The Erdős-Szekeres problem and an induced Ramsey question

Dhruv Mubayi* Andrew Suk ${ }^{\dagger}$

Abstract

Motivated by the Erdős-Szekeres convex polytope conjecture in \mathbb{R}^{d}, we initiate the study of the following induced Ramsey problem for hypergraphs. Given integers $n>k \geq 5$, what is the minimum integer $g_{k}(n)$ such that any k-uniform hypergraph on $g_{k}(n)$ vertices with the property that any set of $k+1$ vertices induces 0,2 , or 4 edges, contains an independent set of size n. Our main result shows that $g_{k}(n)>2^{c n^{k-4}}$, where $c=c(k)$.

1 Introduction

Given a finite point set P in d-dimensional Euclidean space \mathbb{R}^{d}, we say that P is in general position if no $d+1$ members lie on a common hyperplane. Let $E S_{d}(n)$ denote the minimum integer N, such that any set of N points in \mathbb{R}^{d} in general position contains n members in convex position, that is, n points that form the vertex set of a convex polytope. In their classic 1935 paper, Erdős and Szekeres [1] proved that in the plane, $E S_{2}(n) \leq 4^{n}$. In 1960, they [2] showed that $E S_{2}(n) \geq 2^{n-2}+1$ and conjectured this to be sharp for every integer $n \geq 3$. Their conjecture has been verified for $n \leq 6[1,8]$, and determining the exact value of $E S_{2}(n)$ for $n \geq 7$ is one of the longest-standing open problems in Ramsey theory/discrete geometry. Recently [9], the second author asymptotically verified the Erdős-Szekeres conjecture by showing that $E S_{2}(n)=2^{n+o(n)}$.

In higher dimensions, $d \geq 3$, much less is known about $E S_{d}(n)$. In [3], Károlyi showed that projections into lower-dimensional spaces can be used to bound these functions, since most generic projections preserve general position, and the preimage of a set in convex position must itself be in convex position. Hence, $E S_{d}(n) \leq E S_{2}(n)=2^{n+o(n)}$. However, the best known lower bound for $E S_{d}(n)$ is only on the order of $2^{c n^{1 /(d-1)}}$, due to Károlyi and Valtr [4]. An old conjecture of Füredi (see Chapter 3 in [5]) says that this lower bound is essentially the truth.

Conjecture 1.1. For $d \geq 3, E S_{d}(n)=2^{\Theta\left(n^{1 /(d-1)}\right)}$.
It was observed by Motzkin [6] that any set of $d+3$ points in \mathbb{R}^{d} in general position contains either 0,2 , or $4(d+2)$-tuples not in convex position. By defining a hypergraph H whose vertices are N

[^0]points in \mathbb{R}^{d} in general position, and edges are $(d+2)$-tuples not in convex position, then every set of $d+3$ vertices induces 0 , 2 , or 4 edges. Moreover, by Carathéodory's theorem (see Theorem 1.2.3 in [5]), an independent set in H would correspond to a set of points in convex position. This leads us to the following combinatorial parameter.

Let $g_{k}(n)$ be the minimum integer N such that any k-uniform hypergraph on N vertices with the property that every set of $k+1$ vertices induces 0,2 , or 4 edges, contains an independent set of size n. For $k \geq 5$, the geometric construction of Károlyi and Valtr [4] mentioned earlier implies that

$$
g_{k}(n) \geq E S_{k-2}(n) \geq 2^{c n^{1 /(k-3)}}
$$

where $c=c(k)$. One might be tempted to prove Conjecture 1.1 by establishing a similar upper bound for $g_{k}(n)$. However, our main result shows that this is not possible.

Theorem 1.2. For each $k \geq 5$ there exists $c=c(k)>0$ such that for any $n \geq k$ we have $g_{k}(n)>2^{c n^{k-4}}$.

In the other direction, we can bound $g_{k}(n)$ from above as follows. For $n \geq k \geq 5$ and $t<k$, let $h_{k}(t, n)$ be the minimum integer N such that any k-uniform hypergraph on N vertices with the property that any set of $k+1$ vertices induces at most t edges, contains an independent set of size n. In [7], the authors proved the following.

