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Abstract Given a disjunctive normal form (DNF) expression ϕ and a set A of vectors satisfying
the expression, called the set of exceptions, we would like to update ϕ to get a new DNF which is
false on A, and otherwise is equivalent to ϕ. Is there an algorithm with running time polynomial
in the number of variables, the size of the original formula and the number of exceptions, which
produces an updated formula of size bounded by a certain type of function of the same parameters?

We give an efficient updating algorithm, which shows that the previously known best upper bound
for the size of the updated expression is not optimal in order of magnitude. We then present a
lower bound for the size of the updated formula in terms of the parameters, which is the first
known lower bound for this problem. We also consider the special case (studied previously in
the complexity theory of disjunctive normal forms) where the initial formula is identically true,
and give efficient updating algorithms, providing new upper bounds for the size of the updated
expression.

1. Introduction

The problem of efficiently updating a rule in order to incorporate negative information comes up
in many applications. Areas dealing with this issue from different angles include machine learning,
computational learning theory, nonmonotonic logic, belief revision, databases, term rewriting and
logic programming. We consider this question in the context of propositional logic, by looking at
the basic case of disjunctive normal forms.

A DNF over the variables x1, . . . , xn is a disjunction of terms, which are conjunctions of literals
(variables or their negations). The set of vectors satisfying a DNF ϕ is denoted by T (ϕ); the size
of ϕ is the number of its terms. The minimal size of any DNF for a Boolean function f is denoted
by Cov(f).

We think of a DNF ϕ as a database, representing, for example, a set of instances for which a
certain property holds. Assume that the database needs to be revised, as there is a set of instances

∗Research supported in part by NSF grant DMS-9970325.
†Also affiliated with RGAI of the Hungarian Academy of Science, Szeged. Partially supported by NSF grant

CCR-0100036.
‡Research supported in part by NSF grant DMS-9983703, a VIGRE Postdoctoral Fellowship at the University

of Illinois at Chicago.

1



A ⊆ T (ϕ), called the set of exceptions to ϕ, which turn out not to have the property represented
by ϕ. The objective, then, is to compute a representation of the modified database. In other
words, we would like to compute a new DNF ψ representing the Boolean function ϕ ∧ ¬χA,
where χA is the characteristic function of A. We refer to this computational problem as the DNF
exception problem. (Note that besides deleting vectors from T (ϕ), one could also consider the case
of adding vectors to T (ϕ). This can be handled in a straightforward manner by adding distinct
terms for each vector, and so it is not discussed any further.)

Finding a shortest representation of ψ is easily seen to include the problem of DNF minimization,
which is known to be hard to solve exactly or approximately [22, 23]. Motivated by the connection
of this problem to computational learning theory (see below in more detail), we are interested
in a different criterion: finding efficient algorithms producing a DNF ψ of size bounded by a
(possibly slowly increasing) function of the number of variables, the size of the original DNF, and
the number of exceptions.

We would like to determine the function

XC(n,m, r) = max{Cov(ϕ ∧ ¬χA)},

where the maximum is taken over all n-variable DNFs ϕ with at most m terms and all A ⊆ T (ϕ)
with |A| ≤ r. In other words, XC(n,m, r) is the maximal number of terms needed in an optimal
DNF for a Boolean function obtained by deleting at most r vectors from an at most m-term DNF
over the variables x1, . . . , xn. We are also interested in finding an efficient updating algorithm
that produces a DNF of size close to this bound.

The DNF exception problem was first studied by Zhuravlev and Kogan [14, 15, 24] in the special
case m = 1, in the context of the complexity theory of disjunctive normal forms. If the initial DNF
consists of a single term then it can be considered to be the whole cube, and thus determining
XC(n, 1, r) is equivalent to determining the maximal DNF complexity of n-variable Boolean
functions with r false points. In [24] it is shown that if r = log n − ω(n), where ω(n) → ∞
arbitrarily slowly, then XC(n, 1, r) = (1 + o(1))n, and it is stated1 that

XC(n, 1, r) ≤ 1
2
n · r. (1)

[14] gives lower bounds for small r, and [15] gives an upper bound of the form O( n·r
log n) for almost

all sets if r is in the range log n < r = o(2n/2). Recently D’yakonov [8, 9, 10] obtained new results
on this problem, with emphasis on getting efficient updating algorithms for small values of r.

The general DNF exception problem was first considered by Board and Pitt [6] in their work on the
relationship between PAC learnability and Occam algorithms. (An Occam algorithm is a learning
algorithm that performs data compression in a certain sense. As we do not use these notions, we
omit the definitions. See [13] for general background in computational learning theory, and Li,
Tromp and Vitányi [18] for more recent work on this relationship). The conjecture, implicit in
[6], is that there is no upper bound for XC(n,m, r) of the form

p(n,m, log r) + q(n, logm, log r) · r, (2)
1We have been informed by a referee that [16] contains a proof of (1) and a result similar to Theorem 5b).
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where p and q are arbitrary polynomials (in their terminology, DNF are not strongly closed under
exception lists). If the conjecture is false, i.e., there is an upper bound of the form (2) for
XC(n,m, r), and there is an efficient (polynomial in n,m and r) algorithm producing an updated
formula of size bounded by (2), then it would follow that the existence of an Occam algorithm for
DNF is necessary for the PAC learnability of DNF. It is known that the existence of an Occam
algorithm is sufficient for PAC learnability in general [5]. We note that the efficient learnability
of DNF, both in the PAC and the equivalence and membership query model [12], is one of the
main open problems in computational learning theory.

