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Abstract

For an integer n ≥ 1, the Erdős-Rogers function fs,s+1(n) is the maximum integer m such that

every n-vertex Ks+1-free graph has a Ks-free induced subgraph with m vertices. It is known

that for all s ≥ 3, fs,s+1(n) = Ω(
√
n log n/

√
log log n) as n → ∞. In this paper, we show that

for all s ≥ 3, there exists a constant cs > 0 such that

fs,s+1(n) ≤ cs
√
n log n.

This improves previous bounds of order
√
n (log n)4s

2

by Dudek, Retter and Rödl and answers

a question of Warnke.

1 Introduction

Given integers t > s ≥ 2, the Erdős-Rogers function fs,t(n) is the maximum integer m such that

every n-vertex Kt-free graph has a Ks-free induced subgraph with m vertices. These quantities in

the case t = s+1 were studied by Erdős and Rogers [10] more than sixty years ago while addressing

a question of Hajnal, and are generalizations of the classical Ramsey numbers r(s, t). The study of

fs,t(n) for t > s+1 has received considerable attention in the recent literature [7, 8, 12, 14, 16, 25, 26],

but there is no pair (s, t) with t > s + 1 ≥ 4 for which it is known that fs,t(n) = nα+o(1) for some

α = α(s, t).

In this paper we focus on the classical case fs,s+1(n). The determination of f2,3(n) is almost

equivalent to determining the triangle-complete graph Ramsey numbers, since r(3, f2,3(n)) ≤ n <

r(3, f2,3(n) + 1). These quantities r(3, t) are known to within a constant factor [1, 5, 4, 11, 15, 23],

and from this one deduces f2,3(n) has order of magnitude
√
n log n as n → ∞. As observed by

Dudek and the first author, the arguments for lower bounds for f2,3(n) generalize to fs,s+1(n) for

s ≥ 3 as follows. Shearer [24] showed that any n-vertex Ks+1-free graph of maximum degree d has

an independent set of size Ω(n log d/d log log d) as d → ∞, and the neighborhood of a vertex of

degree d is a Ks-free induced subgraph. Therefore for all s ≥ 3,

fs,s+1(n) ≥ max

{
d,Ω

(
n log d

d log log d

)}
= Ω

( √
n log n√

log logn

)
. (1)
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In a breakthrough paper, building on earlier works of Dudek and Rödl, Wolfovitz [28] proved

f3,4(n) = O(
√
n(log n)120), thereby showing f3,4(n) =

√
n
1+o(1)

. Soon after, Dudek, Retter,

Rödl [8] improved this to f3,4(n) = O(
√
n (log n)32) and showed more generally that fs,s+1(n) =

O(
√
n (log n)4s

2
). Warnke [27] asked whether there exists a constant c > 0 such that for all s ≥ 3,

one has fs,s+1(n) ≤
√
n(log n)c. In this short paper, we answer this question and significantly

improve the afore-mentioned bounds on the Erdős-Rogers functions fs,s+1(n) as follows:

Theorem 1. For each fixed s ≥ 3, there exists a constant cs > 0 such that

fs,s+1(n) ≤ cs
√
n log n. (2)

We did not expend too much effort in optimizing the constant cs in Theorem 1; from the proof

one may obtain cs ≤ 2100s, which incidentally shows fs,s+1(n) = n1/2+o(1) for s = o(log n). Dudek,

Retter and Rödl [8] asked whether for s ≥ 3, fs,s+1(n)/fs−1,s(n) is unbounded as n → ∞. This

would not be the case for s ≥ 4 if our upper bound is tight up to a constant factor. We tentatively

make the following conjecture:

Conjecture 1. For all fixed s ≥ 3, as n → ∞,

fs,s+1(n) =
√
n(log n)1−o(1).

This would be in contrast to f2,3(n), which has order of magnitude
√
n log n as n → ∞. The key

barrier in proving lower bounds on say Cp(n) is showing that in a K4-free graph one can typically

find induced triangle-free subgraphs with substantially more vertices than the independence number

of the graph. In particular, a result of Shearer [24] shows every n-vertex K4-free graph of maximum

degree d has an independent set of size Ω(n log d/d log log d) as d → ∞, so we propose the following:

Conjecture 2. There exists δ > 0 and d0 such that if G is an n-vertex K4-free graph of maximum

degree d > d0, then G contains a triangle-free induced subgraph H with

|V (H)| ≥ n (log d)1+δ

d
.

Conjecture 2 would imply f3,4(n) = Ω(
√
n(log n)1/2+δ/2). We note that the graph constructed in

this paper shows that δ cannot be larger than 1/3 (see the concluding remarks for more details).