Theorem 1.3 ([7]). For $k \geq 5$ and $t<k$, there is a positive constant $c^{\prime}=c^{\prime}(k, t)$ such that

$$
h_{k}(t, n) \leq \operatorname{twr}_{t}\left(c^{\prime} n^{k-t} \log n\right),
$$

where twr is defined recursively as $\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$.
Hence, we have the following corollary.
Corollary 1.4. For $k \geq 5$, there is a constant $c^{\prime}=c^{\prime}(k)$ such that

$$
g_{k}(n) \leq h_{k}(4, n) \leq 2^{2^{2^{c^{\prime}} n^{k-4} \log n}} .
$$

It is an interesting open problem to improve either the upper or lower bounds for $g_{k}(n)$.
Problem 1.5. Determine the tower growth rate for $g_{k}(n)$.

Actually, this Ramsey function can be generalized further as follows: for every $S \subset\{0,1, \ldots, k\}$, define $g_{k}(n, S)$ to be the minimum integer N such that any N-vertex k-uniform hypergraph with the property that every set of $k+1$ vertices induces s edges for some $s \in S$, contains an independent set of size n. General results for $g_{k}(n, S)$ may shed light on classical Ramsey problems, but it appears difficult to determine even the tower height for any nontrivial cases.

2 Proof of Theorem 1.2

Let $k \geq 5$ and $N=2^{c n^{k-4}}$ where $c=c_{k}>0$ is sufficiently small to be chosen later. We are to produce a k-uniform hypergraph H on N vertices with $\alpha(H)<n$ and every $k+1$ vertices of H span 0 , 2, or 4 edges. Let $\phi:\binom{[N]}{k-3} \rightarrow\binom{[k-1]}{2}$ be a random $\binom{k-1}{2}$-coloring, where each color appears on each $(k-3)$-tuple independently with probability $1 /\binom{k-1}{2}$. For $f=\left(v_{1}, \ldots, v_{k-1}\right) \in\binom{[N]}{k-1}$, where $v_{1}<v_{2}<\cdots<v_{k-1}$, define the function $\chi_{f}:\binom{f}{k-3} \rightarrow\binom{[k-1]}{2}$ as follows: for all $\{i, j\} \in\binom{[k-1]}{2}$, let

$$
\chi_{f}\left(f \backslash\left\{v_{i}, v_{j}\right\}\right)=\{i, j\} .
$$

We define the $(k-1)$-uniform hypergraph G, whose vertex set is [$N]$, such that

$$
G=G_{\phi}:=\left\{f \in\binom{[N]}{k-1}: \phi(f \backslash\{u, v\})=\chi_{f}(f \backslash\{u, v\}) \text { for all }\{u, v\} \in\binom{f}{2}\right\} .
$$

For example, if $k=4$ (which is excluded for the theorem but we allow it to illustrate this construction) then $\phi:[N] \rightarrow\{12,13,23\}$ and for $f=\left(v_{1}, v_{2}, v_{3}\right)$, where $v_{1}<v_{2}<v_{3}$, we have $f \in G$ iff $\phi\left(v_{1}\right)=23, \phi\left(v_{2}\right)=13$, and $\phi\left(v_{3}\right)=12$.

Given a subset $S \subset[N]$, let $G[S]$ be the subhypergraph of G induced by the vertex set S. Finally, we define the k-uniform hypergraph H, whose vertex set is [N], such that

$$
H=H_{\phi}:=\left\{e \in\binom{[N]}{k}:|G[e]| \text { is odd }\right\} .
$$

Claim 2.1. $|H[S]|$ is even for every $S \in\binom{[N]}{k+1}$.
Proof. Let $S \in\binom{[N]}{k+1}$ and suppose for contradiction that $|H[S]|$ is odd. Then

$$
2|G[S]|=\sum_{f \in G[S]} 2=\sum_{f \in G[S]} \sum_{\substack{e \in\left(\begin{array}{l}
S \\
k
\end{array}\right) \\
e \supset f}} 1=\sum_{\substack{e \in\left(\begin{array}{l}
S \\
k
\end{array}\right)}}|G[e]|=\sum_{e \notin H[S]}|G[e]|+\sum_{e \in H[S]}|G[e]| .
$$

The first sum on the RHS above is even by definition of H and the second sum is odd by definition of H and the assumption that $|H[S]|$ is odd. This contradiction completes the proof.