The notion of closure under exception lists comes up in computational learning theory in a different
context as well, in the work of Angluin and Kriķis [2, 3] on learning with membership and
equivalence queries which may contain lies. They give the general upper bound

XC(n,m, r) ≤ nmr. (3)

The proof of (3) in [2, 3] gives an efficient algorithm to produce an updated formula of size
bounded by (3). It is implicit in a remark of Angluin and Kriķis that (1) immediately gives an
improvement of (3) by a factor 1

2 , but for their purposes it is sufficient to have (3), which has
a short proof. It may be the case that (3) is ‘almost optimal’. This would imply that, indeed,
DNF are not strongly closed under exception lists. As far as we know, there are no previous lower
bounds for XC(n,m, r).

Now we turn to the description of the results of this paper. All our positive results give upper
bounds for XC(n,m, r) and, at the same time, also provide efficient algorithms to produce an
updated formula of size within the stated bound. In the formulation of these results, and their
proofs, we only mention the upper bounds, as the algorithms themselves are then easily derived.
The negative results give lower bounds for XC(n,m, r).

Our first result shows that the upper bound (3) is not optimal up to a constant factor. The bound
improves over (3) by a factor of the order log n

n when r is exponentially large.

Theorem 1. Suppose that r ≥ n. Then

XC(n,m, r) ≤
⌈

m

blog r/log nc

⌉
r(n+ 1).

Now we turn to lower bound results for XC(n,m, r). First, we observe the following simple linear
lower bounds:

Proposition 2. a) XC(n, 1, 1) ≥ n,

b) XC(n,m, r) ≥ m for r ≤ m ≤ 2n−2,

c) XC(n, 1, r) ≥ r
2 .

We obtain much stronger lower bounds in Theorem 3 and 4 below, where Theorem 3 Part a)
shows that (3) is in fact sharp up to a constant factor in the special case r = 1. We write(

n
≤a

)
=
(
n
0

)
+
(
n
1

)
+ . . .+

(
n
a

)
. In the statements (and proofs) of these theorems, we omit floor and

ceiling symbols.

3



Theorem 3.

a) For every 0 < ε < 1/4 there is an n0 such that for any n ≥ n0 and m ≤ (e
2ε2

27
n)/4,

XC(n,m, 1) ≥
(

1
4
− ε

)
nm.

b) For any 0 < λ < δ < 1 satisfying δ2 + 3λ < δ, there is an n0 such that for any n ≥ n0,

m ≤ (e
λ2

3δ
n)/4 and 0 ≤ α < min{δ2 + 3λ, δ − δ2 − 3λ},

XC

(
n,m,

(
n

≤ αn

))
≥ m

(
δn
αn

)(
δ2n+3λn

αn

) . (4)

After selecting appropriate λ and δ in Theorem 3 Part b), we obtain the following lower bound.

Theorem 4. For any 0 < ε < 1/3, there exist α > 0, and n0 such that

XC (n,m, r) ≥ mr
1
3
−ε

for every n ≥ n0 and m = r =
(

n
≤αn

)
.

We now present improved upper bounds for the special case m = 1 considered in the above
mentioned papers [8, 9, 10, 14, 15, 24]. Theorem 5a) is a slight improvement over (1). This
improvement is of interest as it is sharp for r = n, and thus it gives some evidence for a general
conjecture for the exact value of XC(n, 1, r), when r is a binomial coefficient (see Section 4).
Theorem 5b) improves the upper bound in (1) for large values of r.

Theorem 5. a) For n ≥ 2 and r ≥ 2

XC(n, 1, r) ≤ n− 1
2

r + 1.

b)
XC(n, 1, r) ≤ (n− dlog2 re+ 1) r.

Note that if r < 2(n+3)/2 then Part a) gives a better bound, otherwise Part b) gives a better
bound.

We use the following notations in this paper. We write {0, 1}n for the n-dimensional hypercube.
A subcube (or simply cube) of {0, 1}n is represented by a sequence of length n, consisting of 0’s, 1’s
and *’s. The number of the *’s is called the dimension of the cube. Clearly the vectors satisfying
a conjunction form a subcube, where 0’s (resp. 1’s) correspond to negated (resp. unnegated)
variables, and *’s correspond to variables which do not occur in the conjunction, either negated
or unnegated. Thus, for example, if n = 4, then the conjunction x2 ∧ x̄4 can also be written as
∗1 ∗ 0. We (ab)use the terminology of a DNF for a Boolean function, or a cube cover of a subset
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of {0, 1}n interchangeably, whichever is more convenient. Thus, corresponding to the definition
of Cov(f) in the beginning of the paper, Cov(B) denotes the minimal number of cubes covering
a set B ⊆ {0, 1}n. Note that in a cube cover of ϕ∧¬χA, the cubes are not required to be disjoint,
but they cannot contain any points in A. For a vector x ∈ {0, 1}n, the weight of x is the number
of ones in x. Let W` (resp. W≤`) be the set of vectors of {0, 1}n having weight ` (resp. at most
`). For a set S ∈ [n] = {1, 2, . . . , n}, the characteristic vector xS of S is a vector having 1 at
coordinates i ∈ S and 0 otherwise.

