , and a :— d /' max A
Y el 70(0z) max A(Gey),

recalling the definitions in (3.1) and (3.2). Note that a; < d¢ by (E3) and (E4). We show now
that either both of the functions a'w, and o 'w/, are (d,e/4,C)-trackable, or the function
a; tw, is (d,e/4,C)-almost-trackable.

Flrstly, the case j/ = j1 in o/, ensures that o 'w,(C) < 1forall C € ( 1). Also ag'w (C”)

LG+ 1)ij1 0(Gz) < (j1 + 1)p by the definition of o/,. Clearly both o 'w, and aj'w! are

zero on any set of edges which is not a matching, so they are indeed both test functions.

Observe that conditions (W3) and (W4) for a;'w, are immediate from the assumption
that no element of G contains a conflict from C or conflict-sharing pair, and they both hold
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for a, tw! by deﬁnition We prove that both functions satisfy (W2*). Given j' € [0,¢] and
E € ( '), write Z —{Z e (Hl) : Z D E} for each j € [j/,£]. Then for j’ € [j1 — 1], we have

a;lwx(Zgl)) = 1A(Q[E]’$) < d/*~7" by the definition of o/, so (W2*) holds for w,.
For alw!, let 5’ € [j1 + 1 — 1] = [j1], consider a sum over C' = C' U {e} with E C C’, and
split into two cases depending on whether E C C'. Specifically, write

(4.4) w;(Zng)) < Z Z Z A(Gienfedey) < S1+ 52,

Crezl+h) e€C’ ye(enp)\{a}

where

=D > D Al

CEZ(J” e€H1 ye(enP)\{z}

SQ — Z Z Z A(Q[C]%y).

eckE CEZI(EJ\IEE} ye(enP)\{z}

and

Firstly for the case F C (', we may rearrange sums to see that

> XYY 1y eVe(D)yee)AD)

cez(v) e€HryeP\{z} DEE(Glc),)

S A Y duwly.

We can bound this above by

(45)  Si1<(a—1)d »_ S AD) = (o — Dy (29Y) < (jo — Dayd? =9+,
cezd) DeBa(Gcy,)

using the fact that dy, (y) < d and |Vp(D) \ {z}| = j2 — 1, and then the definition of w, and
the condition (W2*) for wy.

For the case that e € E, we in fact split into two subcases. If 5/ > 1, then we can rearrange
and use (W2*) for w, similarly to see that

(4.6) Sy < Z Z PA(Gic),2) prx E\{ } < j'pagydi I
ecE CGZ(E]\l{)e} eck

If however j/ = 1, then E = {e} and we are summing over all possible C' € ( ) which is why
we need the definition of o] to give

(4.7) SQ = Z A(g[,{xyy}}) < paxdjl.
ye(enP)\{z}

Substituting the bounds (4.5), (4.6), and (4.7) back into (4.4) gives oy ‘w) (Zglﬂ)) <
Cg}kdﬁ*l*j/ for some constant Cyj depending only on ¢ and k, as required for (W2*).

Hence if a 'w, (H1) < d+¢/2, then a; 'w, is (d, £/4, C)-almost-trackable. If instead o "w, (H1) >
d71*¢/2 then by the estimate (4.3) we have o 'w/,(#;) > d/*+1%/4 s0 (W1) holds for both func-
tions. In this case, the condition (W2*) implies (W2), so they are both (d,e/4,C)-trackable.

4.4. Tracking mixed conflicts: the case jo = 1. In this section, we suppose jo = 1, noting
that j; > 1 by (E1), and define a further set of test functions; these are used in Section 4.5.2
to show that such conflicts can be avoided. We fix x € P for the remainder of this section, and
for ease of notation we write N, :— {e € Ha : = € e} and dy :— dy, () = |Ng|. Furthermore, in
this section, we define G :— Ujie [Z]D(ﬁ’ ).
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4.4.1. Defining test functions. Fix some constant i* € N depending only on ¢, to be specified
later (in Section 4.5.2). Let b = (b;),c[q be any sequence with b; € N U {0} for each j € [/]
such that [b| := >7.c1b; € [i*]. Given a set E of size sp :— 3~ c(qjbj, let Pp(E) denote the
collection of all (unordered) partitions C' = {C1,...,Cpp} of E into |b| disjoint sets such that
there are b; sets of size j for each j € [¢(]. Write ¢y, :— |Pp(E)| for the number of such partitions,
and note that cp, is a function only of the sequence 4. Define a function w?: (?bl) — R>¢ by

[b|

wWR(E) i— dj* Z ZH]lCtUeEQ

CePy(E) e€Na t=1

Given a matching M; C H; containing E (but not covering x), if we choose e € N, C Hy ran-
domly, then the function wh(E) represents the expected number of partitions {C1,...,Cpp} €
Py (E) for which C; Ue is a conflict from G for every ¢ € [|b|]. As such w2 (M) represents the
expected number of |b|-sets of Hj-parts C1, ... , Cp| present in M; such that b; of the parts
have size j for each j € [¢] and each part individually forms a conflict with the randomly chosen
Ho-edge e € N;. Define further

wP(E) :— 1(E is testable)w? (E).

