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Abstract

Given s ≥ k ≥ 3, let h(k)(s) be the minimum t such that there exist arbitrarily large k-
uniform hypergraphs H whose independence number is at most polylogarithmic in the number
of vertices and in which every s vertices span at most t edges. Erdős and Hajnal conjectured
(1972) that h(k)(s) can be calculated precisely using a recursive formula and Erdős offered $500
for a proof of this. For k = 3 this has been settled for many values of s including powers of
three but it was not known for any k ≥ 4 and s ≥ k + 2.

Here we settle the conjecture for all s ≥ k ≥ 4. We also answer a question of Bhat and
Rödl by constructing, for each k ≥ 4, a quasirandom sequence of k-uniform hypergraphs with
positive density and upper density at most k!/(kk − k). This result is sharp.

MSC classification codes: 05D10 (primary), 05C35, 05C55, 05C65 (secondary)

1 Introduction

Write K
(k)
N for the complete k-uniform hypergraph (henceforth k-graph) on N vertices. The Ramsey

number rk(s, n) is the minimum N such that every red/blue coloring of the edges of K
(k)
N contains a

monochromatic red copy of K
(k)
s or a monochromatic blue copy of K

(k)
n . In order to shed more light

on the growth rate of these classical Ramsey numbers, Erdős and Hajnal [12] in 1972 considered
the following more general parameter.

Definition 1.1. For integers 2 ≤ k < s < n and 2 ≤ t ≤
(
s
k

)
, let rk(s, t;n) be the minimum N

such that every red/blue coloring of the edges of K
(k)
N contains a monochromatic blue copy of K

(k)
n

or has a set of s vertices which contains at least t red edges.

Note that rk(s,
(
s
k

)
;n) = rk(s, n) so rk(s, t;n) includes classical Ramsey numbers. In addition, the

case (k, s, t, n) = (k, k + 1, k + 1, k + 1) was investigated in relation to the Erdős-Szekeres theorem
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and Ramsey numbers of ordered tight paths as well as to high dimensional tournaments by several
researchers [9, 10, 16, 27, 29, 30]; the very special case (3, 4, 3, n) has connections to quasirandom
hypergraph constructions [3, 22, 25, 26].

The main conjecture of Erdős and Hajnal [12] for rk(s, t;n) is that, as t grows from 1 to
(
s
k

)
, there

is a well-defined value t1 = h
(k)
1 (s) at which rk(s, t1 − 1;n) is polynomial in n while rk(s, t1;n)

is exponential in a power of n, another well-defined value t2 = h
(k)
2 (s) at which it changes from

exponential to double exponential in a power of n and so on, and finally a well-defined value

tk−2 = h
(k)
k−2(s) <

(
s
k

)
at which it changes from twrk−2 to twrk−1 in a power of n. They were not

able to offer a conjecture as to what h
(k)
i (s) is in general, except when i = 1 or when s = k + 1.

The problem of determining rk(k + 1, t;n) for t = 2 and t = 3 has essentially been solved. For
general t, the methods of Erdős and Rado [13] show that there exists c = c(k, t) > 0 such that
rk(k+ 1, t;n) ≤ twrt−1(nc) for 3 ≤ t ≤ k. Erdős and Hajnal conjectured that this gives the correct
tower growth rate for rk(k + 1, t;n). When k ≥ 6, the first author and Suk [31] settled their
conjecture in almost all cases in a strong form.

Perhaps the main open problem about rk(s, t;n) posed by Erdős and Hajnal [12] was to determine

the value of t1 = h
(k)
1 (s); namely the value of t at which rk(s, t;n) transitions from polynomial to

super polynomial growth. This is the problem we address in this paper. The following function
plays an important role.

Definition 1.2. Given positive integers s, k, call a partition s1 +· · ·+sk = s nontrivial if 0 ≤ si < s
for each i. For 0 ≤ s < k, let gk(s) = 0 and for s ≥ k ≥ 3, let gk(s) be the maximum of

k∑
i=1

gk(si) +
k∏
i=1

si

where the maximum is taken over all nontrivial partitions s1 + · · ·+ sk = s.

We will interpret gk(s) as the maximum number of edges in the s-vertex k-graph obtained by first
partitioning s vertices into k parts, taking all edges that intersect all parts, and then recursing this
construction within each part. Erdős and Hajnal commented without proof that it is easy to see
that gk(s) is achieved by taking a partition that is as equitable as possible. We will prove this in the
Appendix, and also prove an asymptotic version of this fact later (see (17)). As an easy exercise,
this implies that

gk(s) = (1 + o(1))
k!

kk − k

(
s

k

)
k is fixed, s→∞. (1)

Erdős and Hajnal proved that rk(s, gk(s);n) is polynomial in n for all fixed s > k ≥ 3. In other
words, they showed that every N -vertex k-graph (k ≥ 3 fixed) in which every s-set spans at most
gk(s)− 1 edges has independence number at least N ε where ε > 0 depends only on s, k. Therefore

h
(k)
1 (s) ≥ gk(s) + 1.

They conjectured the following for which Erdős later offered $500 (see [28] page 21 and [5] Problem
(85)).
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Conjecture 1.3 (Erdős-Hajnal). Fix s ≥ k ≥ 3. Then h
(k)
1 (s) = gk(s) + 1, or equivalently,

rk(s, gk(s) + 1;n) is at least exponential in a power of n.

For k = 3, Erdős and Hajnal [12] proved that Conjecture 1.3 follows from the following conjecture.

Conjecture 1.4 (Erdős-Hajnal). For every edge-coloring of the complete graph with vertex set [n]
by three colors I, II, III, the number of triangles {a, b, c} with a < b < c for which {a, b} has color
I, {b, c} has color II, and {a, c} has color III is at most g3(n).

Conlon-Fox-Sudakov [6] connected Conjecture 1.4 to the maximum number T (s) of directed tri-
angles in an s-vertex tournament (It is worth noting that the hypergraphs in Conjecture 1.4 were
also considered in [33] due to their connection to hypergraph Turán theory.) They determined T (s)
exactly and observed that this also settles Conjecture 1.4 for many values of s including powers
of 3. Consequently, their approach gave a solution to Conjecture 1.3 when k = 3 and these s-

values; they also proved that h
(3)
1 (s) = (1/4)

(
s
3

)
+ O(s log s). However, their method using T (s)

does not apply for any k > 3 as it does not capture the recursive structure from Definition 1.2
needed to prove Conjecture 1.3. Indeed, the set of extremal configurations for T (s) consists of all
(out-)regular tournaments; the recursive construction is just one (and unnecessarily complicated)
example in this class. Thus Conjecture 1.3 was known only when s = k + 1 and when k = 3 and
s is as described above. In fact, Erdős and Hajnal stated in [12] that they were much less certain
about Conjecture 1.3 when k ≥ 4 than when k = 3.

In this paper we prove Conjecture 1.3 for all k ≥ 4.

Theorem 1.5. h
(k)
1 (s) = gk(s) + 1 for all s ≥ k ≥ 4.

Our method also answers a question posed by Bhat and Rödl [3] about quasirandom sequences.

The density of a k-graph H = (V,E) is d(H) = |E|/
(|V |
k

)
. Let H = {Hn}∞n=1 be a sequence of

k-graphs with Hn = (Vn, En) such that |Vn| → ∞ as n → ∞. Define the density d(H) of H as
d(H) = limn→∞ d(Hn) (we only consider sequences where the limit exists) and the upper density

d(H)
def
= lim

s→∞
max
n

max
S∈(Vns )

d(Hn[S])

(note that for any fixed s, Hn[S] can take only finitely many values, up to isomorphism). One can
show by a simple averaging argument that d(H) exists.

Definition 1.6. A k-graph sequence {Hn}∞n=1 is ρ-quasirandom if for every ε > 0 there exists n0

such that for n > n0, every W ⊂ V = V (Hn) with |W | ≥ ε|V | satisfies d(Hn[W ]) ∈ [ρ(1− ε), ρ(1 +
ε)].

An important result of Erdős [11] states that every k-graph sequence with positive density contains
arbitrarily large complete k-partite subgraphs and hence has upper density at least k!/kk (the case
k = 2 was done earlier by Kövári-Sós-Turán [23] and by Erdős (see [11])); the value k!/kk cannot
be increased as shown by complete k-partite k-graphs. This is a fundamental tool for hypergraph
problems, and shows that every ρ ∈ (0, k!/kk) is a “jump” for k-graphs (see [17] for background on
jumps).
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Bhat and Rödl [3] improved this result of Erdős in the quasirandom setting: they showed that for
each k ≥ 3 and ρ > 0, every ρ-quasirandom k-graph sequence has upper density at least k!/(kk−k),
thus showing that every ρ ∈ (0, k!/(kk−k)) is a jump in this setting. It is well-known that k!/(kk−k)
cannot be increased for k = 3 (the simplest example is to take the 3-graph of all cyclic triples in
a random tournament) and Bhat and Rödl asked whether the same is true for k ≥ 4. We answer
this positively, showing that the result in [3] is sharp for all k ≥ 3.