The structure of the rest of the paper is as follows. Section 2 gives the proofs for the general DNF
exception problem and Section 3 gives the proofs for the case m = 1. Section 4 contains some
remarks and open problems.

2. The general DNF exception problem

We prove Theorem 1 in Section 2.1, and the lower bounds, Proposition 2 and Theorems 3, 4,
in Section 2.2. The proof of Theorem 1 is based on partitioning the original set of cubes into
groups, replacing each group with a set of disjoint cubes, and deleting the exceptions in each group
separately. The proof of Theorem 3 uses a construction which associates a Boolean function to
every family of subsets of [n]. It is shown that if the family has a certain combinatorial property
then a lower bound holds for the number of cubes required to cover the set remaining after all
vectors of bounded weight are deleted. A computation providing suitable values for the constants
in Theorem 3 proves Theorem 4.

2.1. Upper bound

There are standard procedures for writing a union of cubes as a disjoint union of cubes (see, e.g.,
[20]). These procedures are polynomial in terms of the combined size of the input and the output.
Lemma 6 recalls a bound provided by these procedures. It is also known that writing a union
of cubes as a disjoint union may require an exponential blowup in the number of cubes [4, 7],
although there is a gap between the known lower and upper bounds. We apply these procedures
to a small number of cubes, so the resulting algorithm remains polynomial in the size of the input.
We use

⊔
to emphasize disjoint unions.

Lemma 6.

a) For any cubes C,C1, . . . , Ct, the difference C \ ∪t
i=1Ci can be written as the disjoint union of

at most nt cubes.

b) For any cubes C1, . . . , Ct, the union C1 ∪ · · · ∪ Ct can be written as the disjoint union of at
most nt cubes.

Proof Part a). By induction on t, the case t = 1 holds since, e.g., {0, 1}m \ x̄1 ∧ . . . ∧ x̄k can be
covered by k disjoint cubes x1

⊔
(x̄1∧x2)

⊔
· · ·
⊔

(x̄1∧ x̄2∧ . . .∧ x̄k−1∧xk). For the induction step
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we have

C \
t⋃

i=1

Ci = (C \ Ct) \
t−1⋃
i=1

Ci =

 m⊔
j=1

Dj

 \
t−1⋃
i=1

Ci =
m⊔

j=1

(
Dj \

t−1⋃
i=1

Ci

)
=

m⊔
j=1

( nj⊔
k=1

Dj,k

)
,

where m ≤ n and nj ≤ nt−1.

Part b) follows from Part a) after writing

t⋃
i=1

Ci =
t⊔

i=1

Ci \
i−1⋃
j=1

Cj

 .

Lemma 7. If C1, . . . , Cs are disjoint cubes and |A| ≤ r, then

Cov ((C1 ∪ · · · ∪ Cs) \A) ≤ s+ r n.

Proof. Let ri = |Ci ∩A|. By (3) with m = 1 (or Theorem 5), we have Cov(Ci \A) ≤ n ri. Hence

Cov
(
(C1

⊔
· · ·
⊔
Cs) \A

)
≤

s∑
i=1

max(1, ri n) ≤
s∑

i=1

(1 + ri n) = s+ r n.

Proof of Theorem 1. Given subcubes C1∪· · ·∪Cm of {0, 1}n, and an exception set A ⊆ {0, 1}n

of size r, we want to show

Cov(C1 ∪ · · · ∪ Cm \A) ≤
⌈

m

blog r/log nc

⌉
r(n+ 1). (5)

We arbitrarily divide the cubes Ci into dm
t e groups of at most t cubes each, where t = blog r/log nc.

We then apply Lemma 6 to obtain a disjoint cube cover (of size at most nt) of the cubes in each
group. Finally when deleting A from each group, we apply Lemma 7 and get a cube cover of size
nt + rn. The sum of the sizes of the cube covers in all the groups is at most dm

t e(n
t + rn). The

bound (5) follows after substituting for t.

2.2. Lower bounds

Proof of Proposition 2.

For Part a), note that if a cube contains both (1, 0, . . . , 0) and (0, 1, 0, . . . , 0), then it must have
∗’s in its first two positions, and ∗’s or 0’s in the other positions. Thus the cube must contain 0,
the all-zero vector as well. Thus Cov({0, 1}n \ 0) ≥ n, as each unit vector must be covered by a
distinct cube. Hence XC(n, 1, 1) ≥ n.
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For Part b), note that the vectors satisfying the (n−1)-variable parity function x1⊕ . . .⊕xn−1 in
{0, 1}n form 2n−2 one-dimensional subcubes of pairwise distance at least 2. We take m of these
subcubes and remove r vectors, each from a different subcube. The remaining set still requires m
cubes to be covered, thus XC(n,m, r) ≥ m.