Claim 2.2. $|G[e]| \leq 2$ for every $e \in\binom{[N]}{k}$.
Proof. For sake of contradiction, suppose that for $e=\left(v_{1}, \ldots, v_{k}\right)$, where $v_{1}<\cdots<v_{k}$, we have $|G[e]| \geq 3$. Let $e_{p}=e \backslash\left\{v_{p}\right\}$ for $p \in[k]$ and suppose that $e_{i}, e_{j}, e_{l} \in G$ with $i<j<l$. In what follows, we will find a set S of size $k-3$, where $S \subset e_{i}$ and $S \subset e_{l}$, such that $\chi_{e_{i}}(S) \neq \chi_{e_{l}}(S)$. This will give us our contradiction since $e_{i}, e_{l} \in G$ implies that $\chi_{e_{i}}(S)=\phi(S)=\chi_{e_{l}}(S)$.

Let $Y=e \backslash\left\{v_{i}, v_{j}, v_{l}\right\}$ and $Y^{\prime}=Y \backslash\{\min Y\}$. Let us first assume that $i>1$ so that $\min Y=v_{1}$. In this case,

$$
\chi_{e_{i}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)=\{1, l-1\},
$$

since we obtain $Y^{\prime} \cup\left\{v_{j}\right\}$ from e_{i} by removing $\min Y$ and v_{l} which are the first and $(l-1)$ st elements of e_{i}. Similarly,

$$
\chi_{e_{l}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)=\{1, i\},
$$

since we obtain $Y^{\prime} \cup\left\{v_{j}\right\}$ from e_{l} by removing $\min Y$ and v_{i} which are the first and i th elements of e_{l}. Because $l>i+1$, we conclude that $\chi_{e_{i}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right) \neq \chi_{e_{l}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)$ as desired.

Next, we assume that $i=1$ and $\min Y=v_{q}$ where $q>1$. In this case,

$$
\chi_{e_{i}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)=\{q-1, l-1\},
$$

since we obtain $Y^{\prime} \cup\left\{v_{j}\right\}$ from e_{i} by removing v_{q} and v_{l} which are the ($q-1$)st and ($l-1$)st elements of e_{i}. Similarly,

$$
\chi_{e_{l}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)=\left\{1, q^{\prime}\right\} \quad \text { where } \quad q^{\prime}=q \text { if } q<l \text { and } q^{\prime}=q-1 \text { if } q>l \text {, }
$$

since we obtain $Y^{\prime} \cup\left\{v_{j}\right\}$ from e_{l} by removing $v_{i}=v_{1}$ and v_{q} which are the first and q^{\prime} th elements of e_{l}. If $q \neq 2$, then we immediately obtain $\chi_{e_{i}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right) \neq \chi_{e_{l}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)$ as desired. On the other hand, if $q=2$, then $q^{\prime}=q=2$ as well and $l \geq 4$, so $l-1 \neq q^{\prime}$ and again

$$
\chi_{e_{i}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right)=\{q-1, l-1\} \neq\left\{1, q^{\prime}\right\}=\chi_{e_{l}}\left(Y^{\prime} \cup\left\{v_{j}\right\}\right) .
$$

This completes the proof of the claim.

Let T_{3} be the ($k-1$)-uniform hypergraph with vertex set S with $|S|=k+1$ and three edges e_{1}, e_{2}, e_{3} such that there are three pairwise disjoint pairs $p_{1}, p_{2}, p_{3} \in\binom{S}{2}$ with $p_{i}=\left\{v_{i}, v_{i}^{\prime}\right\}$ and $e_{i}=S \backslash p_{i}$ for $i \in\{1,2,3\}$.

Claim 2.3. $T_{3} \not \subset G$.