Theorem 1.7. For each k ≥ 4, there exists ρ > 0 and a ρ-quasirandom k-graph sequence with
upper density k!/(kk − k).

We note that our proof of Theorem 1.7 yields ρ = k−Ω(k2) which is much smaller than k!/(kk − k)
and it remains open to prove the theorem with ρ = k!/(kk − k) (for k = 3 this is true).

2 Reduction to inducibility

As mentioned in the introduction, Erdős and Hajnal showed that the k = 3 case of Conjecture 1.3
follows from Conjecture 1.4, which asks for the maximum number of rainbow colored triangles (with
some additional properties) in an edge-colored ordered graph. This is an example of a question
about the inducibility of colored, directed structures. In fact, Erdős and Hajnal observed that
Conjecture 1.4 could be replaced by another slightly different question about inducibility (where
we use only two colors and count certain 2-colored triangles) and, as mentioned earlier, Conlon, Fox
and Sudakov [6] considered yet another inducibility problem, namely the determination of T (s).

Our approach to Conjecture 1.3 is to formulate a novel question about the inducibility of colored
directed structures and solve it exactly. It is perhaps interesting that the “universal” character
of the structure we consider below allows us to get around many technical difficulties plaguing
previous research on inducibility.

Theorem 2.1. (Main Result) Let s ≥ k ≥ 4 and R be an arbitrary k-vertex tournament whose
edges are colored with the

(
k
2

)
distinct colors from

(
[k]
2

)
. Then the number of copies of R in any

s-vertex tournament whose edges are colored from
(

[k]
2

)
is at most gk(s).

We immediately get Theorem 1.5 as a consequence.

Proof of Theorem 1.5. Fix s ≥ k ≥ 4. We are to show that h
(k)
1 (s) ≤ gk(s) + 1. In other words:

there exists C = C(k) > 0 and, for all N > k, an N -vertex k-graph H with α(H) ≤ C logN such
that every s vertices of H span at most gk(s) edges. Fix a k-vertex tournament R whose edges are
colored with

(
k
2

)
distinct colors. Next consider the random N -vertex tournament T = TN whose

edges are randomly colored with the same
(
k
2

)
colors; thus, each pair gets a particular orientation and

color with probability p = 1/((k−1)k). Now form the k-graph H = H(T ) = (V,E) with V = V (T )
and E = {K ⊂ V : H[K] ∼= R}. In other words, the edges of H correspond to copies of R. By
Theorem 2.1, every s vertices of H span at most gk(s) edges. On the other hand, the probability

that a given k-set of vertices in H induces a copy of R is k!p(
k
2) > 0. Hence the expected number

of t-sets in H that are independent is at most
(
N
t

)
2−εt

2
for appropriate ε = ε(k) > 0. Indeed, given
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any t-set A, pick up in it ` ≥ Ω(t2/k2) k-subsets B1, . . . , B` such that |Bi∩Bj | ≤ 1 whenever i 6= j,
and notice that the events “Bi spans a copy of R” are mutually independent. This expectation is
less than one as long as t > C logN and C = C(k) is sufficiently large.

Remark 2.2. For the remaining case k = 3, we believe that the Erdős-Hajnal conjecture still holds
but it may require new techniques and ideas: many crucial calculations in this paper completely
fall apart.

Remark 2.3. As mentioned above, there is nothing specific about the kind of combinatorial struc-
tures we are considering here, and Theorem 1.5 is implied by results analogous to Theorem 2.1
for arbitrary structures. For example, [1] gives Theorem 1.5 for k = 5, s = 5t, [37] gives it for

all k sufficiently large and s ≤ 2
√
k, the well-known Pippenger-Golumbic conjecture [32] about the

inducibility of Ck would imply it for k ≥ 5, s = kt, and the conjecture from [36] about ~C4 would
imply it for k = 4, s = 4t. See [2, 4, 14, 15, 18, 19, 21, 24] for results about inducibility for other
structures.

Next we show how our approach also answers the question of Bhat and Rödl about ρ-quasirandom
hypergraph sequences. It is convenient to use the following theorem from [7] which is a hypergraph
generalization of the Chung-Graham-Wilson characterization of graph quasirandomness. In what
follows Mk is a specific linear k-graph with v = k2k−1 vertices and e = 2k edges (see [7] or [25]
for the precise definition); in particular M2 = C4. We write the result from [7] in the language of
hypergraph sequences.

Theorem 2.4 (Conlon-Han-Person-Schacht [7]). Fix k ≥ 2, 0 < ρ < 1, and a sequence of k-
graphs H = {Hn}∞n=1 of density ρ each with Hn = (Vn, En) and |Vn| → ∞ as n → ∞. Then H is

ρ-quasirandom iff the number of (labeled) copies of Mk in Hn is |Vn|k2k−1
ρ2k(1 + o(1)) as n→∞.

Proof of Theorem 1.7. We use the proof of Theorem 1.5 above to construct the desired sequence.

Using the notation there, for each k ≥ 4, let ρ = k!((k − 1)k)−(k2) be the probability that a k-
set induces a copy of R. For n ≥ 1, let εn = 1/n. Standard probabilistic arguments together
with the construction of H in Theorem 1.5 imply that there exists a k-graph Hn = (Vn, En)
whose edge set comprises copies of R such that |Vn| → ∞ and the number of copies of Mk in

Hn is |Vn|k2k−1
ρ2k(1 ± εn). Indeed, since Mk is linear (meaning that every two edges of Mk share

at most one vertex) the expected number of (labeled) copies of Mk in Hn is |Vn|k2k−1
ρ2k and

Chebyshev’s inequality implies that there is an Hn where the number of copies of Mk in Hn is
|Vn|k2k−1

ρ2k(1± εn). Now let H = {Hn}∞n=1. We have just shown that the number of copies of Mk

in Hn is |Vn|k2k−1
ρ2k(1+o(1)) so Theorem 2.4 implies that H is ρ-quasirandom. On the other hand,

for each s, n > 0, k ≥ 4 and S ∈
(
Vn
s

)
we have d(Hn[S]) ≤ gk(s)/

(
s
k

)
by Theorem 2.1. Consequently,

d(H) ≤ lims→∞ gk(s)/
(
s
k

)
≤ k!/(kk − k).

3 Proof of asymptotic result

Recall that the inducibility i(R) is defined as

i(R)
def
= lim

s→∞
max
|V (H)|=s

i(R;H)(
s
k

) ,
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where i(R;H) is the number of copies of R in an s-vertex
(

[k]
2

)
-colored tournament H. In this

section we prove the following.

Theorem 3.1. Let k ≥ 4 and R be an arbitrary k-vertex tournament whose edges are colored with
the

(
k
2

)
distinct colors from

(
[k]
2

)
. Then

i(R) =
k!

kk − k

(which, by (1) is equal to lims→∞
gs(k)

(s
k)

).

The proof of Theorem 3.1 is much cleaner than the proof of our main result max|V (H)|=s i(R;H) =
gk(s) presented in Section 4 since it avoids dealing with unnecessary details about the number of
vertices. It also gives the reader the overall structure of our argument. Moreover, as we will show in
Corollary 3.2, the asymptotic result in Theorem 3.1 immediately implies an exact result whenever
s is a power of k.

To make our argument both clean and rigorous, we use the language of Flag Algebras. But since
in order to prove Theorem 2.1 we will have to “discretize” it anyway (so Theorem 3.1 is sort of a
warm-up), we skip the traditional crash course in Flag Algebras and assume a certain degree of
familiarity with the method. The reader interested only in the end result can safely proceed to
Section 4 (or, if willing to believe that all this can be made completely rigorous, follow the proof
on the intuitive level).

Proof of Theorem 3.1. Let Tk be the theory [34, §2] of
(

[k]
2

)
-colorings of edges of a complete

graph, and let T be the disjoint union of Tk and the theory TTournament of tournaments. Let
R ∈ Mk[T ] be any model with V (R) = [k] such that its restriction to Tk is the canonical (that is,
the edge (i, j) is colored with the color {i, j}) model, and let Γ be the underlying tournament. As
always, we denote by 1 the (only) type [34, §2.1] of size 1.

For a color c ∈
(

[k]
2

)
, there are two 1-flags in F1

2 colored by c: αc (in which the distinguished vertex
is the tail) and βc (distinguished = head). Let

Si
def
=

∑
j∈N+

Γ (i)

α{i,j} +
∑

j∈N−Γ (i)

β{i,j}

(this is an element of A1) and note that
∑

i Si = 1. Define also

Pi
def
=

∏
j∈N+

Γ (i)

α{i,j} ·
∏

j∈N−Γ (i)

β{i,j}. (2)

Let us now fix φ ∈ Hom+(A0[T ],R) (see [34, Definition 5]) maximizing φ(R) [34, §4.1] and let

ak
def
=

k!

kk − k

(
=

(k − 1)!

kk−1 − 1

)
.

