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Abstract

We study the extremal number for paths in r-uniform hypergraphs where two consecutive

edges of the path intersect alternately in sets of size b and a with a + b = r and all other

pairs of edges have empty intersection. Our main result, which is about hypergraphs that are

blowups of trees, determines asymptotically the extremal number of these (a, b)-paths that have

an odd number of edges or that have an even number of edges and a > b. This generalizes the

Erdős–Gallai theorem for graphs which is the case of a = b = 1. Our proof method involves

a novel twist on Katona’s permutation method, where we partition the underlying hypergraph

into two parts, one of which is very small. We also find the asymptotics of the extremal number

of (1, 2)-path using the different ∆-systems method.

1 Paths

1.1 Definitions for hypergraphs, two constructions

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a finite set. We

associate an r-graph F with its edge set and call its vertex set V (F ). Usually we take V (F ) = [n],

where [n] is the set of first n integers, [n] := {1, 2, 3, . . . , n}. We also use the notation F ⊆
(
[n]
r

)
.

For a hypergraph H, a vertex subset C of H that intersects all edges of H is called a vertex cover of

H. Let τ(H) be the minimum size of a vertex cover of H. Let Ψc(n, r) be the r-graph with vertex

set [n] consisting of all r-edges meeting [c]. Then Ψ has the maximum number of r-sets such that

τ(Ψ) ≤ c. When r and c are fixed and n → ∞,

|Ψc(n, r)| =
(
n

r

)
−
(
n− c

r

)
= c

(
n

r − 1

)
+ o(nr−1). (1)
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A crosscut of a hypergraph H is a set X ⊂ V (H) such that |e ∩ X| = 1 for all e ∈ H. Not all

hypergraphs have crosscuts. Let σ(H) denote the smallest size of a crosscut in a hypergraph H

with at least one crosscut. Clearly τ(H) ≤ σ(H), since a crosscut is a vertex cover. Here strict

inequality may hold, as shown by a double star whose adjacent centers have high degrees. Define

Ψ1
c(n, r) := {E ⊂ [n] : |E| = r, |E∩ [c]| = 1}, so it consists of all r-sets intersecting a fixed c-element

subset of V (H) at exactly one vertex. Then for large enough n, Ψ1 has the maximum number of

r-sets such that σ(Ψ1) ≤ c. Let us refer to this hypergraph as the crosscut construction. When r

and c are fixed and n → ∞,

|Ψ1
c(n, r)| = c

(
n− c

r − 1

)
= c

(
n

r − 1

)
+ o(nr−1). (2)

Given an r-graph F , let exr(n, F ) denote the maximum number of edges in an r-graph on n

vertices that does not contain a copy of F (if the uniformity is obvious from context, we may omit

the subscript r). Crosscuts were introduced in [11] to get the following obvious lower bounds

ex(n, F ) ≥ |Ψτ(F )−1(n, r)|, and if crosscut exists then ex(n, F ) ≥ |Ψ1
σ(F )−1(n, r)|. (3)

Notation. If H is a hypergraph and e ⊂ V (H), then ΓH(e) = {f \ e : e ⊆ f , f ∈ H} and the

degree of e is dH(e) = |ΓH(e)|. For an integer p, let the p-shadow, ∂pH, be the collection of p-sets

that lie in some edge of H. If H is an r-graph, then the (r − 1)-shadow of H is simply called the

shadow and is denoted by ∂H.

Whenever we write f(n) ∼ g(n), we always mean limn→∞ f(n)/g(n) = 1 while the other variables

of f and g are fixed. This is the case even if the variable n is not indicated.

Aims of this paper. We have three aims. First, to find more Turán numbers (or estimates) of

hypergraphs in the Erdős–Ko–Rado range. We are especially interested in cases when the excluded

configuration is ’dense’, it has only a few vertices of degree one. Second, we present an asymmetric

version of Katona’s permutation method, when we first solve (estimate) the problem only on a well

chosen substructure. Third, we show the power of the ∆-systems method for (1, 2)-paths of length

4. The (a, b)-blowups of trees and paths are good examples for all our aims.

1.2 Paths in graphs

A fundamental result in extremal graph theory is the Erdős–Gallai Theorem [3], that

ex2(n, Pℓ) ≤
1

2
(ℓ− 1)n, (4)

where Pℓ is the ℓ-edge path. (Warning: This is a non-standard notation). Equality holds in (4)

if and only if ℓ divides n and all connected components of G are ℓ-vertex complete graphs. The

Turán function ex(n, Pℓ) was determined exactly for every ℓ and n by Faudree and Schelp [6] and

independently by Kopylov [19]. Let n ≡ r (mod ℓ), 0 ≤ r < ℓ. Then ex(n, Pℓ) =
1
2(ℓ−1)n− 1

2r(ℓ−r).

They also described the extremal graphs which are either

— vertex disjoint unions of ⌊n/ℓ⌋ complete graphs Kℓ and a Kr, or
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— ℓ is odd, ℓ = 2k− 1, and r = k or k− 1. Then other extremal graphs with completely different

structure can be obtained by taking a vertex disjoint union of m copies of Kℓ (0 ≤ m < ⌊n/ℓ⌋) and
a copy of Ψk−1(n−mℓ, 2), i.e., an (n−mℓ)-vertex graph with a (k − 1)-set meeting all edges.

This variety of extremal graphs makes the solution difficult.

We generalize these theorems for some hypergraph paths and trees.

1.3 Paths in hypergraphs

Definitions. Suppose that a, b, ℓ are positive integers, r = a + b. The (a, b)-path Pℓ(a, b) of

length ℓ is an r-uniform hypergraph obtained from a (graph) path Pℓ by blowing up its vertices

to a-sets and b-sets. More precisely, an (a, b)-path Pℓ(a, b) of length 2k − 1 consists of 2k − 1 sets

of size r = a + b as follows. Take 2k pairwise disjoint sets A0, A2, . . . , A2k−1 with |Ai| = a and

B1, B3, . . . , B2k−1 with |Bj | = b and define the (hyper)edges of P2k−1(a, b) as the sets of the form

Ai ∪Bi+1 and Bj ∪Aj+1. If the ak + bk elements are ordered linearly, then the members of P can

be represented as intervals of length r. By adding one more set A2k to the underlying set together

with the hyperedge B2k−1 ∪A2k we obtain the (a, b)-path of even length, P2k(a, b).