For Part c), suppose that 2i−1 ≤ r < 2i. We delete all vectors of even weight from a subcube C
of dimension i and r− 2i−1 vectors from {0, 1}n \C. The remaining 2i−1 > r/2 vectors in C have
odd weights, and each of them must be covered by a different cube.

Now we describe the combinatorial construction used in the proof of Theorem 3. For a set
S ⊆ [n], we denote by Cube(S) the cube obtained by changing all 1’s in its characteristic vector
xS to *’s. Recall that the Turán number T (d, u, v) is the minimal size of a family of v-subsets of
[d] such that every u-subset of [d] contains at least one subset from the family, where v ≤ u ≤ d
(see, e.g., [11]). Determining T (d, u, v) is a major open problem in extremal combinatorics, but
we only use the trivial case T (d, u+ 1, 1) = d− u and the simple bound (see, e.g., [11])

T (d, u, v) ≥
(
d
v

)(
u
v

) . (6)

Lemma 8. Given nonnegative integers ` ≤ t < d, let S1, . . . , Sm be subsets of [n] such that
|Si| ≥ d and |Si ∩ Sj | ≤ t for every 1 ≤ i < j ≤ m. Then

Cov

(⋃
i

Cube(Si) \W≤`

)
≥ m T (d, t+ 1, `+ 1).

The following claim is the first step towards the proof of Lemma 8.

Proposition 9. Let S1, . . . , Sm be subsets of [n] such that |Si ∩ Sj | ≤ t whenever i 6= j. If
x ∈ Cube(Si) and y ∈ Cube(Sj) (i 6= j) are two vectors of weight t + 1, then there is no cube
C ⊆

⋃
iCube(Si) containing both x and y.

Proof. Suppose instead, that x, y ∈ C for some cube C ⊆
⋃

iCube(Si). Then, since C is a cube,
the vector x∨ y (the componentwise ∨ of x and y) also belongs to C. As C ⊆

⋃
iCube(Si), there

exists 1 ≤ k ≤ m such that x ∨ y ∈ Cube(Sk). Recall that Cube(E) is a cube having *’s at
coordinates ` ∈ E and 0 otherwise. Hence Cube(Si) has *’s wherever x has a 1, while Cube(Sk)
has *’s wherever x ∨ y has a 1. Therefore Cube(Si) and Cube(Sk) have at least t+ 1 (the weight
of x) common *’s, or |Sk ∩ Si| ≥ t + 1. But clearly k 6= i (because x ∨ y has 1’s outside Si), a
contradiction.

Proof of Lemma 8. From Proposition 9 we know that vectors of weight t + 1 in different sets
Cube(Si) have to be covered by different cubes. Let Bi denote the set of vectors of weight t + 1
in Cube(Si), for 1 ≤ i ≤ m. Lemma 8 follows if we show that covering all the points from Bi by
cubes disjoint from W≤` requires at least T (d, t+ 1, `+ 1) cubes.

In fact, consider a cube C covering some points from Bi, which is disjoint from W≤`. Since
Cube(Si) has 0’s outside Si, we may assume w.l.o.g that C also has 0’s outside Si. Indeed, as C
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contains points from Bi, it cannot have 1’s outside Si; if it has *’s outside Si then these can be
changed to 0’s without losing any points from Bi. Furthermore, C must have at least ` + 1 1’s,
otherwise it contains a vector of weight at most `. After changing some 1’s to *’s if necessary,
we may assume that C has exactly ` + 1 1’s inside Si. Then C contains a vector v ∈ Cube(Si)
of weight t + 1 if and only if the set of coordinates at which C equals 1 is a subset of the set of
coordinates at which v equals 1.

Therefore the sets of size `+1 associated with the cubes covering Bi have the property that every
size t+ 1 subset of Si contains at least one of them. The minimal number of such sets is exactly
the Turán number T (d, t+ 1, `+ 1).

The following proposition follows by simple probabilistic arguments.

Proposition 10. Given 0 < λ < δ < 1, for sufficiently large n, if

m < min{(e
λ2

3δ
n)/4, e

λ2

6δ2
n}

then there exist (δn)-element subsets A1, A2, . . . , Am such that |Ai∩Aj | ≤ (δ2 +3λ)n for all i 6= j.

Proof. Assume that n is sufficiently large. We first obtain random subsets A′
1, . . . , A

′
m of [n] as

follows. For each j ≤ n, we let j be a member of A′
i with probability δ. Thus the expectation

Exp(|A′
i|) = δn for every A′

i and Exp(|A′
i ∩ A′

j |) = δ2n for every pair A′
i 6= A′

j . Let BIN(n, p)
denote the sum of n independent variables, each equal to 1 with probability p and 0 otherwise.
The Chernoff bound (see, e.g., [1] Theorem A.11) gives

Pr(|BIN(n, p)− pn| > t) < 2e−t2/3pn and Pr(BIN(n, p) > pn+ t) < e−t2/3pn.