Proof. Suppose for a contradiction that there is a subset $S \subset[N]$ of size $k+1$ such that $T_{3} \subset G[S]$. Using the notation above, assume without loss of generality that $v_{1}=\min \cup_{i} p_{i}$ and $v_{2}=\min \left(p_{2} \cup\right.$ $\left.p_{3}\right)$. Let $Y=S \backslash\left(p_{1} \cup p_{3}\right)$ and note that $Y \in\binom{e_{1} \cap e_{3}}{k-3}$. Let $Y_{1} \subset Y$ be the set of elements in Y that are smaller than v_{1}, so we have the ordering

$$
Y_{1}<v_{1}<v_{2}<\left\{v_{3}, v_{3}^{\prime}\right\} .
$$

Now, $\chi_{e_{1}}(Y)$ is the pair of positions of v_{3} and v_{3}^{\prime} in e_{1}. Both of these positions are at least $\left|Y_{1}\right|+2$ as $Y_{1} \cup\left\{v_{2}\right\}$ lies before p_{3}. On the other hand, the smallest element of $\chi_{e_{3}}(Y)$ is $\left|Y_{1}\right|+1$ which is the position of v_{1} in e_{3}. This shows that $\chi_{e_{1}}(Y) \neq \chi_{e_{3}}(Y)$, which is a contradiction as both must be equal to $\phi(Y)$ as $e_{1}, e_{3} \subset G$.

We now show that every $(k+1)$-set $S \subset[N]$ spans 0,2 or 4 edges of H. By Claim 2.1, $|H[S]|$ is even. Let G^{\prime} be the graph with vertex set S and edge set $\{S \backslash f: f \in G[S]\}$. So there is a 1-1 correspondence between $G[S]$ and G^{\prime} via the map $f \rightarrow S \backslash f$. If G^{\prime} has a vertex x of degree at least three, then $|G[S \backslash\{x\}]| \geq 3$ which contradicts Claim 2.2. Therefore G^{\prime} consists of disjoint paths, cycles, and isolated vertices. This implies that a k-set $A \subset S$ is an edge in H exactly when $S \backslash A$ is a vertex of degree 1 in G^{\prime}. Next, observe that Claim 2.3 implies that G^{\prime} does not contain a
matching of size three, for the complementary sets of this matching yield a copy of $T_{3} \subset G$. Hence, the number of degree 1 vertices in G^{\prime} is 0,2 , or 4 , and therefore $|H[S]| \in\{0,2,4\}$ for all $S \in\binom{[N]}{k+1}$. Let us now argue that $\alpha(H)<n$, which is a straight-forward application of the probabilistic method. Indeed, we will show that this happens with positive probability and conclude that an H with this property exists. For a given k-set, the probability that it is an edge of H is $p>0$, where p depends only on k. Consequently, the probability that H has an independent set of size n is at most

$$
\binom{N}{n}(1-p)^{c^{\prime} n^{k-3}}
$$

for some $c^{\prime}>0$. Note that the exponent $k-3$ above is obtained by taking a partial Steiner $(n, k, k-3)$ system S within a potential independent set of size n and observing that we have independence within the edges of S. A short calculation shows that this probability is less than 1 as long as c is sufficiently small. This completes the proof of Theorem 1.2

Acknowledgment. We thank the referee for helpful comments.

References

[1] P. Erdős, G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463-470.
[2] P. Erdős, G. Szekeres, On some extremum problems in elementary geometry, Ann. Univ. Sci. Budapest. Eötvös Sect. Math., 3-4 (1960-61), 53-62.
[3] G. Károlyi, Ramsey-remainder for convex sets and the Erdős-Szekeres theorem, Discrete Applied Mathematics 109 (2001), 163-175.
[4] G. Károlyi, P. Valtr, Point configurations in d-space without large subsets in convex position, Disc. Comp. Geom. 30 (2003), 277-286.
[5] J. Matoušek, Lectures in Discrete Geometry, Springer, 2002.
[6] T. Motzkin, Cooperative classes of finite sets in one and more dimensions, Journal of Combinatorial Theory 3 (1967), 244-251.
[7] D. Mubayi, A. Suk, The Erdős-Hajnal hypergraph Ramsey problem, submitted.
[8] G. Szekeres, L. Peters, Computer solution to the 17-point Erdős-Szekeres problem, ANZIAM Journal 48 (2006), 151-164.
[9] A. Suk, On the Erdős-Szekeres convex polygon problem, Journal of the American Mathematical Society 30 (2017), 1047-1053.

[^0]: *Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF grant DMS-1763317. Email: mubayi@uic.edu
 ${ }^{\dagger}$ Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by an NSF CAREER award and an Alfred Sloan Fellowship. Email: asuk@ucsd.edu.