T

4.4.2. Checking trackability. We again define a normalising constant (5., analogously to ., by
Bz — max{f,, B2}, where

B, :— max max 7' A ll(g(ﬂlv ), and 37 '—d max A, (géjhl))‘
Ji1€ll] ' €ljr1—1] Ji1€ld

Our goal below is to prove that the function 8 'w? is either (d,e/4,C)-trackable or (d,e/4,C)-
almost-trackable. Note again that 8, < d~¢ by (E6) and 7 < d~¢ by the j/ = j; case of (E3).
Furthermore, by the definition of 3./, we have that

@ ) < d_ Z Z (CiUee@) = d;I Z dg<|01|,1)(C1) < dglcbdxﬁg < BuCh,

CePy(E) €N CePy(E)

so we see that 87 'wP < B71WP is a test function, and observe also that it satisfies (W3) and

(W4) by the definition of testability.
We now fix a sequence b and verify that 8 wP satisfies (W2*). To this end, let F' C H; be
an edge set of size j' € [sp — 1]. We proceed to bound

[b|

wh(Zp)= Y wh(E) =4 > Y Y J[iciuecq)

EcZ;P EeZ;P CePy(E) e€Na t=1

from above. Given E € Z;® and C € Py(E), there must exist some partition F = FyU---U Fj,

such that F; C C, for each t € [|b|]. Let PPI(F) be the set of all partitions F of F into |b|
subsets, where we allow empty parts. Let Ay, be the set of all possible sequences of sizes of sets
in a partition C' € Py, (E); that is, all sequences a = (at)se[p|) such that |{t € [|b]] : a; = j}| = b;

for each j € [¢] (note that Zt 1 @+ = sp). Then, using the definition of 3], we have

|b|

wh(zp)<d,' > > S I D ucGuecq)

Feplbl(F) a€Ap eeNy t=1 Ctez‘”
o a1l (@py>1)
=t 30 X Y IGE19u
Feplbl(F)a€Ap eENg
< d PP Apldy Bd - eIl
S vaj/ﬂxdsb*j/
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for some constant Cj, ; depending only on b and j’. Therefore 8, 1wP(Z:?) < g lwk(Z) <
C’bJ/dSb_j/, which implies that 8 'w?P satisfies (W2*).

Note that it is always the case that at least one of (W1) and (W1*) holds, so 8; 'wP is either
(d,e/4,C)-trackable or (d,e/4,C)-almost-trackable.

4.4.3. Ignoring untestable sets. In this subsection, we again fix a sequence b. We claim that
(4.8) if  WP(H1) >d® <, then (1—d HwP(Hy) < wPHy) < TP (H).

Note that in particular, in this case, we have that 5! wx satisfies (W1), so is trackable.

Indeed, the upper bound is trivial, so we proceed to prove the lower bound. Start by writing
w(E) =2 Wy (E) - f(E) — g(E) — h(E) where

f(E) :— 1(E not a matching)w? (E),
g(E) :— 1(E contains a conflict)w? (E),
h(E) :— 1(E contains a conflict-sharing pair)w? (E).

Next we bound f(#;) from above by considering the number of choices of E' = C1U---UC)y,
such that E is not a matching. Note that if C; is not a matching, then 1(C; Ue € G) = 0 for
e € N;. Thus assume that C; is a matching for each ¢t € [|b]], but that there are edges e; € C
and es € (o, say, with some vertex v € e; Neg # ). Fix an edge e € N, and two sizes a1, as € [{]

for which bg,,bq, > 0. Given a set C € (Hl) there are (at most) a; choices for e; € C1, k
choices for v € e;, and d choices for es containing v. Then by (E6) there are at most

(4.9) gz < et

le2.€]

choices for the remaining edges of Cy € (Hl). Hence, summing over the possible values of a;
and ao, we obtain

[b|
Yoty Y XX Y ogm X JIuGueeq)
a1,a2€[() eENy Cle(Hl) e1€Cy vEe1 ea€HiwEe CePy:C1,CoeC t=1
[b’(a2)|
< > dt > awmkd= > ] MCGiueeg)
a1,a26[£ e€EN, Cepb’(az) t=1
< 3 pre
age[f]

where b/(az) = () is a new sequence defined by taking b; = b; for all j # az and by, = bg, — 1.
Now observe that
[b|

(Jﬁl)
410) @) =d;' 3 Y [[MGUecq =dt Y H( W’e])gﬂ'“"dsb’

Cep,, €€Na t=1 e€Ny je/) J
by the condition (E5). Therefore, by the assumption that w2 (H1) > d»<" | we have
FHY) < Y7 Chdeo P lase = 3P pgmme < 3 Rae = wb (Hy) < d7 Pl (Hy).
age[ﬂ

By the very same argument, but replacing (4.9) by the degree conditions on C and the bound
from (4.2) on the number of £/2-conflict-sharing pairs {e, f} given any fixed edge e € H;,
respectively, we obtain that g(H1) < d~*/2wP(H1) and h(H;) < d=5/3wP(H;). Hence the lower
bound in (4.8) follows by subtracting these three bounds.

4.5. Constructing the matching. We are now ready to construct the matching in two stages,
as described previously.
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4.5.1. Obtaining M;. We start by applying Theorem 3.2 to the hypergraph H} defined in
Section 4.1. Since H} may have many more vertices than #;, we need to ensure that not only
are a small proportion of the total vertices left uncovered, but also a small proportion of the
vertices in P. To do this, simply define another 1-uniform test function
wi(e) :— (e € Hq).