Our goal is to prove that
φ(R) ≤ ak, (3)
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and we can assume w.l.o.g. that φ(R) ≥ ak.

Let φ1 be the distribution over Hom+(A1[T ],R) rooted at φ [34, Definition 10], and let S1(φ) be
the support of this distribution. Combinatorially, φ1 should be thought of as a uniform distribution
over vertices (except that we do have any such thing as a “vertex” here). Let us study an individual
element φ1 ∈ S1(φ).

Assume for simplicity that φ1(S1) ≥ φ1(S2) ≥ · · · ≥ φ1(Sk); our goal is to bound φ1(S2) from above
(the trivial bound is 1/2). More specifically, note first (recall that k ≥ 4) that

(k − 1)k−1

kk−1 − 1
≥
(

1− 1

k

)k−1

≥ e−1 ≥ 22−k.

Hence the equation

zk−1 + (1− z)k−1 =
(k − 1)k−1

kk−1 − 1
(4)

has two roots in the interval (0, 1); let zk ∈ (0, 1/2) be the smallest one. We claim that φ1(S2) ≤ zk.

Let µ1
k(R) ∈ A1 be the sum of all k possible 1-flags that can be obtained from R [34, §4.3]. Then one

consequence of the extremality of φ (and the fact that φ1 ∈ S1(φ)) is that φ1(µ1
k(R)) = φ(R) ≥ ak

[34, Theorem 4.3].

On the other hand, by the AMGM inequality we have

µ1
k(R) ≤ (k − 1)!

∑
i

Pi ≤
(k − 1)!

(k − 1)k−1

∑
i

Sk−1
i , (5)

where the partial pre-order ≤ on A1 simply means [34, Definition 6] that the inequality holds upon
being evaluated by an arbitrary element of Hom+(A1[T ],R). Comparing the two,

∑
i

φ1(Si)
k−1 ≥ (k − 1)k−1

kk−1 − 1
.

But under the condition S2 = z (≤ 1/2), the left-hand side is clearly maximized when S1 = 1− z
and S3 = . . . = Sk = 0. This gives us the claim.

We now have a measurable partition S1(φ) = V1
.
∪ . . .

.
∪ Vk according to arg maxiφ

1(Si) (we resolve
conflicts arbitrarily), and we want to incorporate it into our language explicitly. Let T+ be the
extension of T with vertex coloring χ in k colors. We let pi ∈ M1[T+] be the one-element model
in which the only vertex is colored by i, and let (i) be the corresponding type. Let I : T  T+

be the interpretation [34, §2.3.3] erasing vertex coloring. We want to extend φ to an element
φ+ ∈ Hom+(A0[T+],R) that respects the partition V1

.
∪ . . .

.
∪ Vk (we will actually need only its

property φ1(Si) ≤ zk for φ1 6∈ Vi). Formally, we claim the existence of φ+ with the following two
properties:

1. φ = φ+ ◦ πI (for the definition of algebra homomorphisms πI , πI,σ, πσ,η etc. see [34, §2.3]);

2. For any ψ ∈ S(i)(φ+) and any i′ 6= i, ψ
(
πI,(i)(Si′)

)
≤ zk.
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Combinatorially, the existence of such an extension is entirely obvious, and the simplest way to
give a rigorous definition in the language of Flag Algebras is by an explicit formula. Namely, for a
type σ of the theory T+ that has size k, we first define the “labelled density” φ+(〈σ〉) as

φ+(〈σ〉) def
= φ(〈I(σ)〉) ·P

[
k∧
i=1

(
φI(σ) ◦ πI(σ),i ∈ Vi

)]
. (6)

Then we let
φ+(σ)

def
= (Sk : Aut(σ))φ+(〈σ〉).

It is straightforward to check that so defined φ+ is an element of Hom+(A0[T+],R) that satisfies
properties 1) and 2) above.

From now on we will often omit from the notation operators πI and πI,σ (as well as φ+); thus, the
algebra AI(σ)[T ] is identified with its image under πI,σ in Aσ[T+]. When σ has to be specified, we
write fσ for the image of f ∈ AI(σ)[T ] in Aσ[T+]; we will be primarily interested in the case when

σ has size 1, i.e. σ = (i) for some i ∈ [k]. Thus, property 2) above simplifies to ψ
(
S

(i)
i′

)
≤ zk for

any i′ 6= i and ψ ∈ S(i)(φ+) etc.

For j 6= i, let Pij ∈ A1[T ] be the product Pi with either αi,j or βi,j removed. Then the AMGM
inequality implies the bound

ψ
(
P

(i)
i′j

)
≤
(

zk
k − 2

)k−2 (
i′ 6= i, ψ ∈ S(i)(φ+)

)
. (7)

Now, R splits in T+ as follows:
πI(R) = Rm +Rg +Rb

(”m, g, b” stand for “monochromatic”, “good” and “bad”, respectively), where Rm is the sum of
m models in I−1(R) in which all vertices are colored in the same color, Rg is the model with χ = id
and Rb is the sum of all remaining models. We will estimate these three terms (evaluated by φ+)
separately.

The bound on Rm (that, combinatorially, is the density of monochromatic copies of R) is obtained
by exploiting the extremality of φ one more time:

φ+(Rm) ≤ φ(R) ·
∑
i

φ+(pi)
k. (8)

To make this rigorous, whenever φ+(pi) > 0, we form the restriction πpi : A0[T+] −→ A0
pi [T

+],
where A0

pi is the localization of A0 by the element pi (see [34, §2.3.2] with σ = 0) that combi-

natorially corresponds to the restriction on Vi. Then φ+ ◦ πpi ◦ πI ∈ Hom+(A0[T ],R), hence the
extremality of φ implies that (φ+ ◦πpi ◦πI)(R) ≤ φ(R). On the other hand, by unrolling definitions

we see that (φ+ ◦ πpi ◦ πI)(R) =
φ+(Rm,i)

φ+(pi)k
, where Rm,i is the model with χ ≡ i. Multiplying by pki

and summing over all i gives us (8).
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For bounding Rg, we let ∆ be the sum of all rainbow (i.e., with bijective χ) models in Mk[T
+]

different from Rg. Then we clearly have

Rg = k!
k∏
i=1

pi −∆, (9)

and we need to bound ∆ from below. We will do it in terms of the element δ ∈ A0
2[T+] which is the

sum of all models M with the set of vertices {u, v} that are transversal (χ(u) 6= χ(v)) and are either
miscolored (the edge color of (u, v) is different from {χ(u), χ(v)}) or disoriented (the orientation of
(u, v) is different from the orientation of (χ(u), χ(v)) in Γ), or both. Let δij be the contribution to
δ made by those models in M2[T+] for which {χ(u), χ(v)} = {i, j}. Then

δ =
∑

1≤i<j≤k
δij .

Now, if we extend any model in δij to an arbitrary rainbow model inMk[T
+], we will actually get

a model in ∆. This implies

∆ ≥ k!

2

∏
ν 6=i,j

pν

 δij

for any i 6= j (the factor 2 in the enumerator accounts for the symmetry interchanging i and j).
Multiplying this by pipj and summing up over all such pairs, we arrive at ∑

1≤i<j≤k
pipj

∆ ≥ k!

2

(∏
i

pi

)
δ. (10)

At this point we have to take care of the case when all but one of the pis are equal to 0. Assuming
that, say, p1 = 1, we know that φ1(S2) ≤ zk for any φ1 ∈ S1(φ). Let R1,i ∈ F1[T ] be obtained from
R by placing the distinguished vertex into i (so that µ1

k(R) =
∑

iR
1,i). Then the local version of

(5) gives us

R1,2 ≤ (k − 1)!

(k − 1)k−1
Sk−1

2 ≤ (k − 1)!

(k − 1)k−1
zk−1
k . (11)

On the other hand, R = kJR1,2K1 (see [34, §2.2] for the averaging operator J·Kσ). This gives us

φ(R) ≤ k!

(k − 1)k−1
zk−1
k ≤ akk

(
1 +

1

k − 1

)k−1

zk−1
k ≤ ak, (12)

where for k = 4 the last inequality follows from the bound z4 ≤ 0.3, and when k ≥ 5 it suffices to
apply the trivial bound zk ≤ 1/2. This completes the proof of (3) when p1 = 1.

Thus we can and will assume that pi < 1 for all i and hence we can divide (10) by
∑

1≤i<j≤k pipj .
Comparing the result with (9), we arrive at our second estimate

Rg ≤ k! ·
∏
i

pi

(
1− δ

2
∑

1≤i<j≤k pipj

)
= k! ·

∏
i

pi

(
1− δ

1−
∑

i p
2
i

)
. (13)
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Let’s now turn to upper bounding Rb. We need a few simple remarks first.