Paths of length 2. Two r-sets with intersection size b can be considered as a hypergraph path

P2(a, b) of length two, where a + b = r, and 1 ≤ a, b ≤ r − 1. If H ⊂
(
[n]
r

)
is P2(1, r − 1)-free

then the obvious inequality r|H| = |∂(H)| ≤
(

n
r−1

)
yields the upper bound in the following result.

The lower bound holds for any given r if n is sufficiently large (n > n0(r)) due to the existence of

designs (see, Keevash [18]).

1

r

(
n

r − 1

)
−O(nr−2) < exr(n, P2(1, r − 1)) ≤ 1

r

(
n

r − 1

)
. (5)

The case b = 1 was solved asymptotically by Frankl [7] and the general case was handled in [10].

exr(n, P2(a, b)) = Θ
(
nmax{a−1,b}

)
. (6)

Two disjoint r-sets can be considered as a P2(r, 0) so (6) also holds for a = r since the maximum

size of an intersecting family of r-sets is
(
n−1
r−1

)
for n ≥ 2r by the Erdős-Ko-Rado theorem [4].

P5(3, 2) = P5(2, 3).

While P2k−1(a, b) = P2k−1(b, a) we have that P2k(a, b) ̸= P2k(b, a) for a ̸= b.

Paths of length 3.

P3(a, b)-path has three r-sets, two of them are disjoint and they cover the third in a prescribed

way. For given 1 ≤ a, b < r, r = a+ b and for n > n2(r), Füredi and Özkahya [16] showed that

exr(n, P3(a, b)) =

(
n− 1

r − 1

)
.
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Longer paths.

Our first results provide a nontrivial extension of the Erdős–Gallai Theorem (4) for r-graphs.

There are several ways to define a hypergraph path P . One of the most difficult cases appears

to be the case when P is a tight path of length ℓ, namely the r-graph Tight P r
ℓ with edges

{1, 2, . . . , r}, {2, 3, . . . , r + 1}, . . . , {ℓ, ℓ + 1, . . . , ℓ + r − 1}. The best known results [14] for this

special case are

ℓ− 1

r

(
n

r − 1

)
≤ exr(n, T ight P

r
ℓ ) ≤

{
ℓ−1
2

(
n

r−1

)
if r is even,

1
2(ℓ+ ⌊ ℓ−1

r ⌋)
(

n
r−1

)
if r is odd,

where the lower bound holds as long as certain designs exist.

Another possibility is the r-uniform loose path (also called linear path) LinP r
ℓ , which is obtained

from P 2
ℓ by enlarging each edge with a new set of (r − 2) vertices such that these new (r − 2)-

sets are pairwise disjoint (so |V (P r
ℓ )| = ℓ(r − 1) + 1). Recently, the authors [15, 20] determined

exr(n,LinP r
ℓ ) exactly for large n, extending a work of Frankl [7] who solved the case ℓ = 2 by

answering a question of Erdős and Sós [25] (see [22] for a solution for all n when r = 4).

Here we consider the (a, b)-blowup of Pℓ. Since the case ℓ = 2 behaves somewhat differently, see (5)

and (6), we only discuss the case ℓ ≥ 3.

Suppose that a + b = r, a, b ≥ 1, r ≥ 3 and suppose that ℓ ∈ {2k − 1, 2k}, ℓ ≥ 4. Furthermore,

suppose that these values are fixed and n → ∞ or n > n3(r, k). Recall that Ψt−1(n, r) := {E ⊂
[n] : |E| = r, E ∩ [k − 1] ̸= ∅}. We have the lower bound

exr(n, P2k(a, b)) ≥ exr(n, P2k−1(a, b))

≥ |Ψk−1(n, r)| =
(
n

r

)
−
(
n− k + 1

r

)
= (k − 1)

(
n

r − 1

)
+ o(nr−1).

Our main results (Theorems 6 and 7) imply that equality holds above for at least 75% of the cases.

Theorem 1. Let a+ b = r, a, b ≥ 1 and ℓ ≥ 3. Suppose further that (i) ℓ is odd, or (ii) ℓ is even

and a > b, or (iii) (ℓ, a, b) = (4, 1, 2).

Then

exr(n, Pℓ(a, b)) =

⌊
ℓ− 1

2

⌋(
n

r − 1

)
+ o(nr−1).

Moreover, if a ̸= b, a, b ≥ 2 and ℓ = 2k − 1, then Ψk−1(n, r) is the only extremal family.

The proof of Theorem 1 in the case (ℓ, a, b) = (4, 1, 2) is different than the proof for the other cases.

The remaining cases (ℓ is even, a ≤ b and (ℓ, a, b) ̸= (4, 1, 2)) are still open.

Conjecture 2. If r ≥ 3, k ≥ 2 and a ≤ b, then exr(n, P2k(a, b)) = (1 + o(1))Ψk−1(n, r).
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2 Trees blown up, our main results

Generalizing the Erdős–Gallai Theorem (4), Ajtai, Komlós, Simonovits and Szemerédi [1] claimed

a proof of the Erdős–Sós Conjecture [5], showing that if T is any tree with ℓ edges, where ℓ is large

enough, then for all n,

ex2(n, T ) ≤
1

2
(ℓ− 1)n.

A more general conjecture due to Kalai (see in [11]) is about the extremal number for hypergraph

trees. A hypergraph T is a forest if it consists of edges e1, e2, . . . , eℓ ordered so that for every

1 < i ≤ ℓ, there is 1 ≤ i′ < i such that ei ∩ (
⋃

j<i ej) ⊆ ei′ . A connected forest is called a tree. If T

is r-uniform and for each i > 1, |ei ∩ (
⋃

j<i ej)| = r − 1, then we say that T is a tight tree.

Conjecture 3. (Kalai) Let T be an r-uniform tight tree with ℓ edges. Then

exr(n, T ) ≤
ℓ− 1

r

(
n

r − 1

)
.