For any matching N' C #H/, the value pw;(N) is equal to the number of vertices of P covered
by N. Note that wy is a (d, /4, C)-trackable test function since |P| > d° implies that wy(H1) =
|H1| > |P|d/2p > d"t¢/2. Observe also that for every other test function w that we have defined
previously on subsets of H1, we may extend w to subsets of H) by setting w(E) = 0 for all £
with £ & H,, without affecting whether w is trackable or almost-trackable.

We may therefore apply Theorem 3.2% to the hypergraph H/, the set of all test functions we
have defined, and the conflict hypergraph C, to obtain a matching M} C #H). This induces a
C-free matching M C H; such that, for each of the j-uniform test functions w which we have
defined, we have w(M;) = (1 +d " )dFw(H;) if w is trackable, and w(M;) < d2/3 if w is
almost-trackable. In particular, applied to wy, this means that |MiNH;| > (1—d=<")d~H,| >
(1 —d==")(1 — d=%)|P|/p by the degree condition (H1). Hence at most d—<"/2|P| vertices of P
are left uncovered by M. Write this set as P’ :— {xy,...,zp} for M < d—<°|P|.

4.5.2. Restricting to safe edges. As discussed, in order to avoid conflicts in the case jo = 1, we
restrict to a smaller set of safe edges for each vertex in P’ when choosing My. We show now
that for each x € P’, there exists a subset N2 C N, of safe edges such that if C Ue € D is a
conflict with C' € (/;il) for some j; € [¢] and e € N, then e & N3.

We do this using the test functions w?, defined in Section 4.4, to ensure that M; is sufficiently
pseudorandom in the sense that we can estimate the number of m-sets {C1, ..., Cp,} such that
each Cy C M forms a conflict with the same edge e. This allows us to apply the inclusion-
exclusion principle to ensure that |[N2| > Ady,(x), for some constant A > 0 to be specified, so
that restricting to IV does not significantly limit our choice of edges for M5. For the remainder
of this section, we again write G = Uje[ﬁ] DU for ease of notation. Fix z € P’, and recall that
we fixed a constant integer ¢* in Section 4.4.1.

We seek a lower bound on the number of edges e € N, which do not complete a conflict with
any subset of M;. To do this, for each C' C H;, define Bo :— {e € N, : CUe € G} to be the
set of (bad) edges in Ha containing = which complete a conflict with C, and for each m € [i*],

! B4 (Gg.) 1 2]
. FEy [0,¢] n 271
0 Z( ) )

e€EN,
as the sum over all e € N, of the numbers of m-sets of partial conflicts (of any sizes) in My, all
of which form a conflict with e. Define N§ :— {e € Ny : E1(Gjp o) N 2M1 = 0} to be the set of
safe edges. We may assume that ¢* is chosen to be odd, so by the inclusion-exclusion principle,
we obtain that

(4.11) INJ| =[N\ | Be|>de—a1+az—az+ - —ap.
CCM;y

We now aim to show that this is suitably close to an exponential series, which guarantees that
a constant proportion of the edges of NV, belong to N.

Fix m € [i*] and define I, to be the set of all non-negative integer sequences b = (b;);¢q
such that |b| = m, representing all of the possible combinations of sizes in a set of m partial
conflicts. By the definition of wP, we see that

(4.12) am =do Y wH(M).

(bj)Elm

4Note that the value of ¢ used in Theorem 3.2 may differ from the ¢ given in the statement of Theorem 1.1,
but will still be a constant depending only on ¢ and k.
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In order to approximate this value, for each e € N, and j € [{], define v, ; — d_j|g[(®"61})| </

(by (E5)). Then set e :— Zj crVej < 22, which is roughly the total number of partial conflicts
completed by e, of any size, which we expect to appear in M. Rearranging as in (4.10), we
may write

(4.13) dpd™ P W2 (Hy) = d~°P Z H (]g[ ) Z H 77 ; + d~'2d,,

e€N jel(] eeN, jelf] bi
where the error term is obtained using the fact that (}) = n”*/k! £ f(n) for a polynomial f of
degree at most k — 1, as well as the fact that \g[(é ’i])] < ld.

We now split I,,, into three subsets, to be handled separately: let L(y} ) C I,,, be those sequences
b for which B;'wP is almost-trackable, let 12 be those for which B lwP is trackable but
WP (Hy) < d*~=°, and let 1Y) be those for which B wP is trackable and w2 (H,) > d*»=". For
b e Ir(r}), Theorem 3 2 tells us that wb(Ml) < B d25/3 < d¢/3. Forb e I,(n), we obtain that

wP(My) = (1+d~")d~*pwP (Hy) < 242w (H,) < 2d<". We also have in both of these cases
that d=*pwP(Hy) < d~ ¢* so it is certainly true that w P(My) = d=*wl(Hy) £d ¢ /2,

For b € Ir(n)7 the estimate from Theorem 3.2, combined with (4.8), gives us that wP?(M;) =
(1+£d—="/2)d~*>wP(H;). Hence we have for all b € I,,, that wP (M) = (1£d~="/2)d Sbwb(’;'-h)
d—<"/2. Substituting this into (4.12) and using (4. 13) we see that

(4.14) =3 > H o o £ d =3,

eENy (bj)€lm ]E[Z]