The proof of Theorem 1 uses the framework of Wolfovitz [28] and Dudek, Retter, Rödl [8], but

requires substantial new ideas, including the construction of Mattheus and the second author [18]

based on Hermitian unitals. It also requires some additional technical steps in the probabilistic

analysis to obtain more careful control of dependencies in order to use the local lemma (see sec-

tion 4.3). We remark that we avoid the use of the method of containers as in [18] or [14], which

tends to incur the loss of further logarithmic factors.

Notation. For a graph G, we write V (G) for the vertex set of G and E(G) for the edge set of

G. For a set X ⊆ V (G), let G[X] denote the subgraph of G induced by X, namely the graph with

vertex set X and edge set {e ∈ E(G) : e ⊆ X}.
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2 Tools from probability

We refer to the book by Alon and Spencer [2] for a reference on probabilistic methods in com-

binatorics. We make use of three standard tools in probabilistic combinatorics; the first is the

well-known Chernoff Bound:

Proposition 1. (Chernoff Bound) Let Z be a binomial random variable with mean µ. Then for

any real ϵ ∈ [0, 1],

Pr(Z > (1 + ϵ)µ) ≤ exp
(
−ϵ2µ

4

)
and

Pr(Z < (1 − ϵ)µ) ≤ exp
(
−ϵ2µ

2

) (3)

The next proposition is derived in a standard way from Janson’s inequality [2, 13], and we give

a proof in the appendix. The technical details serve mainly to obtain an explicit constant in the

upper bound in Theorem 1 that is exponential in s. Let χ be a coloring of an n-element set Y with

s colors, with color classes Y1, Y2, . . . , Ys. Then the random s-partite graph Gn,ρ(χ) samples edges

independently with probability ρ from the complete multipartite graph with parts Y1, Y2, . . . , Ys.

Proposition 2. (via Janson’s inequality) Let s ≥ 3, n ≥ 240s and ρ = (8s/n)2/s, and let χ be

an s-coloring of an n-element set whose color classes have size at least n/2s each. Then

Pr(Ks ̸⊆ Gn,ρ(χ)) ≤ exp(−22s−4n). (4)

We shall finally require the Lovász local lemma [2, 9] in the following form. We write A for the

complement of an event A in a probability space.

Proposition 3. (Lovász local lemma) Let A1, A2, . . . , An be events in some probability space and

suppose that for every i ∈ [n], there is a set Ji ⊂ {1, 2, . . . , n}, such that Ai is mutually independent

of {Aj : j ̸∈ Ji ∪ {i}}. Suppose there exist real numbers γi ∈ [0, 1) such that for every i ∈ [n],

Pr(Ai) ≤ γi
∏
j∈Ji

(1 − γj). (5)

Then Pr
( n⋂
i=1

Ai

)
>

n∏
i=1

(1 − γi) > 0. (6)

3 Hermitian unitals, s-fans and intersection graphs

The proof of Theorem 1 appeals to a construction from projective geometry, which was used in [18]

to obtain nearly optimal asymptotic bounds on the Ramsey number r(4, t). We very briefly describe

the geometry here in elementary terms, while further geometric background is given in Barwick

and Ebert [3], Brouwer and van Maldeghem [6] and Piper [22].
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3.1 Hermitian unitals in brief. For a partial linear space H, we let P (H) denote the set of

points of H and L(H) denote the set of lines of H. A unital in the projective plane PG(2, q2) is a

set U of q3 + 1 points such that every line of PG(2, q2) intersects U in 1 or q + 1 points – the latter

are referred to as secants. A classical or Hermitian unital Hq is a partial linear space described in

homogeneous co-ordinates as the following set of one-dimensional subspaces of F3
q2 :

P (Hq) = {⟨x, y, z⟩ ⊂ F3
q2 : xq+1 + yq+1 + zq+1 = 0}.

Here arithmetic is in the finite field Fq2 , and ⟨x, y, z⟩ is the one-dimensional subspace of F3
q2 gener-

ated by (x, y, z). Then L(Hq) consists of the intersections of secant lines with P (Hq), so that there

are q2(q2 − q + 1) lines in Hq, each containing exactly q + 1 points of Hq.

3.2 O’Nan configurations and fans. One of the remarkable features of the Hermitian unital

is that it does not contain the so-called O’Nan configuration, namely the configuration of four lines

and six points in the left figure below:

O’Nan configuration and s-fan

Definition 1. (s-fan) For s ≥ 3, an s-fan is a set of s + 1 intersecting lines such that s of the

lines are concurrent with a point p whereas the remaining line ℓ is not concurrent with that point.

The unique point p contained in s lines is the point of concurrency of the s-fan.

An illustration of an s-fan is shown in the right figure above. The fact that Hq does not contain

the figure on the left was first proved by O’Nan [21] (see [18] for a short linear-algebraic proof).

The following lemma is a straightforward consequence.

