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Abstract

Motivated by the Erdős-Szekeres convex polytope conjecture in Rd, we initiate the study of
the following induced Ramsey problem for hypergraphs. Given integers n > k ≥ 5, what is the
minimum integer gk(n) such that any k-uniform hypergraph on gk(n) vertices with the property
that any set of k+ 1 vertices induces 0, 2, or 4 edges, contains an independent set of size n. Our

main result shows that gk(n) > 2cn
k−4

, where c = c(k).

1 Introduction

Given a finite point set P in d-dimensional Euclidean space Rd, we say that P is in general position
if no d + 1 members lie on a common hyperplane. Let ESd(n) denote the minimum integer N ,
such that any set of N points in Rd in general position contains n members in convex position, that
is, n points that form the vertex set of a convex polytope. In their classic 1935 paper, Erdős and
Szekeres [1] proved that in the plane, ES2(n) ≤ 4n. In 1960, they [2] showed that ES2(n) ≥ 2n−2+1
and conjectured this to be sharp for every integer n ≥ 3. Their conjecture has been verified for
n ≤ 6 [1, 8], and determining the exact value of ES2(n) for n ≥ 7 is one of the longest-standing
open problems in Ramsey theory/discrete geometry. Recently [9], the second author asymptotically
verified the Erdős-Szekeres conjecture by showing that ES2(n) = 2n+o(n).

In higher dimensions, d ≥ 3, much less is known about ESd(n). In [3], Károlyi showed that
projections into lower-dimensional spaces can be used to bound these functions, since most generic
projections preserve general position, and the preimage of a set in convex position must itself be
in convex position. Hence, ESd(n) ≤ ES2(n) = 2n+o(n). However, the best known lower bound for

ESd(n) is only on the order of 2cn
1/(d−1)

, due to Károlyi and Valtr [4]. An old conjecture of Füredi
(see Chapter 3 in [5]) says that this lower bound is essentially the truth.

Conjecture 1.1. For d ≥ 3, ESd(n) = 2Θ(n1/(d−1)).

It was observed by Motzkin [6] that any set of d+ 3 points in Rd in general position contains either
0, 2, or 4 (d+ 2)-tuples not in convex position. By defining a hypergraph H whose vertices are N

∗Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA.
Research partially supported by NSF grant DMS-1763317. Email: mubayi@uic.edu
†Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by an

NSF CAREER award and an Alfred Sloan Fellowship. Email: asuk@ucsd.edu.

1



points in Rd in general position, and edges are (d+ 2)-tuples not in convex position, then every set
of d+ 3 vertices induces 0, 2, or 4 edges. Moreover, by Carathéodory’s theorem (see Theorem 1.2.3
in [5]), an independent set in H would correspond to a set of points in convex position. This leads
us to the following combinatorial parameter.

Let gk(n) be the minimum integer N such that any k-uniform hypergraph on N vertices with the
property that every set of k+1 vertices induces 0, 2, or 4 edges, contains an independent set of size
n. For k ≥ 5, the geometric construction of Károlyi and Valtr [4] mentioned earlier implies that

gk(n) ≥ ESk−2(n) ≥ 2cn
1/(k−3)

,

where c = c(k). One might be tempted to prove Conjecture 1.1 by establishing a similar upper
bound for gk(n). However, our main result shows that this is not possible.

Theorem 1.2. For each k ≥ 5 there exists c = c(k) > 0 such that for any n ≥ k we have

gk(n) > 2cn
k−4

.

In the other direction, we can bound gk(n) from above as follows. For n ≥ k ≥ 5 and t < k, let
hk(t, n) be the minimum integer N such that any k-uniform hypergraph on N vertices with the
property that any set of k+ 1 vertices induces at most t edges, contains an independent set of size
n. In [7], the authors proved the following.

Theorem 1.3 ([7]). For k ≥ 5 and t < k, there is a positive constant c′ = c′(k, t) such that

hk(t, n) ≤ twrt(c
′nk−t log n),

where twr is defined recursively as twr1(x) = x and twri+1(x) = 2twri(x).

Hence, we have the following corollary.