Observe by the multinomial theorem that

o (4.14) simplifies to

3

For z € R, define S(z) =%, _(—2)™/m!. Now substituting this expression for a,, into (4.11)
gives

1 . 3 3
4.15 NI>DY 17 — AT APy > ) S(e) — d A,
(4.15) [N ;V: Ve + ,% R GZN: (7e)
To bound ) .y S(7e) from below, let § :— exp(—£?)/3 > 0, and choose i* sufficiently large in
terms of ¢ such that for every 0 < 2 < £2, we have S(z) = exp(—x) £ 6. The choice of such an
i* is possible by the uniform convergence of the exponential series on the interval [0, £2]. Then,
since 0 < 7, < 22 for every e € N, we obtain

ZS’(%)Z Zexp( ) — d0 > dy exp(— Z%>—d § > dy(exp(—£?) — 9)

eEN, eEN, T e€N,
by convexity of the exponential function and the bound on ~.. Substituting this back into
(4.15), we see that |NZ| > d,(exp(—¢?) — 20) > d, exp(—¢?)/3. Hence we may take A = \p :—
exp(—£2)/3 > 0.
4.5.3. Choosing Mso. We may now proceed to choose the edges of My randomly from the sets
we have defined. Recall that P’ = {x1,..., 2} is the subset of P not yet covered by M, and

define H,, :— Ho[P' U R]. For each i € [M], choose an edge e; uniformly at random from the set
N3, so each possible edge e € N, is taken with probability

(4.16) Ple; = €] < (Ada, (2)) ™!
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Recall also that (H3') and (H4') together imply that dy,(x;) > d°, so [NJ.| > Ad® > 0. Set
My — {e1,...,en} and take M :— M; U My to be the combination of our matching in #;
with these new edges chosen from Ho. We now use Lemma 3.3 to ensure that M is D-free;
recall that by excluding the conflicts added in Section 4.2, this will also ensure that Ms is a
matching.

For each jy € [2,], define bad events Bp :— {D C My} for each D € (7;.22) which could

appear as the Hp-part of a conflict in DU172) for some j; € [0,/], that is D € Eg(D%éﬂ”) for
some C' € (/\ﬁl) Let 2A be the set of all such events, which we aim to avoid. In order to apply
Lemma 3.3, it suffices to show that for each event Bp € 2, we have 3 4.5 py P[A] < 1/4 where
B(D) — {Bp € A: D' € Es(D,) for some = € Vp(D)}; since the event Bp depends only upon
the edge choices for the vertices x € Vp(D), it is mutually independent from the set of all events
Bp: for which VP(D) N VP(D,) = 0.

Now fix some j; € [0,4], j2 € [2,£], and = € P’, and again write G :— DU172) for ease of
notation. Further write GM :— {CUD € G: C C /\/l1 and D C H,}. Because |Vp(D)| = j2 < ¢,
and there are at most ¢ choices for j; and js, it is (more than) sufficient to show that

(4.17) S PDC My <d
DEEQ(Q;\A )

Given C € (7;11), say that an Ha-part D € Ea(Gcy,) is blocked if Vp(D) € P', that is
some vertex y € Vp(D) is already covered by Mj. Note that such conflicts can be ignored as
they will never be present in M, because no edge containing y is chosen in Mo; the remainder
of the proof is therefore concerned with bounding unblocked conflicts. We define B(C,z) :—
{D € Ex(Gic)0) : D is blocked} and U(C,x) :— {D € Fa(Gic)) = D is not blocked}. Then by
definition
(4.18) By = |J u(c, )

Ce(/‘j”ll)
Furthermore, observe that by (4.16), and the independence of edge choices for distinct vertices
of P', we have

(4.19) PDC Mo < [[ OMdy(w) ™ = A 2A(D)

yeVp(D)
for any (unblocked) D € ( 2). Hence to show (4.17), using (4.18) and (4.19), it is enough to
prove that

(4.20) > AU ) <d /3
Ce("j"ll)
We now prove (4.20) using the test functions we have defined, as discussed previously.

4.5.4. Bounding unblocked conflicts. We consider first the case that the function o lw, is

(d, e/4,C)-almost-trackable, so Theorem 3.2 tells us that a;'w, (M) < d*/3. By the defin-
ition of w, and the bound «, < d~¢, this means that
Y AlGi0)e) = wa(M1) < apd®™/? <d™e?,
ce(i)
which in particular is sufficient for (4.20).

Assume instead that both of the functions o 'w, and o 'w/, are (d,c/4,C)-trackable. In
order to obtain (4.20), we rewrite

(4.21) Z AU(C,2)) = Z A(g[C],x)_ Z A(B(C,x)),

ce(h) ce(h) ce(h)

and use w, and w/, to estimate the two sums respectively.
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Firstly, by definition and the conclusion of Theorem 3.2, we have that
(4.22) S7 AGioge) = weM1) = (1 £d=)d 1w, (Hy) < (1+d)d 1 A(Gy).
Ce(“‘j"ll)

To obtain a lower bound for the second term in (4.21), start by observing that, given D €
E»(Gy), we have |Vp(D)\ P'| < (jo — 1)1(Vp(D) \ P’ # 0) = (jo — 1)1(D blocked). Therefore,

> OABC )= ) > A(D)L(D blocked)

Ce(/\;ll) Ce(/‘./‘l) DeE2(G0),2)

- D Y. AD)Ve(D)\ P

‘72 B CG(Ml) DeE2(Gc),2)
jz — Z Z A(D) Z Z (y €e)
CE Ml)DGEz(g[c z) yeVp(D)\{z} eeM1
1
4.22 = ! .
(1.22) M)

To see the penultimate equality, note that y € P\ P’ if and only if there is exactly one edge
e € M containing y. For the final equality, recall the definition of w/, in Section 4.3.1, and
note further that if C Ue C M1, then C' U e cannot contain any conflict-sharing pair or conflict
from C.