We therefore have

Pr
(∣∣|A′

i| − δn
∣∣ > λn

)
< 2e−

λ2

3δ
n and Pr

(
|A′

i ∩A′
j | > δ2n+ λn

)
< e−

λ2

3δ2
n.

When m < min{(e
λ2

3δ
n)/4, e

λ2

6δ2
n}, we have

2me−
λ2

3δ
n +

(
m

2

)
e−

λ2

3δ2
n <

1
2

+
1
2

= 1.

Then there are sets A′
1, . . . , A

′
m satisfying ||A′

i| − δn| ≤ λn for all i and |A′
i ∩ A′

j | ≤ (δ2 + λ)n
for all i 6= j. After adding or removing at most λn elements from each A′

i, we obtain new sets
A1, . . . , Am of size exactly δn and for all i 6= j,

|Ai ∩Aj | ≤ (δ2 + λ)n+ λn+ λn = δ2n+ 3λn.

Proof of Theorem 3.

To prove Part a), given 0 < ε < 1/4, we apply Proposition 10 with δ = 1/2 and λ = ε/3.

When m < (e
λ2

3δ
n)/4 = (e

2ε2

27
n)/4, we obtain (n/2)-element sets A1, . . . , Am such that |Ai ∩Aj | ≤
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(1/4 + ε)n for all i 6= j. Next we apply Lemma 8 to A1, . . . , Am where d = n/2, t = (1/4 + ε)n
and ` = 0 (here we need ε < 1/4 to guarantee t < d). It follows directly from the definition that
T (d, t+ 1, 1) = d− t. Thus we conclude that

XC(n,m, 1) ≥ Cov (∪m
i=1Cube(Ai) \ 0) ≥ mT

(n
2
,
n

4
+ εn+ 1, 1

)
=
(

1
4
− ε

)
nm.

To prove Part b), we first apply Proposition 10 and obtain (δn)-element sets A1, . . . , Am such that
|Ai∩Aj | ≤ (δ2 +3λ)n for all i 6= j. Next we apply Lemma 8 to Ai in which d = δn, t = (δ2 +3λ)n
and ` = αn (here we need α ≤ δ2 + 3λ < δ and n large to guarantee that ` ≤ t < d). This gives

XC

(
n,m,

(
n

≤ αn

))
≥ mT (δn, δ2n+ 3λn+ 1, αn+ 1).

The desired lower bound now follows from (6),

XC

(
n,m,

(
n

≤ αn

))
≥ m

(
δn

αn+1

)(
δ2n+3λn+1

αn+1

) = m

(
δn
αn

)(
δ2n+3λn

αn

) δn− αn

δ2n+ 3λn+ 1
> m

(
δn
αn

)(
δ2n+3λn

αn

) ,
where the last inequality uses the assumption that α < δ − δ2 − 3λ and n is large.

Proof of Theorem 4.

Let us first recall the entropy function

h(x) = −x lnx− (1− x) ln(1− x), 0 < x < 1

(for the convenience of later computation, we use ln, instead of log2).

Our proof consists of two steps. In Step 1, we assume that δ, λ, α satisfy the condition of Theorem 3
and in addition, α ≤ min{1/3, (δ2 + 3λ)/2}. The goal of this step is to prove

XC

(
n,m,

(
n

≤ αn

))
> m

(
n

≤ αn

)γ0

, (7)

where

γ0 = γ0(δ, λ, α) =
δh
(

α
δ

)
− (δ2 + 3λ)h

(
α

δ2+3λ

)
h(α)

.

In Step 2 we will specify the values of λ, δ, α which lead to the conclusion of Theorem 4.

Step 1: Using Stirling’s formula, we write(
n

αn

)
=

1 + o(1)√
2πα(1− α)n

enh(α), as n→∞. (8)

Applying (8) twice and using the assumption α ≤ (δ2 + 3λ)/2, we have(
δn
αn

)(
δ2n+3λn

αn

) = (1 + o(1))

√
δ(δ2 + 3λ− α)

(δ − α)(δ2 + 3λ)
eδnh(α

δ
)

e
(δ2+3λ)nh( α

δ2+3λ
)
>

1√
2
· eδnh(α

δ )−(δ2+3λ)nh
(

α
δ2+3λ

)
.
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Applying this to (4) and using the definition of γ0, we have

XC

(
n,m,

(
n

≤ αn

))
> m

1√
2
· e

(
δh(α

δ )−(δ2+3λ)h
(

α
δ2+3λ

))
n =

m√
2

(
enh(α)

)γ0

.

For any 0 < c < 1, we know that xh( c
x) is an increasing function for x > c. Therefore δ2 + 3λ <

δ < 1 implies that 0 < γ0 < 1 and in particular, (πα(1− α)n/2)γ0 > 8 for large n. Applying (8)
again, we finally obtain

XC

(
n,m,

(
n

≤ αn

))
>

m√
2

2
√

2

(
2√

2πα(1− α)n
enh(α)

)γ0

> 2m
(
n

αn

)γ0

> m

(
n

≤ αn

)γ0

,

where the last inequality holds because γ0 < 1 and
(

n
≤αn

)
≤ 2
(

n
αn

)
for α ≤ 1/3.