Corollary 1.4. For k ≥ 5, there is a constant c′ = c′(k) such that

gk(n) ≤ hk(4, n) ≤ 222
c′nk−4 logn

.

It is an interesting open problem to improve either the upper or lower bounds for gk(n).

Problem 1.5. Determine the tower growth rate for gk(n).

Actually, this Ramsey function can be generalized further as follows: for every S ⊂ {0, 1, . . . , k},
define gk(n, S) to be the minimum integer N such that any N -vertex k-uniform hypergraph with the
property that every set of k+1 vertices induces s edges for some s ∈ S, contains an independent set
of size n. General results for gk(n, S) may shed light on classical Ramsey problems, but it appears
difficult to determine even the tower height for any nontrivial cases.
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2 Proof of Theorem 1.2

Let k ≥ 5 and N = 2cn
k−4

where c = ck > 0 is sufficiently small to be chosen later. We are to
produce a k-uniform hypergraph H on N vertices with α(H) < n and every k+1 vertices of H span

0, 2, or 4 edges. Let φ :
( [N ]
k−3

)
→
(

[k−1]
2

)
be a random

(
k−1

2

)
-coloring, where each color appears on

each (k − 3)-tuple independently with probability 1/
(
k−1

2

)
. For f = (v1, . . . , vk−1) ∈

( [N ]
k−1

)
, where

v1 < v2 < · · · < vk−1, define the function χf :
(
f
k−3

)
→
(

[k−1]
2

)
as follows: for all {i, j} ∈

(
[k−1]

2

)
, let

χf (f \ {vi, vj}) = {i, j}.

We define the (k − 1)-uniform hypergraph G, whose vertex set is [N ], such that

G = Gφ :=

{
f ∈

(
[N ]

k − 1

)
: φ(f \ {u, v}) = χf (f \ {u, v}) for all {u, v} ∈

(
f

2

)}
.

For example, if k = 4 (which is excluded for the theorem but we allow it to illustrate this construc-
tion) then φ : [N ] → {12, 13, 23} and for f = (v1, v2, v3), where v1 < v2 < v3, we have f ∈ G iff
φ(v1) = 23, φ(v2) = 13, and φ(v3) = 12.

Given a subset S ⊂ [N ], let G[S] be the subhypergraph of G induced by the vertex set S. Finally,
we define the k-uniform hypergraph H, whose vertex set is [N ], such that

H = Hφ :=

{
e ∈

(
[N ]

k

)
: |G[e]| is odd

}
.

Claim 2.1. |H[S]| is even for every S ∈
( [N ]
k+1

)
.

Proof. Let S ∈
( [N ]
k+1

)
and suppose for contradiction that |H[S]| is odd. Then

2|G[S]| =
∑

f∈G[S]

2 =
∑

f∈G[S]

∑
e∈(Sk)
e⊃f

1 =
∑
e∈(Sk)

|G[e]| =
∑

e6∈H[S]

|G[e]|+
∑

e∈H[S]

|G[e]|.

The first sum on the RHS above is even by definition of H and the second sum is odd by definition
of H and the assumption that |H[S]| is odd. This contradiction completes the proof.

Claim 2.2. |G[e]| ≤ 2 for every e ∈
([N ]
k

)
.

Proof. For sake of contradiction, suppose that for e = (v1, . . . , vk), where v1 < · · · < vk, we have
|G[e]| ≥ 3. Let ep = e \ {vp} for p ∈ [k] and suppose that ei, ej , el ∈ G with i < j < l. In what
follows, we will find a set S of size k− 3, where S ⊂ ei and S ⊂ el, such that χei(S) 6= χel(S). This
will give us our contradiction since ei, el ∈ G implies that χei(S) = φ(S) = χel(S).

Let Y = e \ {vi, vj , vl} and Y ′ = Y \ {minY }. Let us first assume that i > 1 so that minY = v1.
In this case,

χei(Y
′ ∪ {vj}) = {1, l − 1},
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since we obtain Y ′∪{vj} from ei by removing minY and vl which are the first and (l−1)st elements
of ei. Similarly,

χel(Y
′ ∪ {vj}) = {1, i},

since we obtain Y ′ ∪{vj} from el by removing minY and vi which are the first and ith elements of
el. Because l > i+ 1, we conclude that χei(Y

′ ∪ {vj}) 6= χel(Y
′ ∪ {vj}) as desired.