Now by Theorem 3.2 and the estimate (4.3), we see that

(423)  wi(My) = (1£d=)d Tl (Hr) > (2 — D)1 — d =/ A)d g (H).
Hence combining (4.22) and (4.23) we obtain the bound
(4.24) ST ABC ) > (1 —d ) d T AG,).
Ce("j"ll)
We finish by substituting (4.24) and (4.22) back into (4.21) to give
ST AU(C,x) <207 PdIA(G,) < dFPP,
Ce(”‘j’;l)

by (E2), as required for (4.20). Note that all of the arguments made here still work for j; = 0,
when w, is defined simply on the empty set.
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APPENDIX A. PROOFS OF APPLICATIONS

In what follows we provide proofs for Theorems 2.3, 2.1, and 2.2, as well as further simplific-
ation for the determination of Erd&s-Gyarfas function.

A.1. Proof of Theorem 2.3. Note that in this subsection, ¢ and k refer to the length and
uniformity, respectively, of the tight cycle Cf; we do not make any further reference to the
parameters in Theorem 1.1 of the same names, assuming throughout that ¢ from the theorem
has been chosen as a sufficiently large constant (depending on the length of the cycle, but
not on n). Let 7; and 75 be disjoint sets of colours of sizes t; = n/({ — k) and to = n'™?
respectively, for 6 > 0 sufficiently small (as specified later). We refer to the vertices and edges
of H as auziliary to distinguish them from the vertices and edges of the underlying K*.

A.1.1. Construction of H1 and Ha. Let (Uy)aeT;uT;, be a set of t1 + to pairwise disjoint copies
of E(KF~1), then set P :— E(KF), Q — Uaer; Uas and R == J,er, Ua. We may define a
hypergraph H; by constructing an auxiliary edge corresponding to each pair (X, «) where X
is a copy of Kéil in K* and o € 7Ty; formally, we take the union of E(X) C P with the copy
of (\2(_)(1)) in Uy, so p = (5;1) and ¢ = (ﬁ:i) Such an auxiliary edge (X, «) corresponds to
a colouring of E(X) by the colour a, so a matching M; C H; yields a well-defined partial
colouring ¢; (that is, a colouring of a subhypergraph) of E(K¥), in which every colour class is a
set of copies of K é‘;l with pairwise intersections of size at most k — 2; in particular, this means
that consecutive edges of a tight cycle cannot belong to distinct blocks within the same colour
class. Similarly construct auxiliary edges of Ha corresponding to each pair (e, «) where e € P
and « € Ty; formally, such an auxiliary edge is represented by the union of {e} with the copy
of (kil) inU,,sor==%k.

To check the degree conditions for H;, fix some auxiliary vertex x € P U () and count the
number of auxiliary edges (X, «) to which it belongs. If x € P is a k-set, then there are (fofk)
possible choices for the remaining vertices of X and t; = n/(¢ — k) choices for the colour a.
If instead = € U, is a (k — 1)-set, then there are ("Zle) possible choices for the remaining
vertices of X, and « is already determined. Hence in each case the condition (H1) is satisfied
with d = % Likewise given two auxiliary vertices z,y € PUQ, they determine at least k+ 1

vertices of X (if both x,y € P) or at least k vertices of X and the colour «, so in each case the
codegree d(z,y) is at most n'~*~1, which is bounded from above by d'~¢ for ¢ sufficiently small
in terms of ¢ and k, and (H2) holds.

Similarly, dg, () = t2 = n'™° for any 2 € P, and dy,(y) = dgk (y) = n—k+ 1 for any
y € R, so (H3) is satisfied provided that n? < d¢"; since d is bounded from below by a constant
power of n, it suffices to choose ¢ sufficiently small in terms of €. Furthermore we always have
d(z,y) < 1 so (H4) also holds, and clearly exp(d’) > |P U Q| for n sufficiently large.
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A matching Ms C H, gives a well-defined partial colouring cs of F(K, fj) with colours from 7s,
such that distinct edges of any given colour have pairwise intersections of size at most k — 2.
If My completes M; to a P-perfect matching M, then the union c¢ of the two colourings gives
a well-defined complete colouring of E(KF).

A.1.2. Conflicts in general. We now use conflict hypergraphs to avoid any copy Z of C’l{“ being
coloured with at most k distinct colours. Given a problematic colouring of some such Z, suppose
that 0 <t < k—1 colours appear on exactly one edge of Z, then we may remove all such edges
to obtain a subgraph Z’ C Z with £ — t edges, which is coloured by some colouring ¢’ using at
most k — ¢ distinct colours. Observe that it suffices to forbid all such subcolourings (Z’, ), and
indeed we must forbid them, since any completion to a colouring of Z would be problematic,
even if every remaining edge received a distinct new colour. Suppose therefore that the £ — ¢
edges in E(Z') C E(Z) receive at most k —t colours in ¢ (and assume now that each such colour
appears on at least two edges of Z’). Recall that ¢ arises from a (P-perfect) matching of H, and
let E be the smallest submatching which gives rise to the colouring ¢ of Z’. Write E = C U D,
where C' and D are sets of j; € [0,¢] and j3 € [0, /] auxiliary edges from #H; and Hz respectively.