Lemma 1. Every set of s + 1 ≥ 4 pairwise intersecting lines in Hq are either all concurrent with

a point of Hq, or form an s-fan.

Proof. Suppose that S = {ℓ1, . . . , ℓs+1} is a set of pairwise intersecting lines in Hq. If no three

lines in S are concurrent, then any four lines in S form an O’Nan configuration. So by relabeling

if necessary, we may assume that ℓ1, ℓ2, ℓ3 all contain the point p. If p is concurrent with exactly s

lines in S, then S forms an s-fan, so p is concurrent with at most s− 1 lines in S. Let ℓ and ℓ′ be

two distinct lines in S not concurrent with p. For i = 1, 2, 3, let pi be the point that lies in both
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ℓ and ℓi. If {p1, p2, p3} ∩ ℓ′ = ∅, then ℓ1, ℓ2, ℓ, ℓ
′ form an O’Nan configuration, since every pair of

these lines has a distinct point of concurrency. So let us assume by symmetry that p1 ∈ ℓ′. But

now ℓ2, ℓ3, ℓ, ℓ
′ form an O’Nan configuration, since every pair of these lines has a distinct point of

concurrency. Since there is no O’Nan configuration, we conclude that S forms an s-fan or all lines

in S are concurrent with the same point.

3.3 Intersection graphs. The starting point of the proof of Theorem 1 is the following graph:

Definition 2. (Intersection graph) The intersection graph Gq of Hq is defined as follows:

V (Gq) := L(Hq) and E(Gq) := {{ℓ, ℓ′} : ℓ ∩ ℓ′ ∩ P (Hq) ̸= ∅}.

In words, the vertices of Gq are the secants, and two secants are adjacent iff they intersect in a

point on the unital. For each p ∈ P (Hq), let Cp be the clique in Gq whose vertex set is

V (Cp) := {ℓ ∈ V (Gq) : p ∈ ℓ}.

Since every two lines intersect in at most one point of the unital, the sets E(Cp) over all p ∈ P (Hq)

partition E(Gq). We can thus view the graph Gq as a union of q3 + 1 edge-disjoint cliques Cp, one

for each point p ∈ P (Hq). Additionally, each vertex of Gq is contained in exactly q + 1 cliques Cp.

More importantly, by Lemma 1, each (s + 1)-clique in Gq is either an s-fan in Hq or a set of lines

of Hq all concurrent with the same point in P (Hq). Translated into the language of graphs, we

obtain the following fact:

For each (s + 1)-clique K in Gq, there exists Cp such

that V (K) ⊆ V (Cp) or |V (K) ∩ V (Cp)| = s.
(A)

We employ the following definition for convenience:

Definition 3. (Trivial and non-trivial cliques) An (s + 1)-clique K in Gq such that V (K) ⊆
V (Cp) for some p ∈ P (Hq) is a trivial clique, and otherwise it is a non-trivial clique.

4 Random sampling

The proof of Theorem 1 starts with the intersection graph Gq. The outline of the randomized

construction is as follows. This graph has q2(q2 − q + 1) vertices, and is a union of q3 + 1 edge-

disjoint cliques Cp each of size q2, such that each vertex of Gq is contained in exactly q + 1 of

those cliques. The first step is to randomly sample these cliques with probability Θ((log q)/q) and

remove all edges in non-sampled cliques to obtain a random graph G ⊆ Gq such that the number

of remaining cliques Cp is Θ(q2 log q), each vertex of G is in Θ(log q) cliques Cp, and the number of

non-trivial cliques Ks+1 on each edge of G is Θ(log q)s. We use the Chernoff Bound (Section 4.1)

to prove the existence of G. The next step is to destroy all trivial cliques Ks+1 in G by taking a

random s-partition of each clique Cp ⊆ G to obtain a graph Gχ. Finally, the non-trivial (s + 1)-

cliques in G are destroyed by randomly sampling edges of G with probability ρ = Θ((log q)−2/s) to

obtain a random subgraph Gρ. Using Janson’s inequality (Section 4.3) and the Lovász local lemma

(Section 5), we show that the graph H with vertex set V (Gq) and edge set E(Gχ) ∩ E(Gρ) is a

Ks+1-free graph with n = q2(q2− q+1) vertices such that every set of roughly Θ(
√
n log n) vertices

induces a graph containing a Ks (in fact, this Ks will lie within one of the Cps).
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4.1 Sampling cliques. For a constant a ≥ 128 and q ≥ a log q, randomly and independently

sample cliques Cp with probability (a log q)/(q + 1). Let P be the random set which indexes the

sampled cliques and G = Ga,q,s ⊆ Gq be the random subgraph consisting of the union of edges

in E(Cp) over all p ∈ P . More precisely, V (G) = V (Gq) and E(G) = ∪p∈PE(Cp). We use the

Chernoff Bound, Proposition 1, to prove the following:

Lemma 2. Let s ≥ 3, a ≥ 128 and q ≥ a log q. Then with positive probability:

(i) a(q2 log q)/2 ≤ |P | ≤ 2aq2 log q.