Next, we assume that i = 1 and minY = vq where q > 1. In this case,

χei(Y
′ ∪ {vj}) = {q − 1, l − 1},

since we obtain Y ′∪{vj} from ei by removing vq and vl which are the (q−1)st and (l−1)st elements
of ei. Similarly,

χel(Y
′ ∪ {vj}) = {1, q′} where q′ = q if q < l and q′ = q − 1 if q > l,

since we obtain Y ′ ∪ {vj} from el by removing vi = v1 and vq which are the first and q′th elements
of el. If q 6= 2, then we immediately obtain χei(Y

′∪{vj}) 6= χel(Y
′∪{vj}) as desired. On the other

hand, if q = 2, then q′ = q = 2 as well and l ≥ 4, so l − 1 6= q′ and again

χei(Y
′ ∪ {vj}) = {q − 1, l − 1} 6= {1, q′} = χel(Y

′ ∪ {vj}).

This completes the proof of the claim.

Let T3 be the (k − 1)-uniform hypergraph with vertex set S with |S| = k + 1 and three edges
e1, e2, e3 such that there are three pairwise disjoint pairs p1, p2, p3 ∈

(
S
2

)
with pi = {vi, v′i} and

ei = S \ pi for i ∈ {1, 2, 3}.

Claim 2.3. T3 6⊂ G.

Proof . Suppose for a contradiction that there is a subset S ⊂ [N ] of size k+1 such that T3 ⊂ G[S].
Using the notation above, assume without loss of generality that v1 = min∪ipi and v2 = min(p2 ∪
p3). Let Y = S \ (p1 ∪ p3) and note that Y ∈

(
e1∩e3
k−3

)
. Let Y1 ⊂ Y be the set of elements in Y that

are smaller than v1, so we have the ordering

Y1 < v1 < v2 < {v3, v
′
3}.

Now, χe1(Y ) is the pair of positions of v3 and v′3 in e1. Both of these positions are at least |Y1|+ 2
as Y1 ∪ {v2} lies before p3. On the other hand, the smallest element of χe3(Y ) is |Y1|+ 1 which is
the position of v1 in e3. This shows that χe1(Y ) 6= χe3(Y ), which is a contradiction as both must
be equal to φ(Y ) as e1, e3 ⊂ G.

We now show that every (k + 1)-set S ⊂ [N ] spans 0, 2 or 4 edges of H. By Claim 2.1, |H[S]| is
even. Let G′ be the graph with vertex set S and edge set {S \ f : f ∈ G[S]}. So there is a 1-1
correspondence between G[S] and G′ via the map f → S \ f . If G′ has a vertex x of degree at
least three, then |G[S \ {x}]| ≥ 3 which contradicts Claim 2.2. Therefore G′ consists of disjoint
paths, cycles, and isolated vertices. This implies that a k-set A ⊂ S is an edge in H exactly when
S \A is a vertex of degree 1 in G′. Next, observe that Claim 2.3 implies that G′ does not contain a
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matching of size three, for the complementary sets of this matching yield a copy of T3 ⊂ G. Hence,
the number of degree 1 vertices in G′ is 0, 2, or 4, and therefore |H[S]| ∈ {0, 2, 4} for all S ∈

( [N ]
k+1

)
.

Let us now argue that α(H) < n, which is a straight-forward application of the probabilistic
method. Indeed, we will show that this happens with positive probability and conclude that an H
with this property exists. For a given k-set, the probability that it is an edge of H is p > 0, where
p depends only on k. Consequently, the probability that H has an independent set of size n is at
most (

N

n

)
(1− p)c′nk−3

for some c′ > 0. Note that the exponent k − 3 above is obtained by taking a partial Steiner
(n, k, k − 3) system S within a potential independent set of size n and observing that we have
independence within the edges of S. A short calculation shows that this probability is less than 1
as long as c is sufficiently small. This completes the proof of Theorem 1.2
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