Fix some cyclic ordering of the vertices and edges of Z. We may assume further that the edges
of Z' coloured by any given auxiliary edge (X, a) € C are consecutive (in this ordering). Indeed,

suppose that, for some 1 < i1 < iy < i3 < ¢, wehave E(Z) = {€1,..., i1y -y Cinye-ryCigy... €}
(in cyclic order) and (X, «) colours ey, ..., e;, and e;,,...,e; but none of ;11 or €j,41,...,€y
(note that there may or may not be other edges from e;, 1o, ..., ¢e;,—1 coloured by (X, «)). Then

at least one vertex v € ey is not contained in V' (X) so, since X is a clique, none of the k edges
of the cycle Z containing v are coloured by X, which means that in fact ¢ — i3 > k, and in
particular i3 < ¢ — k. Thus we may find a (tight) path ey fa - - fi,—1€is, with i3 edges, contained
entirely in X (and so disjoint from the edges €;5+1,...,€¢) such that e fa--- fi,_1€i, - € is a
copy of Cé“ coloured with at most k distinct colours, with strictly fewer auxiliary edges from
‘H1 colouring non-consecutive edges of the cycle. We see therefore that it suffices to avoid only
submatchings E in which the edges of Z’ coloured by any given auxiliary edge from H; are
consecutive in the cyclic ordering of Z. We will take all possible such FE to be our conflicts.

In order to prove boundedness conditions for the conflict hypergraphs which we will define,
we must bound the total number of such conflicts, given j; and js. To this end, we start by
making some general observations about the number of vertex and colour choices involved in
such conflicts. Write C' = {(X;,«) : ¢ € [j1]}, where the X; are enumerated according to our
cyclic ordering of E(Z) (this is well-defined since each X; colours only consecutive edges of
the cycle). Observe that each auxiliary edge (X;,«) € C colours the edges spanned by a set
V(X;) NV (Z) of at least k vertices on the cycle Z, of which at most the first £ — 1 (in our
cyclic ordering of V(Z)) are also contained in V(X;_1). Letting S; C V(X;) N V(Z) be these
first £ — 1 vertices, this means that the sets V(X;) \ S; are disjoint. Each such V(X;) \ S;
has size ¢ — k, and counts exactly one vertex for each edge on the cycle Z which is coloured
by X;, that is, |(V(X;) \ Si) N V(Z2)| = |E(X;) N E(Z)|. Hence the size of the (disjoint)
union | U;er;,) V(X3) \ Sil = ji(€ — k) is exactly equal to the number of vertices contained in
Uiepy V(X:) \V(Z) plus the number of edges of Z' which are coloured by the Hi-part C', which
is £ —t—j. The number of vertices involved in a conflict is therefore j; (¢ —k) plus the remaining
¢ — (0 —t— j2) = jo +t uncounted vertices in V(Z). We additionally have k — t colours, so in
total we obtain the following.

Observation A.1. Each conflict E consists of j1(¢ — k) + jo + k vertex/colour choices.

Now let j' € [j1], fix a set E' C C of j' auxiliary edges from #;, and suppose that E’ colours
b edges of Z', which cover a vertices of Z, using m distinct colours. Counting in a similar way
to before, we see that E’ fixes j/(¢ — k) + a — b vertices and m colours of the conflict part C.
Hence subtracting this from Observation A.1, the total number of vertex/colour choices for a
conflict E containing E’ is (j1 —j')({ — k) + jo +k —a+b—m. Considering each vertex in cyclic
order, it is not hard to see that the (¢ — a) vertices of Z not covered by E’ belong to at least
k—14 (¢—a) edges of the cycle Z, of which at least k—1+ (¢ —a)—t also belong to Z’. Since the
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number of edges of Z’ not covered by E’ is £ —t — b, this means that k—1+({—a)—t < {—t—b
which is in turn equivalent to k + b — a < 1. Note further that we can have equality only if
all uncovered vertices are consecutive in Z, which means also that the auxiliary edges of E’ are
consecutive, so if 5/ > 2 then they cannot all be of the same colour. Hence j' > 2 implies that
either kK +b—a <0 or m > 2, and we obtain the following.

Observation A.2. The total number of remaining vertez/colour choices for a conflict E con-
taining E' is at most (j1 — 7 ) (¢ — k) + jo — 1(j' > 2).

We now use our observations to check the required conditions for the two types of conflict
hypergraph.

A.1.3. The conflict hypergraph C. We define a conflict hypergraph C for H; by taking all conflicts
E as described above for which js = 0, and check that C is (d, O(1), €)-bounded (for ¢ sufficiently
small); the first condition (C1) is clear since a cycle cannot be completely covered by two
disjoint auxiliary edges. Both (C2) and (C3) follow from the cases j = 1 and j/ > 2 in
Observation A.2 respectively, since the conflict E is determined by these vertex/colour choices
up to O(1) rearrangements, so A (CU)) = O(a1=7'~210"22)) for all j € [j; — 1].