When r = 2, this is precisely the Erdős–Sós Conjecture. A simple greedy argument shows that

Proposition 4. If T is an r-uniform tight tree with ℓ edges and G is an r-graph on [n] not

containing T , then |G| ≤ (ℓ− 1)|∂(G)|.

Here ∂(G) is the family of (r − 1)-sets that lie in some edge of G. We obtain

exr(n, T ) ≤ (ℓ− 1)

(
n

r − 1

)
.

Our goal is to prove a nontrivial extension of the Erdős–Gallai Theorem and the Erdős–Sós Con-

jecture for r-graphs. To define the hypergraph trees we study in this paper, we make the following

more general definition:

Definition 5. Let s, t, a, b > 0 be integers, r = a+ b, and let H = H(U, V ) denote a bipartite graph

with parts U = {u1, u2, . . . , us} and V = {v1, v2, . . . , vt}. Let U1, . . . , , Us and V1, . . . , Vt be pairwise

disjoint sets, such that |Ui| = a and |Vj | = b for all i, j. So |
⋃
Ui ∪ Vj | = as+ bt.

The (a, b)-blowup of H, denoted by H(a, b), is the r-uniform hypergraph with edge set

H(a, b) := {Ui ∪ Vj : uivj ∈ E(H)}

Since deleting a vertex cover from a bipartite graph leaves an independent set, each cross cut in

a connected bipartite graph is one of its parts. Consequently, σ(H(a, b)) = min{s, t}. Recalling

from (2) that Ψ1
σ−1(n, r) := {E ⊂ [n] : |E| = r, |E ∩ [σ − 1]| = 1}, we obtain

(σ − 1)

(
n

r − 1

)
+ o(nr−1) = (σ − 1)

(
n− σ + 1

r − 1

)
= |Ψ1

σ−1(n, r)| ≤ exr(n,H). (7)

Let Ts,t denote the family of trees T with parts U and V where |U | = s and |V | = t. We frequently

say that T is a tree with s + t vertices. Let Ts,t(a, b) denote the family of (a, b)-blowups of trees
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T ∈ Ts,t. We frequently suppose that a ≥ b (but not always).

We investigate the problem of determining when crosscut constructions are asymptotically ex-

tremal for (a, b)-blowups of trees. For other instances of hypergraph trees for which the crosscut

constructions are asymptotically extremal, see [21]. Our main result is the following theorem.

Theorem 6. Suppose r ≥ 3, s, t ≥ 2, a + b = r, b < a < r. Let T be a tree on s + t vertices and

let T = T (a, b), its (a, b)-blowup. Then (as n → ∞) any T -free n-vertex r-graph H satisfies

|H| ≤ (t− 1)

(
n

r − 1

)
+ o(nr−1).

This is asymptotically sharp whenever t ≤ s.

Indeed, in the case t ≤ s we have σ(T ) = t and (7) provides a matching lower bound.

A vertex x of T ∈ Ts,t is called a critical leaf if σ(T \ x) < σ(T ). In case of t ≤ s it simply means

that degT (x) = 1 and x ∈ V . (Similarly, a critical leaf of T = T (a, b) ∈ Ts,t(a, b) with t ≤ s is a

b-set Vj in the part of size t whose degree in T is one). If such a vertex exists then we have a more

precise upper bound.

Theorem 7. Suppose r ≥ 5, 2 ≤ t ≤ s, a+ b = r, b < a < r − 1. Let T be a tree on s+ t vertices

and let T = T (a, b), its (a, b)-blowup. Suppose that T has a critical leaf. Then for large enough n

(n > n0(T ))

ex(n, T ) ≤
(
n

r

)
−
(
n− t+ 1

r

)
.

If, in addition, τ(T ) = t, then equality holds above and the only example achieving the bound is

Ψt−1(n, r).

Since τ(Ψt−1(n, r)) = t − 1, no r-graph F with τ(F ) ≥ t is contained in Ψt−1(n, r). Note that

Theorems 6 and 7 imply Theorem 1.

3 Asymptotics

In this section we prove the asymptotic version of our main results, i.e., Theorem 6. At a very

high level, our proof can be viewed as a generalization of the Katona circle method. The idea of

this method is to partition the underlying family into many well structured subfamilies and prove

a good upper bound for the size of each subfamily. Alternatively, we can phrase this using an

averaging argument. In the famous proof of the Erdős-Ko-Rado theorem using this method, these

subfamilies comprise sets that appear as intervals in a cyclic permutation. Our situation is more

complex. We take a random subset R of vertices and consider the r-sets in a subhypergraph H ′

that have a vertices in R and b = r − a vertices outside R. This gives us a bipartite structure and

we use a greedy embedding algorithm to find the tree within these edges. Further complications

arise due to b-sets with high codegree and these are handled separately via a vertex cover L whose

presence plays an important role in defining H ′. One novelty in our approach is that the size of R

is very small since this is needed for various estimates in the proof (|R| is about n1−1/3r though we

have some flexibility).
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The next section proves various bounds in the bipartite environment described above.

3.1 Definition of templates and a lemma.

Throughout this section, T ∈ Ts,t(a, b) and we suppose T is an (a, b)-blowup of a tree T . If H is

an r-graph, then an (a, b)-template in H is a pair (A,B) where A is an a-uniform hypergraph on

V (H), B is a b-uniform matching on V (H), and V (A) ∩ V (B) = ∅. Define the bipartite graph

H0 = H0(A,B) = {(e, f) ∈ A×B : e ∪ f ∈ H}

and let H1 = H1(A,B) = {e ∪ f : (e, f) ∈ H0} ⊂ H. By construction, |H0| = |H1|. We claim that

if A and B are both matchings and H1(A,B) is T -free, then

|H1(A,B)| ≤ (t− 1)|A|+ (s− 1)|B|. (8)

Indeed, otherwise |H0(A,B)| = |H1(A,B)| > (t−1)|A|+(s−1)|B| and H0 has a minimum induced

subgraph H ′
0(A

′, B′) satisfying |H ′
0(A

′, B′)| > (t − 1)|A′| + (s − 1)|B′|. By minimality, H ′
0 has

minimum degree at least t in A′ and minimum degree at least s in B′. This is sufficient to greedily

construct a copy of T in H ′
0. Since H1 is an (a, b)-blowup of H0 ⊇ H ′

0, this shows T ⊂ H1.