Every model M ∈ M2[T ] has a unique embedding αM : M −→ R; intuitively, this embedding
corresponds to the “intended” vertex-coloring of M . The mapping α can be extended to M2[T+]

simply by letting αM
def
= αI(M) i.e. by ignoring the vertex-coloring χ. Then δ can be described as

the sum of all transversal models in M2[T+] for which χ 6= αM . Let now b(i) be the sum of all
(i)-flags that have the form (M,v), where M appears in δ and v ∈ V (M) is miscolored, that is
χ(v)(= i) 6= αM (v) . This element further splits as

b(i) =
∑
i′ 6=i
j

b
(i)
i′,j ,

where b
(i)
i′,j consists of those (M,v) for which αM (v) = i′ and αM (u) = j (V (M) = {u, v}). Going

one step further,

b
(i)
i′,j = b

(i)′

i′,j + b
(i)′′

i′,j ,

where b
(i)′

i′,j consists of those (M,v) in which the second vertex u is also miscolored, that is χ(u) 6= j.
Note for the record that

δ =
∑
i

J
∑
i′ 6=i
j

b
(i)′

i′j + 2b
(i)′′

i′j K(i) (14)

(the extra coefficient 2 balances off the coefficient 1
2 that will appear in

∑
Jb(i)

′′

i′j K(i) for those models
M ∈ δ in which only one vertex is miscolored).

The upper bound onRb will be actually given in terms of the expression
∑

iJ
∑

i′ 6=i
j

(b
(i)′

i′j +2b
(i)′′

i′j )P
(i)
i′j K(i)

differing from the right-hand side of (14) only in the extra term P
(i)
i′j . For that we have to bound

from below pM
(∑

iJ
∑

i′ 6=i
j

(b
(i)′

i′j + 2b
(i)′′

i′j )P
(i)
i′j K(i)

)
(see [34, Definition 7] for pM ), where M is a

model of size k appearing in Rb. This quantity, however, has a very clean combinatorial meaning.
Namely, let c(M) be the number of ordered pairs 〈i′, j〉 such that χ(i′) 6∈ {i′, χ(j)}, where those
pairs for which χ(j) = j are counted twice. Then we have

pM

∑
i

J
∑
i′ 6=i
j

(b
(i)′

i′j + 2b
(i)′′

i′j )P
(i)
i′j K(i)

 =
c(M)

k!
. (15)

The reason is simply that any pair 〈i′, j〉 as described above determines an embedding of either

b
(i)′

i′j or b
(i)′′

i′j into M , with an appropriate coefficient. But once it is determined, there is precisely
one way of assigning the remaining (k − 2) vertices to terms in the product Pi′j (which is simply
(2) with i := i′ and the term corresponding to {i′, j} missing).

We claim that c(M) ≥ 2(k − 2). Indeed, another way to interpret c(M) is as twice the number
of unordered pairs {i, j} that are transversal (χ(i) 6= χ(j)) and in which at least one of the two
vertices is miscolored. Now, if χ is a (non-identical) permutation then the transversality restriction
becomes void. Picking arbitrarily any miscolored i and any j 6= i will already give us (k−1) pairs of
the desired form. If, on the other hand, χ is not a permutation, let C be any non-trivial χ-colored

10



class: 2 ≤ |C| ≤ k − 1 (the latter condition holds since χ 6= const). At least |C| − 1 vertices in this
class are miscolored which gives us ≥ (|C| − 1)(k − |C|) ≥ k − 2 desired pairs.

Thus, by (15), (7) and (14) we conclude that

Rb ≤
k!

2(k − 2)

∑
i

J
∑
i′ 6=i
j

(b
(i)′

i′j + 2b
(i)′′

i′j )P
(i)
i′j K(i) ≤

k!

2(k − 2)

(
zk

k − 2

)k−2∑
i

J
∑
i′ 6=i
j

b
(i)′

i′j + 2b
(i)′′

i′j K(i)

= δ
k!

2(k − 2)

(
zk

k − 2

)k−2

. (16)

Along with (8) and (13), this gives us

φ(R) ≤ φ(R)
∑
i

pki + k!
∏
i

pi

(
1− δ

1−
∑

i p
2
i

)
+

δk!

2(k − 2)

(
zk

k − 2

)k−2

.

But since the case
∑

i p
k
i = 1 was already treated above, in order to finish the proof of (3), it

remains to show that

ak

(
1−

∑
i

pki

)
≥ k!

∏
i

pi

(
1− δ

1−
∑

i p
2
i

)
+

δk!

2(k − 2)

(
zk

k − 2

)k−2

or, cancelling the factorials,

1−
∑

i p
k
i

kk − k
≥
∏
i

pi

(
1− δ

1−
∑

i p
2
i

)
+

δ

2(k − 2)

(
zk

k − 2

)k−2

.

We now make use of the fact that the right-hand side here is linear in δ, hence it suffices to check
our inequality at the end-points of the interval δ ∈

[
0, 1−

∑
i p

2
i

]
.

The left end δ = 0 amounts to
(kk − k)

∏
i

pi +
∑
i

pki ≤ 1. (17)

Let S
def
= [k]k \ {(i, . . . , i) : i ∈ [k]}. Since |S| = kk − k, the AMGM inequality implies that

∑
(i1,...,ik)∈S

pi1 · · · pik ≥ (kk − k)

 ∏
(i1,...,ik)∈S

pi1 · · · pik

 1

kk−k

= (kk − k)
∏
i

pi.

Adding
∑

i p
k
i to both sides gives us the desired inequality since

∑
(i1,...,ik)∈S

pi1 · · · pik +
∑
i

pki =

(∑
i

pi

)k
= 1.

The right end δ = 1−
∑

i p
2
i leads to

1−
∑

i p
k
i

1−
∑

i p
2
i

≥ (kk − k)

2(k − 2)

(
zk

k − 2

)k−2

.
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For k ≥ 5 we simply use the trivial bound 1 −
∑

i p
k
i ≥ 1 −

∑
i p

2
i so that we have to prove

kk−k
2(k−2)

(
zk
k−2

)k−2
≤ 1. For k = 5, 6 we can use numerical bounds1 z5, z6 ≤ 0.3 and for k ≥ 7 the

trivial bound zk ≤ 1/2 suffices.

When k = 4, we have to do a bit of extra work. Assume w.l.o.g. that p1 is the largest. Then∑
i p

4
i ≤ p2

1 ·
∑

i p
2
i and

1−
∑

i p
k
i

1−
∑

i p
2
i

≥
1− p2

1

∑
i p

2
i

1−
∑

i p
2
i

≥ 4

3
(1− p2

1/4)

(the latter inequality follows from
∑

i p
2
i ≥ 1/4). Since z4 ≤ 0.257, all that remains to prove is

p1 ≤ 0.91. For that we simply re-use our previous calculation showing that w.l.o.g. we can assume
p1 < 1. Indeed, (11) is still true for the flag2 (R1,2)(1). That is, under the additional assumption
that the distinguished vertex is in V1 we have

(R1,2)(1) ≤ 2

9
z3

4 ,

and for all other i we still have the same bound but with the trivial estimate S2 ≤ 1:

(R1,2)(1) ≤ 2

9
(2 ≤ i ≤ k).

Now the bound (12) reads as

φ(R) ≤ 8

9
(z3

4p1 + 1− p1).

Since z4 ≤ 0.257, this is ≤ 2
21 (= a4) whenever p1 ≥ 0.91. Hence we can assume w.l.o.g. that

p1 ≤ 0.91 and, as we already observed, this implies (2.1) for k = 4.

This completes the proof of Theorem 3.1.

Corollary 3.2. h
(k)
1 (s) = gk(s) + 1 for all k ≥ 4 whenever s is a power of k.

Proof. Let H be a model of T with |V (H)| = s. We have to prove that
(
n
k

)
i(R;H) ≤ gk(s). The

plan is clear (and well-known): turn H into an element of Hom+(A0[T ],R) by replacing every
v ∈ V (H) with the infinite recursive construction and then apply Theorem 3.1 to it. There are
several ways to make this intuition rigorous: we might consider convergent sequences or simply
come up with an explicit formula as in [19, Section 2.3]. Let us do it geometrically (cf. [35, Section
2]) as this is the most elegant one.