Step 2: We specify the values of λ, δ, α which lead to the conclusion of Theorem 4. In order to

have
(

n
≤αn

)
= r = m < (e

λ2

3δ
n)/4 for all large n, it suffices to have h(α) ≤ λ2

3δ or λ ≥
√

3δh(α). We
thus let δ = αp, λ =

√
3αph(α) and α > 0 be very small. It is easy to see that all the constraints

in Theorem 3 Part b) and Step 1 hold, i.e., δ2 +3λ < δ and α < min{1/3, (δ2 +3λ)/2, δ−δ2−3λ}.
We claim that it suffices to have

lim
α→0

γ0(αp,
√

3αph(α), α) = p for every p < 1/3. (9)

In fact, assume (9) holds and 0 < ε < 1/3. We let p = 1/3− ε/2 and choose α > 0 small enough
such that γ0(αp,

√
3αph(α), α) ≥ 1/3 − ε and all the constraints hold. The desired bound in

Theorem 4 immediately follows from (7).

To facilitate the proof of (9), we define

γ(δ, α) = γ0(δ,
√

3δh(α), α), γ1(δ, α) = γ0(δ, 0, α),

and prove the following propositions.

Proposition 11. limα→0 γ1(αp, α)− γ(αp, α) = 0 for any p < 1/3.

Proposition 12. limα→0 γ1(αp, α) = p for any p < 1.

Proof of Proposition 11.

Since

γ1(αp, α)− γ(αp, α) =
(α2p + 3

√
3αph(α))h

(
α

α2p+3
√

3αph(α)

)
− α2ph

(
α

α2p

)
h(α)

,

it suffices to show that Γ := (α2p + 3
√

3αph(α)) h
(

α

α2p+3
√

3αph(α)

)
= α2ph(α1−2p) + o(h(α)).

Using the Taylor series, we know that as x→ 0

h(x) = −x lnx+ x+ o(x) = −x lnx(1 + o(1)). (10)
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When p < 1/3 we have h(α) = o(α3p) and 3
√

3αph(α) = o(α2p). Consequently

h

(
α

α2p + 3
√

3αph(α)

)
= h

(
α

α2p + o(α2p)

)
= h

(
α1−2p + o(α1−2p)

)
.

Thus
Γ = α2p(1 + o(1)) · h

(
α1−2p + o(α1−2p)

)
.

Now we need to express h(x+o(x)) in terms of h(x) (as x→ 0). Since lnx is continuous at x = 1,
we have ln(x+ o(x)) = lnx+ o(1). This and (10) imply that

h(x+ o(x)) = −(x+ o(x)) ln(x+ o(x)) + (x+ o(x)) + o(x)
= −(x+ o(x))(lnx+ o(1)) + o(x lnx)
= −x lnx+ o(x lnx)
= h(x) + o(h(x)).

Therefore

Γ = α2p(1 + o(1)) ·
(
h(α1−2p) + o(h(α1−2p))

)
= α2ph(α1−2p) + o(h(α)),

where the last equality holds because o(α2ph(α1−2p)) = o(h(α)).

Proof of Proposition 12.

Using (10), we know that as α→ 0,

αph(α1−p) = αp
(
−α1−p lnα1−p + o(α1−p lnα1−p)

)
= (p− 1)α lnα+ o(α lnα).

Consequently

αph(α1−p)− α2ph(α1−2p) = (p− 1)α lnα+ o(α lnα)− ((2p− 1)α lnα+ o(α lnα))
= −pα lnα+ o(α lnα)

and

γ1(αp, α) =
αph(α1−p)− α2ph(α1−2p)

h(α)
=
−pα lnα+ o(α lnα)

h(α)
→ p as α→ 0.

The proof of Theorem 4 is now completed.

Remark: It seems that 1/3 is actually the maximum of γ0 in our range of the parameters.
Although we do not prove this, we know that this maximum is not near 1 by the following
arguments. First, because xh(c/x) is an increasing function of x and λ ≥

√
3δh(α), we know that

max γ0(δ, λ, α) = max γ(δ, α). Secondly,

max γ(δ, α) ≤ max
α≤δ2

γ1(δ, α) = max
α

γ1(
√
α, α) = max

α

√
αh(

√
α)

h(α)
≤ max

0<x<1

xh(x)
h(x2)

= G,

where G =
√

5−1
2 = 0.618... is the golden ratio.

11



3. The exception problem for a single cube

In this section we consider the special case m = 1 of the exception problem. It may be assumed
w.l.o.g. that the cube is the whole cube {0, 1}n. We write the set A of exception vectors as
{a1, a2, . . . , ar} ⊆ {0, 1}n. We look for a minimal cube cover of {0, 1}n \A.