We now prove a version of (8) for templates, i.e., in the case when A may be not a matching:

Lemma 8. Let δ > 0 and let T ∈ Ts,t(a, b). Let H be a T -free r-graph containing an (a, b)-template

(A,B). If B = B0 ⊔B1 and dH(e) ≤ δnb for every a-set e ⊂ V (H)\V (B1), then

|H1(A,B)| ≤ (t− 1)|A|+ asna−1(δ|B0|+ |B1|). (9)

Proof. Let β0 = asδna−1 and β1 = asna−1. Let H1 = H1(A,B) and H0 = H0(A,B) and suppose

|H1| ≥ (t− 1)|A|+ β0|B0|+ β1|B1|. By deleting vertices of H0, we may assume

dH0(e) ≥ t for all e ∈ A and for i ∈ {0, 1}, dH0(e) > βi for all e ∈ Bi. (10)

Suppose T is a blowup of a tree T , where T has a unique bipartition (U, V ) with |U | = s, |V | = t.

We call an embedding of the (a, b)-blowup of a subtree T ′ of T in H1(A,B) a feasible embedding if

the a-sets corresponding to vertices in U are mapped to members of A and the b-sets corresponding

to vertices in V are mapped to members of B. It suffices to prove that any feasible embedding h

of the (a, b)-blowup of any proper subtree T ′ of T can be extended to a feasible embedding h′ of

the (a, b)-blowup of a subtree of T that strictly contains T ′.

Let T ′ be given. Then there exists an edge xy in T with x ∈ V (T ′) and y /∈ V (T ′). Let h be

a feasible embedding of the (a, b)-blowup T ′ of T ′ in H1(A,B). First suppose that x ∈ U . Let

e denote the image under h of the a-set in T ′ that corresponds to x. By our assumption e ∈ A.

Hence by our earlier assumption, dH0(e) ≥ t. Thus |ΓH1(e)| ≥ t. Since ΓH1(e) ⊆ B is a matching

of size at least t and the b-sets corresponding to V − {y} are mapped to at most t− 1 members of

B, there exists f ∈ B such that f ∩ V (h(T ′)) = ∅. We can extend h to a feasible embedding of

T ′ ∪ xy by mapping the b-set in T corresponding to y to f .

Next, suppose x ∈ V . Let e denote the image under h of the b-set in T ′ that corresponds to x. If
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there exists f ∈ ΓH1(e)− V (h(T ′)), then h(T ′)∪ {e∪ f} is a feasible embedding of T ′ ∪ xy. Hence

we may assume that no such f exists. If e ∈ B0, then we estimate dH0(e) by first adding a− b new

vertices, one from V (h(T ′)) and all outside V (B1), and then choosing the remaining a vertices.

This yields

dH0(e) ≤ |V (h(T ′)) ∩ V (A)| · na−b−1 · δnb ≤ asδna−1 = β0,

a contradiction to (10). Note it is crucial here that b < a. Similarly, if e ∈ B1, then

dH0(e) ≤ |V (h(T ′)) ∩ V (A)| · na−1 ≤ asna−1 = β1.

This contradicts dH0(e) > β1 for e ∈ B1. Hence we have shown that each feasible embedding of T ′

can be extended. This completes the proof.

3.2 Proof of Theorem 6.

In a few places of the proof we will use the following elementary fact or a slight variant of it. Let

e be a fixed edge in
(
[n]
p

)
and H a p-graph on at most n vertices. Let L be a copy of H in

(
[n]
p

)
chosen uniformly at random among all copies of H. Then P(e ∈ L) = |H|/

(
n
p

)
.

Let m be an integer satisfying m > rr and m = o(
√
n). Let f(m) = m−1/rnr−1 + m2nr−2. We

show that if H is T -free for some T ∈ Ts,t(a, b), then

|H| ≤ (t− 1)

(
n

r − 1

)
+O(f(m)).

In particular, taking m = ⌊n1/3⌋, we obtain

|H| ≤ (t− 1)

(
n

r − 1

)
+O(nr−1−1/(3r)).

In our arguments below, for convenience, we assume b divides n, since assuming so has no effect

on the asymptotic bound we want to establish. Let D = {e ∈
(
V (H)

a

)
: dH(e) ≥ nb/m} and L be a

smallest vertex cover of D, meaning that every set in D intersects L. We claim

|L| = O(m). (11)

Indeed, if |L| ≥ asm, then D has a matching M of size sm. Each set in M forms an edge of H with

at least nb/m different b-sets, and at most a|M |nb−1 = asmnb−1 of these b-sets intersect V (M).

By averaging, there is a matching N of b-sets disjoint from V (M) such that

|H0(M,N)| ≥ |M |(nb/m− asmnb−1)(
n−1
b−1

) > |M | · n
m

− |M | · asm.

Since n is large and m = o(
√
n), this is at least

(t− 1)|M |+
( n

m
− t+ 1− asm

)
|M | ≥ (t− 1)|M |+ (s− 1)n > (t− 1)|M |+ (s− 1)|N |.
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By (8), we conclude that T ⊂ H1(M,N) ⊂ H, a contradiction. This proves (11).

Let G = {e ∈ H : |e ∩ L| ≤ 1}, so that

|G| ≥ |H| − |L|2nr−2 ≥ |H| −O(m2nr−2). (12)

Let R ⊂ V (G)\L be a set whose elements are chosen independently with probability α = m−1/r,

and A =
(
R
a

)
. Let P be a random partition of V (G) into b-sets. Let B denote the set of b-sets

in P that are disjoint from R, and let H1 = H1(A,B). If B0 = {e ∈ B : e ∩ L = ∅} and

B1 = {e ∈ B : |e ∩ L| ≥ 1}, then by (9) with δ = 1/m, and using |B1| ≤ |L|,

|H1| ≤ (t− 1)|A|+O(na−1|B0|/m) +O(na−1|L|).