Consider the infinite lexicographic product Ω
def
= H ×R∞. Thus, the vertices are infinite sequences

x = (x0, x1, . . . , xn, . . .), where x0 ∈ V (H) and xi ∈ V (R) (i ≥ 1). The edge coloring and the
orientation between x 6= y are read from the first coordinate i in which xi 6= yi. Further, Ω is
equipped with the measure that is the product of uniform measures on V (H), V (R) and all this
structure turns Ω into a T -on ([8, Definition 3.2]). Hence we also have ([8, Theorem 6.3]) the

1A simple Maple worksheet verifying this fact, as well as several other facts of similar na-
ture below, can be found at http://homepages.math.uic.edu/~mubayi/papers/ErdosHajnalmw.pdf and
http://people.cs.uchicago.edu/~razborov/files/ErdosHajnal.mw

2A slightly better bound will be obtained in Lemma 4.7; the improvement is achieved by selecting the minimal
flag among (R1,2)(1), . . . , (R1,k)(1) rather than arbitrary. But we need not be that precise here.
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corresponding algebra homomorphism φ ∈ Hom+(A0[T ],R); its values are computed as obvious
integrals over Ω. In particular, φ(R) is given by the “expected” formula

φ(R) =
(s)k
sk

i(R;H) +
ak
sk−1

.

Along with Theorem 3.1, this leads us, after a bit of manipulations, to the bound(
s

k

)
i(R;H) ≤ sk − s

kk − k
.

When s is a power of k, the right-hand side here is exactly gk(s) (by an obvious induction).

4 Proof of Theorem 2.1

Before commencing with the formal proof of Theorem 2.1 we state some facts about partitions.
Recall that a partition n1 + · · ·+ nk = n is equitable if |ni − nj | ≤ 1 for all i 6= j.

Definition 4.1. Let p(0, 0) = 1 and for q > t > 0, let p(q, t) be the maximum of
∏
i qi where

q1 + · · ·+ qt = q is a partition of q and each qi < q.

It is easy to see that this maximum is achieved only by an equitable partition.

The following Lemma was stated by Erdős and Hajnal [12]. Since we could not find a proof of this,
we will give a proof in the Appendix.

Lemma 4.2. If n ≥ k ≥ 3, then gk(n) is achieved by an equitable partition.

An immediate consequence of Lemma 4.2 is that

gk(n) = p(n, k) for n ≤ k(k − 1). (18)

Indeed, for n ≤ k(k − 1) the equitable partition for n has each part of size less than k.

The next simple lemma collects some useful facts about p(n, k). Its easy proof is left to the reader.

Lemma 4.3. Let k ≥ 1.

a) p(n+ 1, k)− p(n, k) = p(n− bn/kc, k − 1).

b) p(n, k) is strictly increasing whenever n ≥ k − 1.

c) for n ≥ n′ ≥ 1,
p(n+ 1, k) + p(n′ − 1, k) ≥ p(n, k) + p(n′, k).

13



Proof of Theorem 2.1. In our proof we try to keep the notation reasonably consistent with
Section 3 although some differences are unavoidable.

Fix k ≥ 4 and a k-vertex tournament R with vertex set [k] and pair {i, j} is colored by {i, j} from
C =

(
[k]
2

)
. Let H be an n-vertex tournament with edges colored from C and let i(R;H) be the

number of copies of R in H. We are to prove that i(R;H) ≤ gk(n) and we will proceed by induction
on n.

For a vertex x in V (H) and i ∈ [k], write di(x) for the number of copies of R containing x where
x plays the role of vertex i in R. More formally, di(x) is the number of isomorphic embeddings
φ : R→ H such that φ(i) = x. Let d(x) =

∑
i di(x) be the number of copies of R containing x. For

i ∈ [k], let Ni(x) be the set of those y ∈ V (H) \ {x} for which there is a copy of R in H containing
both x and y in which x plays the role of vertex i in R. Due to uniqueness of the colors of R we
have Nj(x)∩Nj′(x) = ∅ for j 6= j′. Moreover, Ni(x) also has a (unique) partition ∪j 6=iN j

i (x) where

N j
i (x) comprises those y such that x, y lie in a copy of R with x playing the role of i and y playing

the role of j 3. We have

d(x) =
k∑
i=1

di(x) ≤
k∑
i=1

∏
j 6=i
|N j

i (x)| ≤
k∑
i=1

p(|Ni(x)|, k − 1). (19)

We now partition V (H) into V1 ∪ · · · ∪ Vk, ni = |Vi|, where

Vi = {x ∈ V (H) : di(x) ≥ dj(x) for all j 6= i}4

and subject to this property, minimize
∑

i,j |ni − nj |. Note that ni < n for all i, for if, say, n1 = n,
then d1(x) ≥ d2(x) for all x, and

∑
d1(x) = i(R;H) =

∑
d2(x) implies that d1(x) = d2(x) for all

x so we could move a vertex to V2, contradicting the choice of partition.

Claim 1. i(R;H) ≤ gk(n) for all n ≤ k(k − 1).

Proof. We proceed by induction on n; the case n ≤ k is trivial. Pick a vertex x in H and suppose
that there are i 6= j with both di(x) and dj(x) positive. Let Ni = Ni(x) and mi = |Ni|. Then (19)
gives d(x) ≤

∑
i p(mi, k − 1). By Lemma 4.3c), this is maximized when there exist 1 ≤ i < j ≤ k

with mi +mj = n− 1 and, since di(x), di(x) > 0, one of mi,mj is equal to k − 1. Consequently,

d(x) ≤ p(mi, k − 1) + p(mj , k − 1) ≤ 1 + p(n− k, k − 1).

Deleting x we have, by induction, at most i(R;H−x) ≤ gk(n−1) copies of R and hence i(R;H) ≤
i(R;H − x) + d(x) ≤ gk(n− 1) + 1 + p(n− k, k − 1). We claim that

gk(n− 1) + 1 + p(n− k, k − 1) ≤ gk(n) (20)

for n ≤ k(k − 1). Indeed, applying (18) and Lemma 4.3a), this is equivalent to

p(n− 1− b(n− 1)/kc, k − 1) ≥ 1 + p(n− k, k − 1)

3Thus, in the language of Section 3, the flag Si provides a simple upper bound on the density of Ni(x) while
α{i,j}/β{i,j} upper bound N j

i (x).
4The corresponding definition of Vi in Section 3 considers |Ni(x)| instead of di(x).
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which in turn follows from n− 1− b(n− 1)/kc ≥ max(k − 1, n− k + 1) by Lemma 4.3b).

We may now assume that for each vertex x there is a unique i for which di(x) > 0 (otherwise
apply (20)) and this gives a natural k-partition of the vertex set. Moreover, we now also have
i(R;H) ≤ p(n, k) = gk(n) by (18) since n ≤ k(k − 1).

Claim 1 concludes the base case and we now proceed to the induction step where we may assume
that n > k(k − 1). We may also assume that d(x) ≥ dmin = gk(n)− gk(n− 1) for each vertex x as
otherwise we may delete x and apply induction.

The next part of the argument (up to the inequality (28)) closely parallels the one given in Section
3 but we give it here anyway for the sake of completeness.

Partition the copies of R in H as Hm ∪Hg ∪Hb where Hm comprises those copies that lie entirely
inside some Vi, Hg comprises those copies that intersect every Vi whose edge coloring coincides
with the natural one given by the vertex partition (meaning the map from R to H takes vertex i to
a vertex in Vi), and Hb comprises all other copies of R (these include transversal copies but some
vertex in any such copy will be in an inappropriate Vi). Let hm = |Hm|, hg = |Hg| and hb = |Hb|
so that

i(R;H) = hm + hg + hb.

We will bound each of these three terms separately. First, note that since ni < n, by induction

hm ≤
∑
j

i(R;H[Vj ]) ≤
∑
j

gk(nj). (21)

Next we turn to hg. Let ∆ denote the number of k-sets that intersect each Vi but are not counted
by hg. So a k-set counted by ∆ either does not form a copy of R, or forms a copy of R but its edge
coloring does not coincide with the natural one given by the vertex partition V1 ∪ . . . ∪ Vk. Then

hg =
∏
i

ni −∆ (22)

and we need to bound ∆ from below. Note that the color or orientation of some pair in every
member of ∆ does not align with the implicit one given by our partition. With this in mind,
let Dij be the set of pairs of vertices {v, w} where v ∈ Vi, w ∈ Vj such that either the color or
orientation of vw does not match that of ij in R. Let δij = |Dij |/

(
n
2

)
, D = ∪ijDij and δ = |D|/

(
n
2

)
.

Let us lower bound ∆ by counting the misaligned pairs from D and then choosing the remaining
k − 2 vertices, one from each of the remaining parts V`. This gives, for each i < j,

∆ ≥ |Dij |
∏
6̀=i,j

n` = δij

(
n

2

)∏
`6=ij

n` = δij

(
n

2

)∏
` n`

ninj
.