(ii) Each vertex of G is contained in at least (a log q)/2 cliques Cp with p ∈ P .

(iii) For every e ∈ E(G), the number of non-trivial Ks+1 ⊆ G containing e is at most k =

4(2a log q)s.

Proof. By the Chernoff bound (Proposition 1) with ϵ = 1/2, the probability that |P | > 2aq2 log q

or |P | < (aq2 log q)/2 is at most 2 exp(−(aq2 log q)/16) < 1/3, so (i) fails with probability less than

1/3. The number of sampled cliques containing a given vertex of G is at most (a log q)/2 with

probability at most exp(−(a log q)/8) = q−a/8 < q−8. Since |V (G)| ≤ q4 < q8/3, the probability

that (ii) fails is less than 1/3.

Claim. If more than k non-trivial cliques in G contain some edge, then some vertex of G is

contained in more than r = 2a log q sampled cliques.

If this claim is true, then (iii) happens for a given edge with probability at most exp(−(a log q)/4) <

q−8 by the Chernoff Bound (Proposition 1) with ϵ = 1. Since the number of edges of Gq is at most

(q3 + 1) ·
(
q2

2

)
≤ q8/3, the union bound shows (iii) then fails with probability less than 1/3. We

then conclude (i) – (iii) hold simultaneously with positive probability.

To prove the claim, fix an edge {u, v} ∈ E(G) contained in more than k non-trivial cliques in G,

and suppose for a contradiction that no vertex of G is contained in more than r sampled cliques.

Let Sx be the set of sampled cliques containing a vertex x. By (A), for each non-trivial clique

K = Ks+1 ⊆ Gq containing {u, v}, there exists Cp such that |V (K)∩V (Cp)| = s. If {u, v} ∈ E(Cp),

let V (K)\V (Cp) = {w}. Each clique in Su \ {Cp} intersects each clique in Sv \ {Cp} in at most one

point, hence the number of points that lie in both a clique of Su and a clique of Sv is at most r2.

Since w must be such a point, the number of choices of w is at most r2. Since |Sw| ≤ r, the number

of ways to select the remaining vertices K is at most
(

r
s−2

)
. If on the other hand {u, v} ̸∈ E(Cp),

then there exist at most 2r choices for Cp since |Su ∪ Sv| ≤ 2r. Then there are at most(
|Su|
s− 1

)
+

(
|Sv|
s− 1

)
≤ 2

(
r

s− 1

)
choices for the remaining vertices of K. We conclude the number of non-trivial cliques of order

s + 1 in G containing {u, v} is at most

r2 ·
(

r

s− 2

)
+ 2r · 2

(
r

s− 1

)
≤ 4rs = k.

This contradiction proves the claim.
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Fix an instance of the graph G satisfying (i) – (iii) in Lemma 2, together with the set P indexing

the cliques Cp in G. For a positive integer b and X ⊆ V (G), let

PX = PX,b = {p ∈ P : |V (Cp) ∩X| ≥ b}.

This is the set of p ∈ P whose corresponding clique Cp in G has at least b vertices in X.

Lemma 3. Let b ≥ 1, a ≥ 128 and q ≥ a log q. Then for any X ⊆ V (G),∑
p∈PX

|V (Cp) ∩X| > 1

2
(a log q) · |X| − 2abq2 log q. (7)

Proof. As |P | ≤ 2aq2 log q from Lemma 2(i),∑
p∈P\PX

|V (Cp) ∩X| < b|P | ≤ 2abq2 log q.

Each vertex in X is in at least (a log q)/2 cliques Cp : p ∈ P by Lemma 2(ii). Therefore∑
p∈P

|V (Cp) ∩X| =
∑
ℓ∈X

|{p ∈ P : ℓ ∈ V (Cp)}| ≥
1

2
(a log q) · |X|.

Subtracting the first inequality from the second gives the lemma.

4.2 Coloring cliques and Sampling edges. Let Gχ ⊆ G be obtained from G by taking inde-

pendently for each p ∈ P a random s-coloring χp of V (Cp) and removing all edges of G whose ends

have the same color. This removes from G all trivial copies of Ks+1, so by (A), for s ≥ 3:

Each clique Ks+1 ⊆ Gχ is non-trivial. (B)

We now define the random graph Gρ ⊆ G. Let b ≥ 1 and ρ ∈ [0, 1] satisfy b ≥ 240s and ρ =

(8s/b)2/s, and define Gρ to be the random graph obtained by sampling edges of G independently

with probability ρ. The aim of this sampling is to destroy all non-trivial cliques, while still preserving

cliques Ks within the Cp, in large enough sets of vertices. Unsurprisingly, this makes strong use

of Janson’s inequality for the probability that a random s-partite graph is Ks-free, in the form of

Proposition 2. We define H = Hs to be the intersection of Gρ and Gχ, namely,

V (H) := V (G) and E(H) := E(Gρ) ∩ E(Gχ).