Taking expectations over all choices of R and P and using (11) and |B0| ≤ n, we get

E(|H1|) ≤ (t− 1)αa

(
n

a

)
+O(na/m). (13)

For i ∈ {0, 1}, let Gi = {e ∈ G : |e ∩ L| = i} and note G = G0 ∪G1. We observe that for an edge

e ∈ G0,

P(e ∈ H1) =

(
r
b

)
αa(1− α)b(

n−1
b−1

) := p0

and for an edge e ∈ G1,

P(e ∈ H1) =

(
r−1
b−1

)
αa(1− α)b−1(

n−1
b−1

) := p1.

Since α = m−1/r < 1/r and b ≤ r − 1,

p0 =
r

b
(1− α)p1 >

r

r − 1

(
1− 1

r

)
p1 = p1.

Therefore

E(|H1|) ≥ p0|G0|+ p1|G1| = (p0 − p1)|G0|+ p1|G| > p1|G| > αa(r − 1)!(1− α)b−1

a!nb−1
|G| (14)

and combining this with (13) yields

|G| < E(|H1|)a!nb−1

αa(r − 1)!(1− α)b−1
= (t− 1)αa

(
n

a

)
a!nb−1

αa(r − 1)!(1− α)b−1
+O

(
na+b−1

αa(1− α)b−1m

)
.

Using (1− α)−b+1 = 1−O(m−1/r) and simplifying, we find

|G| < (t− 1)

(
n

r − 1

)
+O(αnr−1) +O(nr−1/αam)

< (t− 1)

(
n

r − 1

)
+O(m−1/rnr−1).

Together with (12), this gives the required bound on |H|.
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In fact, the proof of Theorem 6 yields more than the theorem claims. We have the following fact.

Corollary 9. Let 0 < γ < 1/t, b < a < r, a+ b = r, t ≤ s. Let n be sufficiently large, rr < m ≤ nγ

and f(m) = m−1/rnr−1 +m2nr−2. Let T ∈ Ts,t(a, b) and H be an n-vertex T -free r-graph. If

|H| = (t− 1)

(
n

r − 1

)
+O(f(m)) (15)

then some F ⊂ H with |F | = |H| −O(f(m)) has a crosscut L of size O(m).

Proof. If |H| = (t−1)
(

n
r−1

)
+O(f(m)), then the upper and lower bounds for E(|H1|) given by (13)

and (14) differ by O(na/m). By (14) they also differ by at least (p0 − p1)|G0| so

(p0 − p1)|G0| = O(na/m).

Using p0 > (1+1/r)p1, we get p1|G0| = O(na/m) and this shows |G0| = O(f(m)). Setting F = G1,

L is a crosscut of F and |F | = |H| −O(f(m)).

4 Stability

The aim of this section is to prove the following stability theorem. It is important throughout

this section that t ≤ s, so that for T ∈ Ts,t(a, b), we have σ(T ) = t and therefore Ψ1
t−1(n, r)

does not contain T . The following theorem says that if H is a T -free r-graph on n vertices and

|H| ∼ |Ψt−1(n, r)|, then H is obtained by adding or deleting o(nr−1) edges from Ψt−1(n, r).

Theorem 10. Let T ∈ Ts,t(a, b), where b < a < r − 1, t ≤ s. Let H be a T -free n-vertex r-graph

with |H| ∼ (t− 1)
(

n
r−1

)
. If T has a critical leaf, then there exists a set S of t− 1 vertices of H such

that |H − S| = o(nr−1).

4.1 Degrees of sets.

By Corollary 9 with rr < m = o(n1/(t+1)) there exists F ⊂ H such that |F | ∼ |H| and F has a

crosscut L of size O(m). Our first claim says that most elements of ∂F have degree t− 1 in F . For

a hypergraph G and S ⊂ V (G), we write G− S to denote the induced subhypergraph G[S].

Claim 1. There are
(

n
r−1

)
− o(nr−1) sets e ∈ ∂F − L such that dF (e) = t− 1.

Proof. Suppose ℓ sets e ∈ ∂F − L have dF (e) ≥ t. By the definition of L, Γ(e) ⊂ 2L for each

e ∈ ∂F −L. Let Z be a crosscut of T with |Z| = t contained in B and let T ∗ = {e\Z : e ∈ T } (note

that here Γ(e) is a 1-uniform hypergraph). Then T ∗ is an (a, b − 1)-blowup of T . Proposition 4

implies

ex(n, T ∗) < (s+ t)nr−2.

By the pigeonhole principle, there exists a set S ⊂ L with |S| = t such that at least k = ℓ/|L|t sets
e ∈ ∂F − L have ΓF (e) ⊇ S. If k > ex(n, T ∗), then T ∗ ⊂ ∂F − L and for all e ∈ T ∗, ΓG(e) ⊇ S.

Now we can lift T ∗ to T ⊂ F via S. Indeed, we can greedily enlarge each of the (b − 1)-sets that
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form T ∗ to a b-set by adding an element of S. This contradicts the choice of H. We therefore

suppose that

ℓ/|L|t = k ≤ ex(n, T ∗) ≤ (s+ t)nr−2

which gives ℓ ≤ (s + t)|L|tnr−2 = O(nr−2mt). As |F | ∼ |H| ∼ (t − 1)
(

n
r−1

)
, and the number

of (r − 1)-sets in V (F ) − L is at most
(

n
r−1

)
, the average degree of sets in ∂F − L is at least

t− 1− o(1). We have already argued that at most O(nr−2mt) of these sets have degree larger than

t − 1. Furthermore, none of them has degree greater than m. Hence, writing x for the number of

sets in ∂F − L of degree at most t− 2, we have

(t− 1)

(
n

r − 1

)
− x+mO(nr−2mt) ≥ (t− 1)

(
n

r − 1

)
(1− o(1)).

Since m nr−2mt = o(nr−1), we conclude that x = o
((

n
r−1

))
. This yields the claim.

4.2 Proof of Theorem 10

Let S1, S2, . . . , Sk be an enumeration of the (t−1)-element subsets of L, and let Fi denote the family

of (r−1)-element sets e in V (F )\L such that ΓF (e) = Si. By Claim 1, |F1∪F2∪· · ·∪Fk| ∼
(
n−|L|
r−1

)
.