A.1.4. The conflict hypergraph D. We now define a conflict hypergraph D for H by taking all
conflicts E with j, > 0; note that by the definition of Z’, we have js # 1 so (D1) holds. For
(D2), if we fix a single edge of the cycle f € P, then this fixes k vertices so by Observation A.1
we have O(n/! (e_k)ﬂ?) < dj1+€4d%2 choices for E. Fixing a set E’ of j’ additional auxiliary edges
from H; which might be contained in conflicts with f, the condition (D3) follows immediately
from Observation A.2 in the case j/ > 2. If instead j' = 1, note that £’ cannot cover all vertices
of f, so fixing f fixes at least one further vertex, which is sufficient for (D3). Finally for (D4),
observe that fixing a second edge g € P fixes at least one further vertex of the cycle, which
again suffices.

A.1.5. Conclusion. We may now conclude by applying Theorem 1.1 to obtain a P-perfect
matching M C H containing no conflict from any of the conflict hypergraphs we have defined.
As described, this yields a complete colouring ¢ of F(KF) with ¢; + to colours in which every
copy of C’f receives at least k + 1 distinct colours. O

A.2. The Erds-Gyrfs function f(n,4,5). As mentioned in Section 2, the following theorem
was first proved by Bennett, Cushman, Dudek, and Praat [2], and the proof was already sim-
plified massively by Joos and Mubayi [14]. We simplify it even further using Theorem 1.1.

Theorem A.3. (K, K4,5) = 22 + o(n).

Proof Sketch. We prove only the upper bound; see [2] for the lower bound. The proof is similar
to the graph case of Theorem 2.3, but complicated slightly by the use of a random construction
of the hypergraph 7, so we give a sketch of the key differences. Let ty :— n!'=® for § > 0
sufficiently small, p :— n™% and t; :(— (1 + p)%". Let G :— K, and construct the vertex set Q)
randomly as follows. Firstly take ¢; disjoint copies (V2)aer; of V(G), then delete each vertex
independently at random with probability p :— ﬁ to give sets (Va)aeT; of remaining vertices,
and define @ :— J,c7; Va- Given a vertex v € V(G) let v, denote the copy of v in V,,, and
define the hypergraph H; by adding a hyperedge

{uv, vw, wu, Uy, Vo, Wa, v3, wWa}

for each triangle uvw in G and distinct o, B € Ty for which uq, Vo, wa, v, wg € Q and ug € Q.
Choosing such a hyperedge corresponds to colouring the edges uv,uw by colour o and vw
by colour §; when we do not need to specify the arrangement of the colours, we denote the
hyperedge by (K, «, ) for K = uwvw. A matching in H; therefore yields a partial colouring in
which every colour class consists of vertex-disjoint edges and two-edge paths such that, if the
hyperedge above is chosen, then vw is a component in the colour class § and u is an isolated
vertex in this class. By taking expected values and using a suitable concentration inequality
(see [14] for details), it can be shown that H; satisfies the required degree conditions with high
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probability, for some d which is @(n?’_‘;). We assume henceforth that we have fixed a specific
choice of H; which meets these conditions, as well as one further condition mentioned later.

We define R to be a set of ¢y vertex disjoint copies (Ug)ge7; of V(G), and the edges of Ho
to be the set of pairs (uv, 8) € E(G) x Ta, each represented by the union of the edge {uv} C P
with the vertices {ug,vz} C Ug. It can be checked that this also satisfies the required degree
conditions.

Now suppose that Z is a copy of K4 receiving at most four distinct colours in the colouring
resulting from a matching M C H. Note that crucially, by the construction of H; and the fact
that matchings of Hs yield proper colourings, some 4-cycle Z’ C Z must receive exactly two
distinct colours. Furthermore these colours must alternate, so we need consider only three cases
depending on whether the two colours come from 77 or 7s.

Firstly, define a conflict hypergraph C for H; to be the colourings of 4-cycles in G comprising
two monochromatic matchings of size 2; it can be checked that this is (d, O(1),)-bounded [14].
Define also a (d, O(1), ¢)-simply-bounded conflict hypergraph D for Hs, with conflicts of size 4,
to account for both colours coming from 7Ts.

Finally, define a conflict hypergraph £ for H by taking conflicts of the form

{(Kma Oé:m O/q;)a (Ky> O‘y, Oé;), (.ﬁUy, /3)7 (x,ylv /3)}7

where

K, and K, are vertex-disjoint triangles in G
z,2' € K, and y,y' € K, (and are all distinct);
the edges z2’ and yy’ both receive the same colour o € 77;
Qz, Oy, o € Tp and B € T

Observe that this accounts for all of the ways in which the 4-cycle x2'y'y may receive the two
colours o and . It can be checked that &£ is (d, O(1), e)-simply-bounded.

We conclude by applying Theorem 1.1 to obtain a matching containing none of the conflicts
defined above, so in particular yielding a complete colouring of F(K,,) with ¢; + t5 colours in
which every copy of Ky receives at least five distinct colours. O

A.3. Coverings. Here we prove Theorem 2.1 as an application of Theorem 1.1, and then
Theorem 2.2 as a further application of Theorem 2.1; of course Theorem 2.2 could also be
proved directly from Theorem 1.1.