Since
∑

ij δij
(
n
2

)
=
∑

ij |Dij | = |D| = δ
(
n
2

)
, we obtain by summing over i, j,

∆

 ∑
1≤i<j≤k

ninj

 ≥ δ(n
2

)∏
`

n`

which gives

hg ≤
∏
`

n`

(
1−

δ
(
n
2

)∑
1≤i<j≤k ninj

)
=
∏
`

n`

(
1−

δ
(
n
2

)(
n
2

)
−
∑

i

(
ni
2

)) . (23)
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Our next task is to upper bound hb. For a vertex x and j ∈ [k], recall that Nj(x) ⊂ V (H) is the
set of y such that x, y lie in a copy of R with x playing the role of vertex j in R. For x ∈ Vi, let

Z(x)
def
= max

j 6=i
|Nj(x)| and zk,n

def
= max

x∈V (H)

Z(x)

(n− 1)
.

Later we will give upper bounds for zk,n. For now, let us enumerate the set J of tuples (v, w, f)
where e = {v, w} ∈ D, f ∈ Hb, e ⊂ f , and v ∈ Vi, but v plays the role of vertex i′ 6= i in the copy
f of R. In particular, all k − 1 pairs (v, x) with x ∈ f contain color i′. For m = (v, w, f) ∈ J ,
say that m is 2-sided if (w, v, f) ∈ J as well; otherwise say that m is 1-sided. Let Ji be the set of
i-sided tuples (i = 1, 2). We consider the weighted sum

S = 2|J1|+ |J2|.

Observe that each f ∈ Hb contains at least k − 2 pairs from D. Indeed, if f is transversal, then
it must contain a miscolored vertex which yields at least k − 1 pairs from D in f . If f is not
transversal, then take a largest color class C of f , observe that at least |C| − 1 of the vertices in C
are miscolored, and this yields at least (|C|−1)(k−|C|) ≥ k−2 pairs from D in f . We conclude that
each f ∈ Hb contributes at least 2(k − 2) to S since f contains at least k − 2 pairs e = {u, v} ∈ D
and if (v, w, f) is 1-sided it contributes 2 to S while if it is 2-sided then it contributes 2 again since
both (v, w, f) and (w, v, f) are counted with coefficient 1. This yields

S ≥ 2(k − 2)hb. (24)

On the other hand, we can bound S from above by first choosing e ∈ D and then f ∈ Hb as follows.
Call v ∈ e = {v, w} ∈ D correct in e if v ∈ Vi, vw has color {i, j} for some j and v → w in H iff
i → j in R; if v is not correct in e then say that v is wrong in e. The definition of D implies that
every e ∈ D has at least one wrong vertex in e (and possibly two wrong vertices). Let

Di = {{v, w} ∈ D : {v, w} contains exactly i wrong vertices} (i = 1, 2).

The crucial observation is that

(v, w, f) ∈ Ji =⇒ {v, w} ∈ Di (i = 1, 2). (25)

The reason this holds is that the color and orientation of e ∈ D completely determine the role that
its endpoints play in every copy of R containing e.

Now, to bound S from above, we use (25) and start by choosing {v, w} ∈ Di with wrong vertex v
and then the remaining k−2 vertices of f \ e. If v ∈ Vi, then, since v is wrong in e and e ⊂ f ∈ Hb,
the remaining k − 2 vertices of f \ e must all lie in Nj(v) \ {w} for some j 6= i. So the number of
choices for f \ e is at most

p(|Nj(v)| − 1, k − 2) ≤ p(Z(v), k − 2) ≤ p((n− 1)zk,n, k − 2)

and for each choice of f \ e, we obtain m = (v, w, f) ∈ Ji. This gives

S ≤ 2
∑

{v,w}∈D1

p((n− 1)zk,n, k − 2) + 2
∑

{v,w}∈D2

p((n− 1)zk,n, k − 2) = 2 |D| p((n− 1)zk,n, k − 2).
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Continuing, we obtain

S ≤ 2 |D| p((n− 1)zk,n, k − 2) ≤ 2 δ

(
n

2

)(
zk,n
k − 2

)k−2

(n− 1)k−2. (26)

Finally, (24) and (26) give

hb ≤
S

2(k − 2)
<

δ
(
n
2

)
k − 2

(
zk,n
k − 2

)k−2

(n− 1)k−2, (27)

which is a refined version of (16). Using (21), (23) and (27) we now have

i(R;H) <
∑
i

gk(ni) +
∏
`

n`

(
1−

δ
(
n
2

)(
n
2

)
−
∑

i

(
ni
2

))+
δ
(
n
2

)
k − 2

(
zk,n
k − 2

)k−2

(n− 1)k−2.

Our final task now is to upper bound the RHS by gk(n).

Since δ
(
n
2

)
≤
∑

ij ninj =
(
n
2

)
−
∑

i

(
ni
2

)
, we have δ ∈ I

def
= (0, 1 −

∑
i

(
ni
2

)
/
(
n
2

)
). Viewing the

expression above as a linear function of δ, it suffices to check the endpoints of I.

If we let δ = 0, then

i(R;H) ≤
∑
i

gk(ni) +
∏
i

ni ≤ gk(n)

and we are done. The last inequality holds since gk(n) is the maximum over all partitions of n,
possibly with empty parts (as long as no part has size n), and n1+· · ·+nk = n is one such partition.

If δ = 1−
∑

i

(
ni
2

)
/
(
n
2

)
then we get

i(R;H) ≤
∑
i

gk(ni) +

∑
ninj

k − 2

(
zk,n
k − 2

)k−2

(n− 1)k−2. (28)

In order to show that the RHS in (28) is at most gk(n), we will use explicit upper bounds on gk(ni)
and zk,n and lower bounds on gk(n). Our first step is to state the following nontrivial lower bounds
for p(n, k). A proof is presented in the Appendix.

Lemma 4.4. For integers k ≥ 3 and n > k(k − 1),(n
k

)k
(1− ek(n)) ≤ p(n, k) ≤

(n
k

)k
,

where ek(n) = (4/27)(k3/n2).

We now give a bound on zk,n.

Lemma 4.5. For k ≥ 4, n > k(k − 1), and m = n − dn/ke, let z′k,n be the largest real number
z ∈ (0, 1/2) that satisfies

zk−1 + (1− z)k−1 ≥ (k − 1)k−1

kk−1

(
1− (4/27)(k − 1)3

m2

)
. (29)

Then zk,n ≤ z′k,n. Furthermore, zk,n < 0.2611 if either k = 4, n ≥ 100 or k ≥ 5.
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Proof. We begin by recalling that dmin > gk(n)−gk(n−1) ≥ p(m, k−1) where the second inequality
holds by Lemma 4.2. Recall that zk,n = maxy Z(y)/(n− 1) and let i ∈ [k] so that x ∈ Vi achieves
this maximum. Then by (19) we have

p(m, k − 1) < dmin ≤ d(x) =

k∑
`=1

d`(x) ≤
k∑
`=1

p(|N`(x)|, k − 1). (30)

Let j 6= i be such that zk,n = Z(x)/(n−1) = |Nj(x)|/(n−1). Then, writing z = zk,n, (30) continues
as

p(m, k − 1) <
k∑
`=1

d`(x) ≤
k∑
`=1

p(|N`(x)|, k − 1) ≤ p(|Nj(x)|, k − 1) + p(n− 1− |Nj(x)|, k − 1)

= p(z(n− 1), k − 1) + p((1− z)(n− 1), k − 1). (31)

Using Lemma 4.4 this gives(
m

k − 1

)k−1

(1− ek−1(m)) <

(
z(n− 1)

k − 1

)k−1

+

(
(1− z)(n− 1)

k − 1

)k−1

.

Since dn/ke ≤ (n + k − 1)/k, we have m/(n − 1) ≥ (k − 1)/k and the expression for ek−1(m) in
Lemma 4.4 gives (29).

The RHS of (29) increases with n and it is easy to see that it is > 22−k (the value of the LHS
at z = 1/2) already when n = k(k − 1) + 1. Hence the corresponding equation has two roots
0 < z′ < 1/2 < z′′ < 1 in the interval (0, 1) and zk,n 6∈ Ik,n = (z′, z′′) which is an interval symmetric
around 1/2. Since Ik,n+1 ⊃ Ik,n, we conclude (for k ≥ 5) that zk,n 6∈ Ik,k(k−1)+1. Direct calculation
shows that I4,100 ⊃ (0.2611, 0.7389), I5,21 ⊃ (0.2611, 0.7389), and it is an easy exercise to see that
the intervals Ik,k(k−1)+1 only grow with k. To complete the proof, we only need to show that
zk,n ≤ 1/2 for k ≥ 4 and n > k(k − 1).

Suppose for the sake of contradiction that Z(x) = |Nj(x)| ≥ (n− 1)/2 (recall that x ∈ Vi). Then,
since x ∈ Vi, we have

dj(x) ≤ di(x) ≤ p((1− z)(n− 1), k − 1)

and hence instead of the bound dj(x) ≤ p(z(n− 1), k − 1) we could use in (31) this better bound.
That would give us

p(m, k − 1) < 2p((1− z)(n− 1), k − 1) ≤ 2p(b(n− 1)/2c, k − 1).