Suppose k ≥ 2. By definition, for i ̸= j, Fi ∩ Fj = ∅. Therefore,

k∑
i=1

|Fi| ∼
(

n

r − 1

)
.

For each i ∈ [k], if |Fi| = o(nr−1/k), let Gi be an empty (r − 1)-graph, if |Fi| = Ω(nr−1/k), then

delete edges of Fi containing a-sets or b-sets of ”small” degree until we obtain either an empty

(r − 1)-graph or an (r − 1)-graph Gi such that

dGi(e) > r(s+ t)nr−2−a ∀ a-set e ∈ ∂aGi, and dGi(f) > r(s+ t)nr−2−b ∀ b-set f ∈ ∂bGi. (16)

By construction, |Gi| ≥ |Fi|−2r(s+t)nr−2 and since Fi = Ω(nr−1/k) and k ≤ |L|t ≤ O(mt) = o(n),

whenever Gi is non-empty we have

|Gi| = (1− o(1))|Fi|.

We conclude that if G =
⋃

Gi then |G| = (1− o(1))|F | ∼
(

n
r−1

)
and

k∑
i=1

|Gi| ∼
(

n

r − 1

)
. (17)

Claim 2. For i ̸= j, ∂aGi ∩ ∂aGj = ∅.

Proof. Let W be a tree obtained from the tree T by deleting a leaf vertex x with unique neighbor

y ∈ T , such that x is in the part of T of size t. Suppose some a-set e is contained in ∂aGi ∩ ∂aGj .

By (16), we can greedily grow W (a, b − 1) in Gj such that e is the blowup of y. By adding one



Füredi, Jiang, Kostochka, Mubayi, and Verstraëte: Hypergraph blowups of trees 12

vertex of Sj to each b− 1-set in W (a, b− 1), we obtain W (a, b). Now there exists x′ ∈ Si\Sj . Since

dGi(e) > r(s+ t)nr−2−a, there exists an edge f ∈ Gi containing e, such that f ∩V (W (a, b−1)) = ∅,
and therefore f ∪ {x′} ∈ F plus W (a, b) gives the tree T (a, b), with f\e the blowup of x. This

proves the claim. 2

Now we prove Theorem 10. Since a ≤ r − 2, by Claim 2, for all i ̸= j, ∂r−2Gi ∩ ∂r−2Gj = ∅.
Without loss of generality, suppose that for some 0 ≤ p ≤ k, |G1| ≥ |G2| ≥ . . . ≥ |Gp| ≥ 1

and Gi = ∅ for p + 1 ≤ i ≤ k. For each i ∈ [p], let yi ≥ r − 1 denote the real such that

|Gi| =
(

yi
r−1

)
. Then y1 ≥ y2 ≥ · · · ≥ yp. By the Lovász form of the Kruskal-Katona theorem, for

each i ∈ [p], |∂r−2(Gi)| ≥
(

yi
r−2

)
. By the disjointness of the ∂r−2(Gi)’s, we have

p∑
i=1

(
yi

r − 2

)
≤

(
n

r − 2

)
.

For each i ∈ [p], since
(

yi
r−1

)
= yi−r+2

r−1

(
yi
r−2

)
≤ y1−r+2

r−1

(
yi
r−2

)
, by (17) we have

(1− o(1))

(
n

r − 1

)
≤

p∑
i=1

|Gi| =
p∑

i=1

(
yi

r − 1

)
≤ y1 − r + 2

r − 1

p∑
i=1

(
yi

r − 2

)
≤ y1 − r + 2

r − 1

(
n

r − 2

)
.

From this, we get y1 ≥ n− o(n). Hence |F1| ≥ |G1| =
(

y1
r−1

)
≥

(
n

r−1

)
− o(nr−1). Hence there exists

S = S1 ⊂ L such that (t−1)
(

n
r−1

)
−o(nr−1) edges of F consists of one vertex in S and r−1 vertices

disjoint from S. 2

5 Exact results

The aim of this section is to prove the following theorem, which completes the proof of Theorem 7:

Theorem 11. Let t ≤ s, b < a < r− 1 with a+ b = r and T ∈ Ts,t(a, b) such that T has a critical

leaf and τ(T ) = t. If n is large and H is a T -free n-vertex r-graph with |H| ≥
(
n
r

)
−
(
n−t+1

r

)
, then

H ∼= Ψt−1(n, r).

To prove this, we aim to show that the (t − 1)-set S given by Theorem 10 is a vertex cover of H.

We prove the following consequence of Claim 1. Recall that Corollary 9 gives F ⊂ H such that

|F | ∼ |H|.

Claim 3. Let ∆u = (t− 1)
(

n−u
r−1−u

)
. Then for each δ > 0, there exists G ⊂ F with |G| ∼ |F | such

that for any u-set e ⊂ V (G) with u < r and dG(e) > 0, either

(i) |e ∩ S| = 0 and dG(e) ≥ (1− δ)∆u or

(ii) |e ∩ S| = 1 and dG(e) ≥ r(s+ t)nr−1−u.

Proof. Let K be the set of edges of F containing some e ∈ ∂F −S with dF (e) = t− 1. By Claim 1,

|K| ∼ |F |. Also, every r-set in K has one point in S and r−1 points in V (K)\S. Since dK(e) = t−1

for all e ∈ ∂K − S, every u-set in V (K)\S has degree at most ∆u in K.
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We repeatedly delete edges from K as follows. Suppose at some stage of the deletion we have a

hypergraph K ′. If there exists a u-set e for some u < r such that

(i’) |e ∩ S| = 0 and dK′(e) < (1− δ)∆u or

(ii’) |e ∩ S| = 1 and dK′(e) < r(s+ t)nr−1−u

then delete all edges of K ′ containing e. Let G be the hypergraph obtained at the end of this

process. We shall prove |G| ∼ |K|. To this end, suppose that |G| = |K| − η(t − 1)
(

n
r−1

)
, and we

show η = o(1) to complete the proof. Consider two cases.

Case 1. At least η
2 (t− 1)

(
n

r−1

)
edges of K were deleted due to (ii’).