We will use two particular cubes Ei = xi, and Oi = x̄i ∧ xi+1 for 1 ≤ i ≤ n (with cyclic indexing,
i.e., On = x̄n ∧ x1). If necessary, we may emphasize the dimension n by writing En

i , O
n
i instead

of Ei, Oi.

Let M denote the r × n matrix whose ith row is ai. First, let us make two simple observations.

Observation 1. Switching 0’s and 1’s within a column, or switching two columns of M does not
change the covering number.

Observation 2. If there is a column which is identically 0 or 1, meaning that A is contained in
a half-cube, then a covering may be obtained by taking a minimal covering in the corresponding
half-cube and adding the other half-cube. For example, suppose that the nth column of M is 0
and let a′i be the restriction of ai on the first n− 1 coordinates. If {0, 1}n−1 \ {a′1, . . . , a′r} has a
cover C ′

1 ∪ . . . ∪ C ′
t, then {0, 1}n \A can be covered by C1 ∪ . . . ∪ Ct ∪ En, where Ci = C ′

i ∧ x̄n.

Proof of Theorem 5, Part a). To prove XC(n, 1, r) ≤ n−1
2 r + 1 for r ≥ 2, we do induction

on r and n.

The assertion trivially holds when n = 1. When r = 2, using Observation 1, we may assume that
a1 = 0 and a2 = 1 . . . 10 . . . 0 (the first d coordinates are 1’s). When d = 1, E2 ∪ . . . ∪ En is a
cover of size n − 1. When d > 1, we first observe that Od

1 , . . . , O
d
d is a cover for {0, 1}d \ {0,1}.

Next, we apply Observation 2 repeatedly extending this to a cover for {0, 1}n \{a1, a2} by adding
n− d additional cubes. Thus XC(n, 1, 2) ≤ d+ n− d = n.

Now assume r > 2. Let rj = |{1 ≤ i ≤ r : aij = 0}| for j = 1, . . . , n.

Case 1. There exists a j0 such that either rj0 = 0 or rj0 = r.

Using Observation 1 we may assume j0 = n. Let a′i denote the restriction of ai on the first
n − 1 coordinates. By induction hypothesis, there exists a cube cover of size m ≤ n−2

2 r + 1
covering {0, 1}n−1 \ {a′1, · · · , a′r}. As shown in Observation 2, we may extend it to a cover for
{0, 1}n \ {a1, · · · , ar} by adding one more cube. The size of the new cover m + 1 is at most
n−2

2 r + 2 ≤ n−1
2 r + 1 (using r ≥ 2).

Case 2. There exists j0 such that 2 ≤ rj0 ≤ r − 2.

Again assume that j0 = n and define a′i as in Case 1. Let A0 denote the set of vectors a′i at
which ai n = 0 and A1 = A−A0. Since rn ≥ 2 and r − rn ≥ 2, using induction hypothesis twice,
we find cubes C ′

1, . . . , C
′
m1

covering {0, 1}n \ A0 and D′
1, . . . , D

′
m2

covering {0, 1}n \ A1, where
m1 = (n − 2)rn/2 + 1 and m2 = (n − 2)(r − rn)/2 + 1. Therefore {0, 1}n \ A can be covered by
∪m1

i=1Ci
⋃
∪m2

i=1Di with Ci = C ′
i ∧ x̄n and Di = D′

i ∧ xn. The size of this cover, m1 +m2 is at most
n−2

2 rn + 1 + n−2
2 (r − rn) + 1 ≤ n−1

2 r + 1.

Case 3. For every j = 1, . . . , n either rj = 1 or rj = r − 1.
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Applying Observation 1, we may assume that rj = r − 1 for all j, i.e., each column of M has
exactly one 1 and r − 1 0’s. We consider the following two subcases.

Case 3a. ai 6= 0 for all i.

In this case we must have r ≤ n. We may assume that there exist 0 = n0 < n1 < · · ·nr−1 < nr = n
which divide the integer interval [n] into r blocks B1, B2, . . . , Br (Bi = [ni−1 + 1, ni]) such that
columns in the i’th block have a 1 in the i’th position:

a1 =

B1︷ ︸︸ ︷
1 · · · 1 0 · · · · · · · · · 0

a2 = 0 · · · 0
B2︷ ︸︸ ︷

1 · · · 1 0 · · · · · · 0

an = 0 · · · · · · · · · 0
Br︷ ︸︸ ︷

1 · · · 1

A short case analysis (which we omit) shows that {0, 1}n \ {ai}r
i=1 is covered by the following

cubes: Cij = xni+1 ∧ xnj+1 for 0 ≤ i < j ≤ r − 1, Ok = x̄k ∧ xk+1 for all k 6= n1, . . . , nr and
D = x̄n1 ∧ x̄n2 ∧ · · · ∧ x̄n. Hence we get a covering of size

(
r
2

)
+n− r+1 ≤ n−1

2 r+1 (using r ≥ 2).

Case 3b. ai = 0 for some i.