This, however is false e.g. since, as we argued above, 1/2 ∈ Ik,n. This contradiction shows that in
fact zk,n ≤ 1/2 and completes the proof of Lemma 4.5

Our next lemma provides bounds for gk(n). We will give a proof in the Appendix.

Lemma 4.6. For k ≥ 4 and n > k(k − 1)

nk − k3nk−2

kk − k
≤ gk(n) ≤ nk − n

kk − k
.
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Our final task is to provide a nontrivial upper bound on each ni. Write pi = ni/n and e′k(n) = k3/n2.
Assume w.l.o.g. that p1 = max pi.

Lemma 4.7. Let k ≥ 4 and n >

{
k(k − 1) if k ≥ 5

100 if k = 4
. Then we can assume w.l.o.g. that p1 < 0.86.

Proof. Let p1 = 1− ck and assume w.l.o.g. that pk = mini>1 pi. Then our assumption implies that
pk ≤ ck/(k − 1). We consider

i(R;H) =
∑
v∈V

dk(v) =
∑
v 6∈Vk

dk(v) +
∑
v∈Vk

dk(v). (32)

Note that for v 6∈ Vk, |Nk(v)| ≤ zk,n(n− 1) and so dk(v) ≤ p(zk,n(n− 1), k− 1). For v ∈ Vk, we will
use the weaker bound dk(v) ≤ p(n− 1, k − 1). As we may assume that i(R;H) ≥ gk(n) (otherwise
we are done by induction), Lemma 4.6 and (32) give

nk(1− e′k(n))

kk − k
≤ gk(n) ≤ i(R;H) ≤ n p(zk,n(n− 1), k − 1) +

ckn

k − 1
p(n− 1, k − 1). (33)

Dividing by nk and using p(n− 1, k − 1) < p(n, k − 1) ≤ (n/(k − 1))k−1 we obtain

ck ≥
(k − 1)k

kk − k
(1− e′k(n))− (k − 1)zk−1

k,n ≥
(k − 1)k

kk − k

(
1− k3

(k(k − 1) + 1)2

)
− (k − 1)zk−1

k,n .

By the last part of Lemma 4.5, zk,n ≤ 0.27. This shows that c4 > 0.14 or p1 = 1 − c4 < 0.86, and
it is an easy matter to see that the bound only improves as k increases.

We are now ready to complete the proof. Recall that our main equation is

i(R;H) ≤
∑
i

gk(ni) +

∑
ninj

k − 2

(
zk,n
k − 2

)k−2

(n− 1)k−2, (34)

and we are to show that the RHS is at most gk(n).

We treat the case k = 4, n ≤ 100 by exhaustive search through all partitions. A simple Maple work-
sheet verifying this fact (as well as a few other numerical facts that we state in our proof) can be
found at the web pages http://homepages.math.uic.edu/~mubayi/papers/ErdosHajnalmw.pdf
and http://people.cs.uchicago.edu/~razborov/files/ErdosHajnal.mw. Thus, in what fol-
lows we always assume that k = 4 entails n ≥ 100. In particular, we can utilize the conclusions of
Lemmas 4.5 and 4.7:

zk,n < 0.2611, p1 < 0.86.

Dividing by nk/(kk − k) and using Lemma 4.6, we see that it suffices to prove

L
def
=
∑
i

pki +A
∑
ij

pipj ≤ 1− e′k(n)
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where as before e′k(n) = k3/n2 and

A = A(k)
def
=

(kk − k) · 0.2611k−2

(k − 2)k−1
.

Since p1 ≥ pi for all i and
∑

i pi = 1,

L ≤ pk−2
1

(∑
i

p2
i

)
+A

∑
ij

pipj = pk−2
1

1− 2
∑
ij

pipj

+A
∑
ij

pipj = pk−2
1 +(A−2pk−2

1 )
∑
ij

pipj .

If A < 2pk−2
1 , then k > 4 since A(4) > 2.14 and the coefficient of

∑
ij pipj is negative. Lemma 4.7

then gives
L < pk−2

1 ≤ p3
1 < (0.86)3 < 0.7 < 1− e′4(21) ≤ 1− e′k(n). (35)

Now assume that A ≥ 2pk−2
1 . Then, using

∑
ij pipj ≤ (k − 1)/2k it is enough to show

pk−2
1 +

k − 1

2k
(A− 2pk−2

1 ) < 1− e′k(n). (36)

For the same reasons as at the end of the proof of Theorem 3.1, we must split further analysis into
two cases.

If k ≥ 5, we apply the trivial bound k−1
2k < 1

2 that reduces (36) to merely

A < 2(1− e′k(n)).

This holds since
A(k) ≤ A(5) < 1 < 2(1− e′5(21)) < 2(1− e′k(n)).

For k = 4, (36) becomes
p2

1

4
+

3

8
A(4) < 1− e′4(n).

In this case p1 < 0.86, A(4) < 2.15 and

p2
1

4
+

3

8
A(4) < 0.992 < 1− e′4(100).

The proof of Theorem 2.1 is complete.

5 Appendix

Here we give the proofs of Lemmas 4.2, 4.4 and 4.6.
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5.1 Proof of Lemma 4.2

We only consider partitions n1 + · · ·+ nk = n where 0 ≤ ni < n for all i; the partition is equitable
if |ni − nj | ≤ 1 for all i 6= j. For a vertex v in a hypergraph H, we write dH(v) for the degree of v
in H. We will use the notation H for the edge set of H.

Definition 5.1. For k ≥ 3 and n ≥ 0, let Gk(n) be the family of n-vertex k-graphs defined
inductively as follows: For n < k, Gk(n) comprises the single n-vertex k-graph with no edge. For
n ≥ k, the vertex set V of any G ∈ Gk(n) is partitioned as V1 ∪ . . . ∪ Vk with ni := |Vi| and
0 ≤ ni < n for all i. For the edge set, G[Vi] ∈ Gk(ni) for each i, and in addition G contains all
edges that have one point in each Vi. Call V1 ∪ . . . ∪ Vk the defining partition for G, or simply, the
partition for G.

Definition 5.2. Let Hk(n) ∈ Gk(n) be the following k-graph. For n < k, Hk(n) is the unique
member of Gk(n), and for n ≥ k, the defining partition V1 ∪ . . . ∪ Vk of Hk(n) is an equitable
partition (||Vi| − |Vj || ≤ 1 for all i 6= j) and for each i, the subgraph induced by Vi is isomorphic to
Hk(|Vi|). We let hk(n) := |Hk(n)|.

Our proof of Lemma 4.2 will use induction on n and so we need one more definition.

Definition 5.3. A vertex v of G ∈ Gk(n) is G-good if the following holds: for n < k every vertex is
G-good. For n ≥ k, if V1 ∪ . . .∪ Vk is the partition for G, and |Vi| ≥ |Vj | for all j, then v is G-good
if v ∈ Vi and v is G[Vi]-good. In other words, a vertex is G-good if it lies in a largest part Vi in the
partition for G and the same is true inductively within Vi.

Removing any vertex v from G ∈ Gk(n) results in a k-graph G − v ∈ Gk(n − 1). Moreover, if v is
Hk(n)-good, then

Hk(n)− v ∼= Hk(n− 1). (37)

Indeed, if we remove v from Hk(n), then the partition for Hk(n), after removal of v, is still equitable
and the same remains true of all inductively defined partitions. Now (37) shows that every two
Hk(n)-good vertices have the same degree and hence we may define δk(n) = dHk(n)(v) where v is
any Hk(n)-good vertex. Observe that

δk(n) = dHk(n)(v) = dHk(dn/ke)(v) + p(n− dn/ke, k − 1) = δk(dn/ke) + p(n− dn/ke, k − 1). (38)

Finally, (37) gives
hk(n− 1) + δk(n) = hk(n). (39)

Lemma 5.4. Let G ∈ Gk(n) and v be G-good. Then dG(v) ≤ δk(n).