Our next task is to consider copies of Ks ⊆ H whose vertices are contained in some Cp.

4.3 The event AX . In this section, for each set X ⊆ V (H), we define an event AX such that

AX =⇒ H[X] contains a copy of Ks, (8)

and we find an upper bound on Pr(AX). For a set X ⊆ V (H) and p ∈ PX , fix a family Πp(X) of

rp(X) = ⌊|V (Cp) ∩X|/b⌋ disjoint subsets of V (Cp) ∩X of size b each. Then Cp is bad if for every
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Y ∈ Πp(X), the induced subgraph H[Y ] is Ks-free, and we let AX,p be the event that Cp is bad.

Finally, define

AX =
⋂

p∈PX

AX,p.

We say X is bad if all Cp : p ∈ PX are bad. In other words, AX is the event that X is bad. If AX

does not occur, then, as promised in (8), by definition H[X] contains a copy of Ks. It is critical

here that instead of defining AX to be the event that no Ks is contained in H[V (Cp) ∩ X], we

instead partitioned each V (Cp) ∩ X into sets of size b and defined the event AX based on these

partitions. This reduces the dependencies between various events that will be considered later in a

local lemma calculation.

Lemma 4. Let s ≥ 3, b ≥ 240s and ρ ∈ [0, 1] satisfy ρ = (8s/b)2/s. Then for any X ⊆ V (H),

Pr(AX) ≤ exp
(
− 1

32s

∑
p∈PX

|V (Cp) ∩X|
)
. (9)

Proof. Since the colorings χp are independent over p ∈ PX , the events AX,p are independent over

p ∈ PX . For Y ∈ Πp(X), let AY be the event that H[Y ] is Ks-free. These events are independent

over all Y . By the Chernoff bound (Proposition 1), the probability that χp assigns some color fewer

than b/2s times to vertices of Y is at most exp(−b/8s). Fix a coloring χ of Y where every color

appears at least b/2s times. Then the graph H[Y ] is a random s-partite graph which we denoted

in Section 2 by Gb,ρ(χ). By Proposition 2, for any such coloring χ,

Pr(Ks ̸⊆ Gb,ρ(χ)) ≤ exp(−22s−4b).

As there are at most sb choices of χ, the union bound over s-colorings χ gives

Pr(AY ) ≤ exp
(
− b

8s

)
+ sb exp(−22s−4b).

Since s ≥ 3, 22s−4b ≥ 2b log s ≥ 2b and therefore

Pr(AY ) ≤ exp
(
− b

8s

)
+ exp(−b) ≤ 2 exp

(
− b

8s

)
≤ exp

(
− b

16s

)
.

Here we used b ≥ 16s. Since |Πp| = rp(X), we obtain

Pr(AX) =
∏

p∈PX

Pr(AX,p)

=
∏

p∈PX

∏
Y ∈Πp

Pr(AY ) ≤
∏

p∈PX

exp
(
− b

16s
· rp(X)

)
.

Recall |V (Cp) ∩X| ≥ b for p ∈ PX , so b · rp(X) ≥ |V (Cp) ∩X|/2, and therefore

Pr(AX) ≤
∏

p∈PX

exp
(
−|V (Cp) ∩X|

32s

)
= exp

(
− 1

32s

∑
p∈PX

|V (Cp) ∩X|
)
.

This proves the lemma.
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5 Proof of Theorem 1

To prove Theorem 1, for each s ≥ 3 let G = Ga,q,s, defined in Section 4.1, where a = 210s and q is

a prime power satisfying q ≥ a log q. Let H ⊆ G denote the random graph defined in Section 4.2,

which is the intersection of the two random graphs Gχ and Gρ, with parameters

b = 240s+2/s · 2a log q and ρ =
(8s

b

) 2
s
.

For convenience we omit rounding and assume b is an integer. Let K be the family of non-trivial

(s + 1)-cliques K ⊆ G, and let BK be the event G[K] ⊆ Gρ. Let X = {X ⊆ V (H) : |X| = 8bq2}
and AX be the event X is bad, as in Section 4.3. Due to (B),

if none of the events BK : K ∈ K or AX : X ∈ X occur,

then H is Ks+1-free and Ks ⊆ H[X] for all X ∈ X .
(C)

Specifically, (C) implies every set of 8bq2 vertices of H induces a subgraph containing Ks. This

shows for any prime power q ≥ a log q,

fs,s+1(q
2(q2 − q + 1)) ≤ 8bq2.