A.3.1. Proof of Theorem 2.1. As for the colouring results above we start by constructing a

suitable hypergraph, then we construct conflict hypergraphs and check the required conditions.
Construction of H; and Hs: Assume that ¢ and ¢’ are sufficiently large and small re-

spectively, in terms of ¢, k,e. Define a new hypergraph H' :(— H; U Ho as follows. We set

P—R:—V(H), Q:—0, E(Hi):— E(H).
Then take
E(Hsg) :— {UUE' ve P E € <k}_gl>,vUE/ IS E(’H)}

to be a duplicate set of edges of H, but now with only a single vertex coming from P and the
rest of the vertices coming from R.

We have p = k,q = 0,7 = k — 1. Conditions (H1) and (H2) follow immediately from the
conditions for H, taking d to be the same. If v € P, then (1 —d¢)d < dy,(v) < d and if v € R,
then dy, (v) < (k — 1)d so (H3) holds with 03, (P) > (1 —d ¢)d. Given x € P and v € R, we
have d(x,v) < d'=¢ by the codegree condition for H, so (H4) is also satisfied, taking ¢’ < /2.

Since we may associate edges in each of H; and Ho with edges of H, a P-perfect matching
M’ C H' as obtained from Theorem 1.1 corresponds to a set of edges M C H such that every
vertex v € V(H) is contained in at least one edge of M. Furthermore, a vertex may only appear
multiple times if it appears once from P and once from R, so at most (k — 1)d‘54n vertices
appear more than once in M, and no vertex appears more than twice.

Conflicts in H;: Take C' :— C, with the corresponding edges in H;. Then this immediately
implies that C’ is (d, ¢, &’)-bounded for any ¢ > ¢ and &’ < e.
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Conflicts in H’: Take D to be the collection of all sets of edges C' C H' such that the
corresponding set of edges C' C H is a conflict in C, and at least one edge of C’ comes from Hs.
Then (E1) is clear from (C1). Given an edge e € Ha, there are at most £d’~! conflicts C € C of
size j containing e (viewed as an edge of H) by (C2), and given C, there are at most (jjjl)ka_l
corresponding C’ € DULI2) for each pair ji, jo with j1 + jo = j. Now given a vertex z € P,
there are at most d such edges e € Hs containing x, so |D§UJ 1 2)] <ldh < dj1+5/4dg2, provided ¢
is chosen to be sufficiently large (noting that it may differ from ¢), so (E2) holds. In the case
that jo = 1, we also obtain dp,.1)(e) < £'d’, as required for (E5).

Similarly, any fixed set of j/ edges in H; are contained in at most d?~7'~¢ conflicts C' € C of
size j by (C3), which gives (E3) for suitable ¢’. The condition (E6) follows similarly by fixing
one further edge in Hs. Finally, if we fix two vertices z,y € P, then there are at most d? edges
e,f € Hy with € e and y € f, and then there are at most d’=2~¢ conflicts C' € C of size
j containing both e and f (again by (C3)), so (E4) follows. Hence D is (d, ', ¢, &'*)-mixed-
bounded.

We finish by applying Theorem 1.1, and it is clear that M’ being C’ U D-free ensures that M
is C-free. O

A.3.2. Proof of Theorem 2.2. Our strategy will be to apply Theorem 2.1 to a suitable hyper-
graph with suitably defined conflicts. As such, let # be the (;)-graph on vertex set V(#) = E(G)
with edges (f ) for each S € K, and regard each such edge as corresponding to the s-set S. By
assumption, H satisfies (H1) with d = (1 +m~%)em®~! and ¢/ < . For (H2), fix two distinct
t-sets 11,1 € ([T]), so |[Th UTs| > t + 1, meaning that the total number of s-sets S € ([TZ})
containing both 77 and 7% is at most (Sf;il) <mstl< d— for ¢ sufficiently small.

Call a collection of j sets S1,...,S; € K, each of size s, a bad j-configuration if it is a matching
in H (that is the intersection S; N Sy of any pair of the sets has size at most ¢t — 1), and

1S U US| < (5 — 1)) +1.

Call such a configuration minimal if it does not contain any bad j’-configuration for 2 < j’ < j.
We may then take C to be the set of all minimal bad j-configurations (contained in K) for
3 < j </, noting that if two s-sets span 2s — t points then they cannot be a matching, so we
need not consider the case j = 2. Now it is clear that a C-free covering of H as in Theorem 2.1
yields the required collection . Hence it suffices to check that C is indeed (d, ¢, &")-bounded
for ¢ and ¢’ sufficiently large and small respectively, in terms of s,t, /4, .

Indeed, (C1) holds for ¢ > ¢. By definition, a conflict C' of size j spans at most (s —t)j + ¢
points of [m], and fixing one s-set S € C fixes s of these. This leaves at most (s — t)(j — 1)
points to choose, so at most O(m~DU=1) < ¢/di=1 choices for the rest of C, for ¢ sufficiently
large in terms of s,t, ¢, which is sufficient for (C2). For (C3), suppose now that we fix j' sets
S1,...,87 € C, for some 2 < j/ < j — 1. Then by minimality of C, we may assume that
|S1U---USy| > (s —t)j/ +t, so there are at most (s —t)(j — j') — 1 points left to choose,
giving at most O(m(sft)(j*jl)*l) < di79'~¢ choices for C, as required. Hence we may apply
Theorem 2.1 to give the desired conclusion. O