In this case r ≤ n+ 1. When r = n+ 1, A consists of all the vectors of weight at most 1. Cubes
xi ∧ xj , 1 ≤ i < j ≤ n give a covering of size

(
n
2

)
< n−1

2 (n+ 1) + 1. When r ≤ n, we first assume
that ar = 0. Similar as in Case 3a, there are 0 = n0 < n1 < · · · < nr−1 = n such that ai (i < r)
has values 1 exactly in the block Bi = [ni−1 + 1, ni]. It is not hard to see that {0, 1}n \ A is
covered by the union of the following cubes: Ok for all k 6= n1, . . . , nr−1, Di = xni−1+1 ∧ x̄ni for
i = 1, . . . , r − 1 and

Cij = ∗ · · · ∗
Bi︷ ︸︸ ︷

1 · · · 1 ∗ · · · ∗
Bj︷ ︸︸ ︷

1 · · · 1 ∗ · · · ∗,

for 1 ≤ i < j ≤ r−1. Hence we get a covering of size n− (r−1)+r−1+
(
r−1
2

)
=
(
r
2

)
+n−r+1 ≤

n−1
2 r + 1 cubes (using r ≥ 2).

Proof of Theorem 5, Part b). We first recall Angluin and Kriķis’ proof of (3). They used
a complete binary tree T of depth n to represent cubes: the root (at level 0) is {0, 1}n; for
0 ≤ i < n, a cube C in the ith level has left child C ∧ xi+1 and right child C ∧ x̄i+1. In other
words, the ith level consists of cubes z1 ∧ z2 ∧ · · · ∧ zi with zi ∈ {xi, x̄i} and the leaves are all
vectors in {0, 1}n. Consider a set A of an exception vectors. Let TA be the union of paths from
the root to all elements in A. It is easy to see that the cubes C whose parent is contained in
TA but C 6∈ TA make up a cover of {0, 1}n \ A. The size of this cover is equal to the number of
vertices with precisely one child in TA. Clearly this number is at most |TA| < n|A|, Angluin and
Kriķis thus concluded that XC(n, 1, r) ≤ n r and consequently (3). The following lemma gives
a better (in fact, tight) bound on the number of vertices with one child and Theorem 5 Part b)
thus follows.

Lemma 13. Suppose that T is a binary tree with r leaves, all having depth n. Then the number
of vertices with one child is at most (n− dlog re+ 1) r.
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Proof of Lemma 13. Suppose that T is a tree that satisfies the hypothesis and has as many
nodes with one child as possible. Let Li be the set of vertices in its ith level and li = |Li|. We
observe that for 1 ≤ i ≤ n − 1, if li < li+1, then li−1 = li/2. Otherwise, there must exist v ∈ Li

and u ∈ Li−1 such that v has two children w,w′ and u has one child. Remove the edge (v, w′),
add a new vertex v′ in the ith level and add two edges (w′, v′) and (v′, u). The new tree T ′ still
satisfies the hypothesis and has one more vertex with one child, a contradiction. This means
that {l0, l1, . . . , ln} = {1, 2, 4, . . . , 2i, r, . . . , r}, where i = dlog re − 1. Consequently the number of
vertices with one child is less than (n− i) r = (n− dlog re+ 1) r.

4. Further remarks and open problems

It would be of interest to show that DNF are not strongly closed under exception lists, or to
strengthen Theorem 4 by improving the exponent of r in the lower bound. The construction of
Theorem 3 uses DNF containing only negated variables. It would be interesting to know, what
are the best possible bounds for this class of DNF (or, equivalently, for monotone DNF).

If we delete every vector of weight k from {0, 1}n, then every vector of weight k − 1 and k + 1
requires a different cube to cover it, and consequentlyXC

(
n, 1,

(
n
k

))
≥
(

n
k+1

)
+
(

n
k−1

)
for 0 ≤ k < n.

Theorem 5, Part a) implies that this inequality becomes an equality for k = 1. It is easy to see
that the equality holds for k = 0 as well. We conjecture that this is the case for every k, i.e.,
XC

(
n, 1,

(
n
k

))
=
(

n
k+1

)
+
(

n
k−1

)
for 0 ≤ k < n.

If the exceptions in the DNF exception problem are cubes instead of points then the number of
cubes needed to cover the updated set can be exponential in the number of cubes deleted. This
is shown by the example Cov ({0, 1}n \ ((x1 ∧ x2) ∨ · · · ∨ (xn−1 ∧ xn))) = 2

n
2 .

Exception problems could also be studied over other standard machine learning domains, such as
first-order logic, geometry and automata. In [21] a quantitative version is given of a special case
of the seminal result of Lassez and Marriott [17] over the domain of first-order terms.

Note added in proof In the recent paper M. Alekhnovich, M. Braverman, V. Feldman, A.
Klivans, T. Pitassi: Learnability and automatizability, 45. FOCS (2004), 621-630 it is shown that
if NP 6= RP then DNF are not properly PAC learnable, solving a longstanding open problem.
The proof does not use the Occam algorithm approach discussed in the introduction.

References

[1] N. Alon, J. H. Spencer: The Probabilistic Method. Second edition. Wiley-Interscience Series
in Discrete Mathematics and Optimization. Wiley-Interscience [John Wiley & Sons], New
York, 2000.
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