Proof. Proceed by induction on n. The cases n < k are trivial since dG(v) = 0 = δk(n). Let
V1 ∪ . . . ∪ Vk be the partition for G and ni := |Vi| with n1 ≥ n2 ≥ · · · ≥ nk and assume wlog that
v ∈ V1. Let X1 ∪ · · · ∪Xk be the partition for G[V1] ∈ Gk(n1), xi := |Xi| with b := x1 ≥ · · · ≥ xk
and assume wlog that v ∈ X1. Note that b ≥ dn1/ke. Let

a1 := |V2 ∪ · · · ∪ Vk| = n− n1, a2 := |V1| − |X1| = n1 − b.
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Since v is G[X1]-good, G[X1] ∈ Gk(b), and b < n, induction implies dG[X1](v) ≤ δk(b) and hence

dG(v) = dG[V1](v) +
k∏
j=2

nj = dG[X1](v) +
k∏
`=2

x` +
k∏
j=2

nj ≤ δk(b) + p(a1, k − 1) + p(a2, k − 1). (40)

Case 1. b ≤ dn/ke. Note that ai + b ≥ dn/ke for i = 1, 2 since a1 + b = (n − n1) + b ≥
(n − n1) + n1/k ≥ n/k and a2 + b = n1 ≥ n/k. For fixed b and n, a1 + a2 = n − b is also fixed,
so by Lemma 4.3c), p(a1, k − 1) + p(a2, k − 1) is uniquely maximized when a1 or a2 is as small
possible, namely {a1, a2} = {dn/ke − b, n − dn/ke} where we use the assumption dn/ke − b ≥ 0.
Consequently,

dG(v) ≤ δk(b) + p(dn/ke − b, k − 1) + p(n− dn/ke, k − 1). (41)

If b = dn/ke, then (38) and (41) give dG(v) ≤ δk(n) and we are done, so assume that b < dn/ke.
Consider K ∈ Gk(dn/ke) whose defining partition has largest part B of size b and all other k − 1
parts form an equitable partition of dn/ke − b. Since b = x1 ≥ dn1/ke ≥ ddn/ke/ke, B is indeed a
largest part. Further, let K[B] ∼= Hk(b) (for all other parts C, choose K[C] arbitrarily) and let w
be a K[B]-good vertex. Then dK[B](w) = δk(b) and w is also K-good, so by induction,

δk(b) + p(dn/ke − b, k − 1) = dK[B](w) + p(dn/ke − b, k − 1) = dK(w) ≤ δk(dn/ke).

Continuing (41) we obtain

dG(v) ≤ δk(dn/ke) + p(n− dn/ke, k − 1) = δk(n)

where we use (38) for the last equality.

Case 2. b > dn/ke. In this case (40) and Lemma 4.3 yield

dG(v) ≤ δk(b) + p(a1, k − 1) + p(a2, k − 1) ≤ δk(b) + p(a1 + a2, k − 1) = δk(b) + p(n− b, k − 1).

Consider G′ ∈ Gk(n) whose defining partition has largest part B′ of size b and all other k− 1 parts
form an equitable partition of n − b. Since b ≥ dn/ke, B′ is indeed the largest part. Further, let
G′[B′] ∼= Hk(b) and let X ′1 ∪ . . .∪X ′k be the partition for G′[B′] with |X ′1| = db/ke. Let v′ ∈ X ′1 be
a G′[B′]-good vertex. Since B′ is the largest part in the partition for G′, v′ is also G′-good. Since
|X ′1| = db/ke ≤ dn/ke, by the proof in Case 1 (with (G′, X ′1, v

′) playing the role of (G,X1, v)) we
conclude that dG′(v

′) ≤ δk(n). On the other hand, since v′ is G′[B′]-good and G′[B′] ∼= Hk(b),

dG′(v
′) = dG′[B′](v

′) + p(n− b, k − 1) = dHk(b)(v
′) + p(n− b, k − 1) = δk(b) + p(n− b, k − 1).

We therefore have

dG(v) ≤ δk(b) + p(n− b, k − 1) = dG′(v
′) ≤ δk(n).

Proof of Lemma 4.2. We are to show that gk(n) = hk(n). In other words, for each G ∈ Gk(n)
we must show that |G| ≤ hk(n). We proceed by induction on n. The cases n ≤ k are trivial, so
assume n > k. Pick a G-good vertex v. Then G− v ∈ Gk(n− 1) and by induction, Lemma 5.4, and
(39),

|G| = |G− v|+ dG(v) ≤ hk(n− 1) + δk(n) = hk(n).
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5.2 Proof of Lemma 4.4

We begin with the following inequality.

Lemma 5.5. Let a, b, k, n be positive integers with k = a+ b ≥ 2, and n ≥ max{a, b}. Then(
1 +

a

n

)b(
1− b

n

)a
≥ 1− max{ab2, ba2}

n2
≥ 1− (4/27)k3

n2
.

Proof. Suppose first that a ≤ b. Consider a copies of the number 1 + b/n and b − a copies of the
number 1. The arithmetic mean of these numbers is 1 + a/n hence the AMGM inequality gives(

1 +
a

n

)b
≥
(

1 +
b

n

)a
· 1b−a

and Bernoulli’s estimate yields(
1 +

a

n

)b(
1− b

n

)a
≥
(

1− b2

n2

)a
≥ 1− ab2

n2
.

If a ≥ b, then a similar argument applies by taking b copies of 1− a/n and a− b copies of 1.

Proof of Lemma 4.4. We are to show that for k ≥ 3 and n > k(k − 1),(n
k

)k
(1− ek(n)) ≤ p(n, k) ≤

(n
k

)k
,

where ek(n) = (4/27)(k3/n2). The upper bound for p(n, k) is trivial so we only prove the lower
bound. Let n ≡ t (mod k) where 0 ≤ t < k. Then

p(n, k) =

(
n

k
+
k − t
k

)t(n
k
− t

k

)k−t
=
(n
k

)k (
1 +

k − t
n

)t(
1− t

n

)k−t
.

Now apply Lemma 5.5 with a = k − t and b = t.

5.3 Proof of Lemma 4.6

We are to show that for k ≥ 4 and n > k(k − 1)

nk − k3nk−2

kk − k
≤ gk(n) ≤ nk − n

kk − k
.

The upper bound is by induction on n and we prove it for all n ≥ 1. The base cases n ≤ k are
obvious so let n > k. For the induction step, apply Lemma 4.2 and take the equitable partition
n =

∑
i ni that achieves the definition of gk(n). Then each ni < n and by induction,

gk(n) =
∑
i

gk(ni) +
∏
i

ni ≤
∑
i

nki − ni
kk − k

+
∏
i

ni =
∑
i

nki
kk − k

− n

kk − k
+
∏
i

ni ≤
nk − n
kk − k
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where the last inequality (after dividing by nk/(kk − k)) is (17).

For the lower bound, we take an equitable partition
∑
ni = n and proceed by induction on n. Let

us first assume that k ≥ 5. We will actually prove that

(kk − k) gk(n) ≥

{
nk − k4nk−2 if n ≤ k(k − 1)

nk − k3nk−2 if n > k(k − 1).

Note that the first bound is trivial for n ≤ k(k−1) since it is negative. For n > k(k−1), Lemma 4.4
and induction imply that gk(n) is at least

∑
i

gk(ni) + p(n, k) ≥
∑
i

nki − k4nk−2
i

kk − k
+
(n
k

)k
(1− ek(n)) ≥ nk

kk − k
−

(∑
k4nk−2

i

kk − k
+
nkek(n)

kk

)

where we used Jensen’s inequality to obtain

∑ nki
kk − k

+
(n
k

)k
≥
(n
k

)k ( k

kk − k
+ 1

)
=

nk

kk − k
.

Since n > k(k − 1) and the ni’s are an equitable partition,

k∑
i=1

nk−2
i <

k∑
i=1

(n/k + 1)k−2 = k(n/k + 1)k−2 =
nk−2

kk−3
(1 + k/n)k−2 <

nk−2

kk−3
· e. (42)

Using k ≥ 5, we now have ∑
k4nk−2

i

kk − k
≤ e · k4

kk − k
· n

k−2

kk−3
<

18

27

k3nk−2

kk − k
. (43)

Hence

∑
k4nk−2

i

kk − k
+
nkek(n)

kk
<

(18/27)k3nk−2

kk − k
+
nk(4/27)(k3/n2)

kk − k
<
k3nk−2

kk − k
(44)

and the proof is complete.

Now we assume that k = 4. In this case we show by induction on n that for all n > 0,

g4(n) ≥ nk − k3nk−2

kk − k
=
n4 − 64n2

252
.

The cases n ≤ 8 are trivial since the RHS is nonpositive so assume that n ≥ 9. The cases 9 ≤ n ≤ 12
can be checked by direct computation, so assume that n > 12 and we can apply the bounds in
Lemma 4.4. We proceed as in the proof for k ≥ 5 except that all occurrences of the k4 term are
replaced by k3 = 43. Now (42) becomes

4∑
i=1

n2
i <

n2

4
(1 + 4/n)2 ≤ n2

4
(1 + 4/9)2 < (2.1)

n2

4
.
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and, since 2.1 < 72/27, (43) becomes∑
43n2

i

252
≤ 43

252
· (2.1) · n

2

4
<

18

27

43n2

252
.

Finally, (44) becomes∑
43n2

i

252
+
n4e4(n)

44
<

(18/27)43n2

252
+
n4(8/27)(43/n2)

252
<

64n2

252

and the proof is complete.
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[2] J. Balogh, P. Hu, B. Lidický, F Pfender, J. Volec, M. Young, Michael, Rainbow triangles in
three-colored graphs. J. Combin. Theory Ser. B 126 (2017), 83–113.
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