In this case, there exists u < r such that the set H ′ of edges of K deleted due to (ii’) on u-sets

satisfies |H ′| ≥ η
2r (t− 1)

(
n

r−1

)
. Then by (ii’), and since the number of u-sets with one vertex in S

is |S|
(
n−|S|
u−1

)
,

|H ′| ≤ |S|
(
n− |S|
u− 1

)
· r(s+ t)nr−1−u < |S|r(s+ t)nr−2.

Since |H ′| ≥ η
2r

(
n

r−1

)
and |S| = t− 1, this gives η = o(1).

Case 2. At least η
2 (t− 1)

(
n

r−1

)
edges of K were deleted due to (i’).

In this case, there exists u < r such that the set H ′ of edges of K deleted due to (i’) on u-sets

satisfies |H ′| ≥ η
2r (t − 1)

(
n

r−1

)
. Let U1 be the set of u-sets in V (K)\S on which edges of K were

deleted due to (i’), and let U2 be the remaining u-sets in V (K)\S. Then

|U1| >
|H ′|

(1− δ)△u
≥

η(t− 1)
(

n
r−1

)
2r(t− 1)

(
n

r−1−u

) .
If n is large enough, then this is at least η

4r(r−1
u )

(
n
u

)
. Let γ = η

4r(r−1
u )

. Then

|K|
(
r − 1

u

)
=

∑
e∈(V (K)\S

u )

dK(e)

=
∑
e∈U1

dK(e) +
∑
e∈U2

dK(e)

≤ |U1|(1− δ)∆u + |U2|∆u

≤ γ(1− δ)

(
n

u

)
∆u + (1− γ)

(
n

u

)
∆u = (1− γδ)

(
n

u

)
∆u.

Here we used |U1|+ |U2| ≤
(
n
u

)
. Therefore

|K| ≤ (1− γδ)

(
n
u

)
∆u(

r−1
u

) = (1− γδ)(t− 1)

(
n

r − 1

)
.

Since |K| ∼ |F | ∼ (t − 1)
(

n
r−1

)
, γδ = o(1). Since δ > 0 and γ = η

4r(r−1
u )

, this implies η = o(1), as

required.
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Let T ∈ Ts,t(a, b) have a critical leaf with τ(T ) = t ≤ s, a + b = r, b < a < r − 1, and let H be a

T -free n-vertex r-graph with |H| ≥
(
n
r

)
−

(
n−t+1

r

)
. We aim to show that S is a vertex cover of H,

which gives H ∼= Ψt−1(n, r), as required. To this end, let Hi = {e ∈ H : |e ∩ S| = i}. So we have

to show H0 = ∅.

Since T has a critical leaf, there is a b-set e′ of T in the part of size t with dT (e
′) = 1. Let T ′ be

the tree obtained from T by deleting the edge containing e′. So V (T ′) has one part comprising

t − 1 sets, each of size b and the other part comprising s sets, each of size a. It has a crosscut of

size t− 1 by picking one vertex from each of the b-sets above.

Let K1 be the set of r-sets of [n] that have exactly one vertex in S. A subfamily T ⊂ K1 is a

potential tree if

1. T ∼= T ′

2. the t− 1 vertices of S play the role of the crosscut vertices of T ′ described above

3. e0 is an a-set in V (T ) with e0 ∈ ∂aH0

4. there exists e ∈ H0 such that e0 ⊂ e

5. T ∪ e is a copy of T .

Fix an a-set e0 ∈ ∂aH0 and suppose e0 ⊂ e ∈ H0. If T ⊂ H1 is a potential tree as described above,

then T ∪ {e} is a copy of T in H, a contradiction. So for each such potential tree T , there exists

f ∈ T −H1. Let us call this a missing edge. Let m = as+ bt− b be the number of vertices of each

potential tree. The number of potential trees containing a fixed missing edge f is at most(
n− |S| − (a+ b− 1)

m− |S| − (a+ b− 1)

)
· c(T ),

where c(T ) is the number of ways we can put a potential tree using f into the set M with |M | = m

and S ∪ f ⊂ M ⊂ [n], (note that |f ∩ S| = 1).

On the other hand, each e0 ∈ ∂aH0 and a subset M ′ with |M ′| = m and S ⊂ M ′ ⊂ ([n]−e0) carries

at least one potential tree so the total number of potential trees is at least

|∂aH0|
(
n− |S| − a

m− |S| − a

)
.

It follows that the number of missing edges is at least c|∂aH0|nb−1 for some c > 0. Therefore

|H| = |H0|+ |H1|+ |H2|+ · · ·+ |Hr| ≤
(
n

r

)
−
(
n− t+ 1

r

)
+ |H0| − c|∂aH0|nb−1.

By Proposition 4 and the fact that T is contained in a tight tree on V (T ), |H0| < c′|∂H0| for some

constant c′.

Next, we observe that ∂H0 ∩ ∂G = ∅, for otherwise we will use Claim 3 to greedily build a copy of

T using the edge of H0, and whose remaining edges form a copy of T ′ and come from G. Indeed,

at each step in this greedy process, we either have a b-set e′ disjoint from S and we would like to

find an r-set in G containing e′ with one vertex in S (and disjoint from the current subtree), or an

a-set e′′ with one vertex in S and we would like to find an r-set in G containing e′′ disjoint from S
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and from the current subtree. In the first case we apply Claim 3 (i) with u = b. Here |S| = t − 1

ensures that we can find the required r-set in G. In the second case we apply Claim 3 (ii) with

u = a. The claim states that the number of r-sets in G containing e′′ is at least r(s+ t)nr−1−a and

hence one of them can be used to enlarge the current subtree.

Since |∂G| ∼
(

n
r−1

)
, we obtain |∂H0| = o(nr−1). Writing |∂H0| =

(
x

r−1

)
for some real x, we have

|∂aH0| ≥
(
x
a

)
, by the Kruskal-Katona Theorem. Therefore

|H0| − c|∂aH0|nb−1 ≤ c′|∂H0| − c|∂aH0|nb−1 ≤ c′
(

x

r − 1

)
− cnb−1

(
x

a

)
.

Since x = o(n), for large enough n the above expression is negative, unless |∂H0| = |∂aH0| = 0.