By Bertrand’s postulate, there exists a prime between any positive integer and its double, so letting

q ≥ a log q be a prime between n1/4 and 2n1/4, we find for s ≥ 3 and n ≥ 2,

fs,s+1(n) ≤ 8bq2 ≤ 8 · 240s+1/s · 211s · q2 · log q

≤ 2100s ·
√
n log n.

It remains to prove (C) holds with positive probability, via the local lemma (Proposition 3).

Dependencies. For the dependencies between the events BK : K ∈ K and AX : X ∈ X , we note

AX is determined by the following set of edges of G:

Ê(X) =
⋃

p∈PX

⋃
Y ∈Πp

E(G[Y ]).

Since |Y | = b for each Y ∈ Πp, and r = rp(X) = |Πp| = ⌊|V (Cp) ∩X|/b⌋,

|Ê(X)| =
∑
p∈PX

r∑
i=1

(
b

2

)

=
∑
p∈PX

⌊ |V (Cp) ∩X|
b

⌋(b
2

)
≤ 1

2
b
∑
p∈PX

|V (Cp) ∩X|. (10)

For convenience, let Ê(K) also denote E(G[K]) if K ∈ K. It is important here that since Gρ

samples edges of G independently with probability ρ, for any J ⊆ K and K ∈ K, we observe

the event BK is mutually independent with {BK′ : K ′ ∈ J } if⋃
K′∈J

E(K ′) ∩ E(K) = ∅.
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By Lemma 2(iii), each edge of G is contained in at most k = 4(2a log q)s cliques K ∈ K. Fixing

any K ∈ K, there are at most

κ =

(
s + 1

2

)
· k ≤ bk (11)

choices of K ′ ∈ K such that Ê(K ′) ∩ Ê(K) ̸= ∅. Hence BK is mutually independent of any set of

events omitting the events K ′ ∈ K′ just described. For a given BK , we make no assumptions on its

mutual independence with any subset of the events AX .

Since each edge of G is in at most k cliques in K, by (10), for each X ∈ X there are at most

λX = k · |Ê(X)| ≤ 1

2
bk ·

∑
p∈PX

|V (Cp) ∩X| (12)

choices of K ∈ K such that Ê(K) ∩ Ê(X) ̸= ∅, and any set of other events AK are mutually

independent with AX . This is the critical point for which the definition of AX was carefully chosen:

instead of AX being the event that no Ks is contained in the subgraph induced by V (Cp) ∩X, we

instead partitioned each Cp into sets of size b and defined the event AX based on these partitions.

We make no assumptions on the independence among the events AX .

Local lemma inequalities. Let N = |X |. The local lemma (Proposition 3) implies the probability

that (C) holds is positive if there are reals γ, δ ∈ [0, 1) such that for all K ∈ K and all X ∈ X ,

Pr(BK) ≤ γ(1 − γ)κ(1 − δ)N and Pr(AX) ≤ δ(1 − γ)λX (1 − δ)N .

We claim that these inequalities are satisfied if we select δ = 1/(N + 1) and γ = 1/64sbk.

First inequality. We have Pr(BK) = ρ(s+1
2 ) and (1−δ)N ≥ 1/e. By (11), (1−γ)κ ≥ 1−κγ > 1/2,

so it is sufficient to show 2ePr(BK)/γ ≤ 1 for the first inequality to hold. Since ρ = (8s/b)2/s,

ρ(s+1
2 ) =

(8s

b

)s+1
.

Since b = 240sk1/s, and s ≥ 3,

2e

γ
Pr(BK) = 128esbk · ρ(s+1

2 ) =
128esk(8s)s+1

bs

=
128esk(8s)s+1

240s2k

< 2es ·
( 8s

64s−1

)s+1
<

2es

8s+1
< 1.

Here we used 64s−1 > 64s and 2es < 8s+1 for s ≥ 3. This verifies the first inequality.

Second inequality. For the second inequality, we use 1 − γ ≥ exp(−2γ), which is valid since

γ ≤ 1/2. Recalling (1 − δ)N ≥ 1/e, it is enough to show

e · Pr(AX) ≤ exp(− log(N + 1) − 2γλX). (13)

By Lemma 4,

Pr(AX) ≤ exp
(
− 1

32s

∑
p∈PX

|V (Cp) ∩X|
)
.
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Using |V (G)| = q2(q2 − q + 1),

log(N + 1) = log
[(q2(q2 − q + 1)

8bq2

)
+ 1
]
≤ log

(
q4

8bq2

)
− 1 ≤ 32bq2 log q − 1.

For (13), it is enough to show

exp
(
− 1

32s

∑
p∈PX

|V (Cp) ∩X|
)
≤ exp(−32bq2 log q − 2γλX).

Due to (12), it is enough to show

exp
(
− 1

32s

∑
p∈PX

|V (Cp) ∩X|
)
≤ exp

(
−32bq2 log q − 1

64s

∑
p∈PX

|V (Cp) ∩X|
)
.

Therefore we require

exp
(
− 1

64s

∑
p∈PX

|V (Cp) ∩X|
)
≤ exp(−32bq2 log q).

Applying Lemma 3 and using a = 210s, we find

1

64s

∑
p∈PX

|V (Cp) ∩X| ≥ 1

64s

(1

2
(a log q) · |X| − 2abq2 log q

)
=

1

64s

(1

2
(a log q) · 8bq2 − 2abq2 log q

)
=

1

64s
· 2abq2 log q = 32bq2 log q.

This proves the second inequality.

Concluding remarks

� In this paper, we proved fs,s+1(n) = O(
√
n log n) by suitable random sampling of points and

lines from Hermitian unitals. A part of the proof essentially involves the union bound over

all sets X of lines of size 8bq2 – we implicitly assumed in our application of the local lemma

in Section 5 that the events AX depend on all other such events. We first sampled points

randomly from the Hermitian unital with probability of order (log q)/q. If we sampled points

with a lower probability o(log q)/q, then the union bound no longer works: for large q there

are N ≥ exp(bq2 log q) sets of size 8bq2 to consider – see Section 5 – whereas if all the sets

Cp ∩ X : p ∈ PX have size roughly b, then the probability that every Cp is (s − 1)-colored

in a random s-coloring is exp(−o(bq2 log q)). It may be possible using randomized greedy

algorithms akin to the Rödl semirandom method to circumvent this issue and obtain a bound

of the form fs,s+1(n) = o(
√
n log n), but we did not investigate this technical direction. We

conjectured (Conjecture 1) that fs,s+1(n) =
√
n(log n)1−o(1) for all s ≥ 3. Conjecture 2 would

imply f3,4(n) ≥
√
n(log n)1/2+δ/2 for some δ > 0.
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� Using (6) and the proof of Theorem 1, the probability that the n-vertex random graph H = Hs

is Ks+1-free and yet every set of 8bq2 vertices induces a copy of Ks is at least

(1 − γ)|K|(1 − δ)|X | = exp(−O(δ|X | + γ|K|)) = exp(−O(γ|K|)).

Now |K| = O(k|E(G)|) = O(kq6 log q) from Lemma 2(i) and Lemma 2(iii), and γ = O(1/k log q),

so we conclude the above quantity is exp(−O(q6)). The expected number of edges in H is

Θ(ρ|E(G)|) = Θ(q6(log q)1−2/s). By the Chernoff Bound, H has Θ(q6(log q)1−2/s) edges with

probability at least

1 − exp(−Θ(q6(log q)1−2/s)).

We conclude that with positive probability, the n-vertex random graph H is a Ks+1-free

graph with average degree Θ(d) where d = Θ(q2(log q)1−2/s) = Θ(
√
n(log n)1−2/s). Moreover,

H has the property that every vertex subset of size at least

8bq2 = Ω(q2 log q) = Ω

(
n(log d)1+(s−2)/s

d

)

induces a copy of Ks. When s = 3, this shows that the value of δ in Conjecture 2 cannot be

larger than 1/3. Moreover, H has an independent set (and hence a K3-free induced subgraph)

of size at least Ω(n log d/d log log d) = Ω(
√
n(log n)2/3−o(1)). For s ≥ 4, H contains a Ks-free

induced subgraph with d = Ω(
√
n(log n)1−2/s) vertices. It would be interesting for any s ≥ 3

to exhibit a Ks-free induced subgraph of H with
√
n(log n)1−o(1) vertices, if it exists.

� If F is any Ks-free graph, then we can define fF,s(n) to be the largest m such that every n-

vertex Ks-free graph has an induced F -free subgraph with m vertices. The proof of Theorem

1 gives

fF,s(n) = O(
√
n log n).

Indeed, instead of taking a random s-coloring of each sampled clique Cp, one takes a random

uniform map χ : V (Cp) → V (F ), and then place all edges between χ−1(u) and χ−1(v)

whenever {u, v} ∈ E(F ). The analysis is the same as in Theorem 1, apart from a suitable

modification of the implicit constants. It would be interesting to determine for s ≥ 3 whether

there exists a Ks-free graph F such that

lim
n→∞

fF,s(n)

fs−1,s(n)
= ∞.

In forthcoming work [20], we shall study the quantities fF,s(n).
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7 Appendix : Proof of Proposition 2

To prove Proposition 2, we require some notation and preliminaries. Recall for s ≥ 3, n ≥ 1,

ρ ∈ [0, 1] and an s-coloring χ of an n-element set with color classes Y1, Y2, . . . , Ys, Gn,ρ(χ) is

obtained by independently and randomly sampling edges of the complete s-partite graph with

parts Y1, Y2, . . . , Ys with probability ρ. The expected number of Ks ⊆ Gn,ρ(χ) is precisely

µ(χ) = ρ(s2)
s∏

i=1

|Yi| (14)

and the variance is defined by

△(χ) =
∑
S⊂[s]

ρ2(
s
2)−(|S|

2 )
∏
i∈S

|Yi|
∏
j ̸∈S

|Yj |(|Yj | − 1) =
∑
S⊂[s]

ρ2(
s
2)−(|S|

2 )
n∏

i=1

|Yi|
∏
j ̸∈S

(|Yj | − 1), (15)

where the sum is over sets S with 2 ≤ |S| ≤ s− 1. From Janson’s inequality [2, 13] one obtains for

any ρ ∈ [0, 1] and n ≥ 1:

Pr(Ks ̸⊆ Gn,ρ(χ)) ≤ exp
(
−1

2
µ(χ)

)
. (16)

provided △(χ) ≤ µ(χ).

Proof of Proposition 2. For Proposition 2, χ is an s-coloring with color classes Y1, Y2, . . . , Ys
satisfying |Yi| ≥ n/2s for all i ∈ [s]. The product in (14) is minimized when |Yi| = n/2s for all but

one value of i ∈ [s], and the remaining color class has size n− (s− 1)n/2s > n/2. Therefore

µ(χ) > ρ(s2)
( n

2s

)s−1
· n

2

=
(8s

n

)s−1( n

2s

)s−1
· n

2
= 22s−3 · n.

So if △(χ) ≤ µ(χ) when ρ = (8s/n)2/s and n ≥ 240s, then Proposition 2 follows from (16):

Pr(Ks ̸⊆ Gn,ρ(χ)) ≤ exp
(
−1

2
µ(χ)

)
≤ exp(−22s−4n).

It remains to prove △(χ) ≤ µ(χ) when ρ = (8s/n)2/s and n ≥ 240s.

By (14) and (15),
△(χ)

µ(χ)
=
∑
S⊂[s]

ρ(s2)−(|S|
2 )
∏
j ̸∈S

(|Yj | − 1).

The sum is over subsets S of [s] where 2 ≤ |S| ≤ s − 1. By the inequality of geometric and

arithmetic means,∏
j ̸∈S

(|Yj | − 1) ≤
∏
j ̸∈S

|Yj | ≤
( 1

s− |S|
∑
j ̸∈S

|Yj |
)s−|S|

≤
( n

s− |S|

)s−|S|
.

We conclude
△(χ)

µ(χ)
≤

s−1∑
i=2

ρ(s2)−(i
2)
( n

s− i

)s−i
(
s

i

)
.
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By definition of ρ,

ρ(s2)−(i
2) =

(8s

n

) (s−i)(s+i−1)
s

.

Therefore

△(χ)

µ(χ)
≤

s−1∑
i=2

(8s

n

) (s−i)(s+i−1)
s

( n

s− i

)s−i
(
s

i

)
=

s−1∑
i=2

( (8s)
s+i−1

s

(s− i)n
i−1
s

)s−i
(
s

i

)
.

We break the sum into two pieces. First, for 2 ≤ i ≤ ⌊s/ log(8s)⌋ ≤ s/2,

(s− i)n
i−1
s ≥ s

2
· n

1
s ≥ 29s

since n ≥ 240s ≥ 210s. Therefore each term in the sum is at most

(8s · (8s)
1

log(8s)

29s

)s−i
(
s

i

)
≤
(8es

29s

)s− s
log(8s) · 2s ≤

( 1

16

) s
2 · 2s = 2−s.

Second, for ⌊s/ log(8s)⌋ + 1 ≤ i ≤ s− 1, (i− 1)/s ≥ 1/2 log(8s) and so using n ≥ 240s and s ≥ 3,

(s− i)n
i−1
s ≥ n

1
2 log(8s) ≥ 2

20s
log(8s) ≥ 128s3.

Therefore each term in the sum is at most((8s)
s+i−1

s

128s3

)s−i
(
s

i

)
≤
( (8s)2

128s3

)s−i
(
s

i

)
=
( 1

2s

)s−i
(
s

i

)
.

We conclude

△(χ)

µ(χ)
≤

s−1∑
i=2

( 1

2s

)s−i
(
s

i

)
+

s−1∑
i=2

2−s

≤
(

1 +
1

2s

)s
− 1 + (s− 2)2−s ≤

√
e− 1 + (s− 2)2−s.

Evidently (s− 2)2−s ≤ 1/8 for s ≥ 3, and therefore

√
e− 1 + (s− 2)2−s ≤ 0.773 . . . < 1.

We conclude △(χ) < µ(χ), as required.
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pp. 63–76.
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