We have shown that if |H| ≥
(
n
r

)
−
(
n−t+1

r

)
, then H0 = ∅ and |H| =

(
n
r

)
−
(
n−t+1

r

)
, as required.

6 (1, 2)-paths of length 4

6.1 Result and the setup of the proof

The goal of this section is to find asymptotics for the smallest case not covered by our results above,

namely, for ex3(n, P4(1, 2)). We will show that

ex3(n, P4(1, 2)) =

(
n− 1

2

)
+O(n). (18)

We cannot replace the term O(n) in (18) with o(n): Consider the 3-graph H with V (H) = [n] and

E(H) = E1 ∪ E2, where E1 = {{1, i, j} : 2 ≤ i < j ≤ n} and E2 = {{2, 2i + 1, 2i + 2} : 1 ≤ i ≤
n/2− 1}. This 3-graph has

(
n−1
2

)
+ ⌊(n− 2)/2⌋ edges and does not contain P4(1, 2).

The technique in this section is different from used above. Instead of (18), we shall prove the

following slightly stronger version.

Theorem 12. For every P4(1, 2)-free n-vertex 3-graph H,

|H| − |∂H| = O(n). (19)

Again, we cannot replace O(n) in (19) with o(n): If n is divisible by 6 and H is the disjoint union

of n/6 copies of K3
6 , then H contains no P4(1, 2), |H| = (20/6)n and |∂H| = (15/6)n.

Our proof has the following 3 steps:

Step 1: There is a C1 such that for every n every P4(1, 2)-free n-vertex 3-graph H can be made

K3
4 -free after deleting at most C1n edges.

Step 2: There is a C2 such that for every n from any P4(1, 2)-free n-vertex 3-graph H without

K3
4 -subgraphs one can delete at most C2n edges so that the remaining 3-graph H ′ is (K3

4 )
−-free or

satisfies |H ′| ≤ |∂H ′|.

Step 3: If a P4(1, 2)-free n-vertex 3-graph H has no (K3
4 )

−-subgraphs, then |H| ≤ |∂H|.
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The three steps together imply Theorem 12. The main tool for Steps 1 and 2 is the ∆-system

method introduced by Deza, Erdős and Frankl [2]. In the next subsection we introduce the notions

needed to apply the ∆-system method and state an important lemma by Füredi [12] on the topic,

and in the subsequent three subsections we prove the three steps.

6.2 Definitions for the ∆-system method and a lemma

A family of sets {F1, . . . , Fs} is an s-star or a ∆-system of size s with kernel A, if Fi ∩ Fj = A for

all 1 ≤ i < j ≤ s.

For a member F of a family F , let the intersection structure of F relative to F be

I(F,F) = {F ∩ F ′ : F ′ ∈ F \ {F}}.

An r-uniform family F ⊆
(
[n]
r

)
is r-partite if there exists a partition (X1, . . . , Xr) of the vertex set

[n] such that |F ∩Xi| = 1 for each F ∈ F and each i ∈ [r].

For a partition (X1, . . . , Xr) of [n] and a set S ⊆ [n], the pattern Π(S) is the set {i ∈ [r] : S∩Xi ̸= ∅}.
Naturally, for a family L of subsets of [n],

Π(L) = {Π(S) : S ∈ L} ⊆ 2[r].

Lemma 13 (The intersection semilattice lemma (Füredi [12])). For any positive integers s and r,

there exists a positive constant c(r, s) such that every family F ⊆
(
[n]
r

)
contains a subfamily F∗ ⊆ F

satisfying

1. |F∗| ≥ c(r, s)|F|.

2. F∗ is r-partite, together with an r-partition (X1, . . . , Xr).

3. There exists a family J of proper subsets of [r] such that Π(I(F,F∗)) = J holds for all F ∈ F∗.

4. F∗ is closed under intersection, i.e., for all A,B ∈ J we have A ∩B ∈ J , as well.

5. For any F ∈ F∗ and each A ∈ I(F,F∗), there is an s-star in F∗ containing F with kernel A.

Remark 1. The proof of Lemma 13 in [12] yields that if F itself is r-partite with an r-partition

(X1, . . . , Xr), then the r-partition in the statement can be taken the same.

Remark 2. By definition, if for some k ∈ [r] none of the members of the family J of proper

subsets of [r] in Lemma 13 contains k, then the degree in F∗ of each vertex in Xk is at most 1.

Since F∗ is r-partite, this yields |F∗| ≤ |Xk| ≤ n− r + 1. Thus, if |F∗| ≥ n, then
⋃

J∈J J = [r].

6.3 Proof of Step 1

Choose C1 = 4
c(4,6) , where c(4, 6) is from Lemma 13. Let H be a P4(1, 2)-free n-vertex 3-graph.

Construct a 4-uniform family E of subsets of [n] as follows. First, let E0 = ∅, H0 = H. Then for

j = 1, . . . , do
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(i) If Hj−1 has no K3
4 -subgraphs, then let E = Ej−1 and H ′ = Hj−1.

(ii) Otherwise, choose some 4-set e = i1i2i3i4 ⊂ [n] with Hj−1[e] = K3
4 , let Ej = Ej−1 ∪ {e} and

Hj = Hj−1 \ {i1i2i3, i1i2i4, i1i3i4, i2i3i4}.

By construction, |H ′| = |H|−4|E|. So, if |E| ≤ C1
4 n, then Step 1 is done. Suppose |E| > C1

n
4 = n

c(4,6) .

By Lemma 13 for r = 4 and s = 6, there are a partition (X1, . . . , X4) of [n] and a family E∗ ⊆ E
satisfying properties 1-5 in the lemma. In particular, |E∗| > c(4, 6) n

c(4,6) = n. By Remark 2, the

union of the members of J is the whole [4].

On the other hand, by the definition of E , no two members of it may share 3 vertices. It follows

that |J | ≤ 2 for all J ∈ J . Furthermore, if |e1∩ e2| = 1 for some e1, e2 ∈ E , say e1 = {1, 2, 3, 4} and

e2 = {4, 5, 6, 7}, then we have a P4(1, 2) with edges 123, 234, 456, 567, a contradiction. It follows

that |J | ≠ 1 for all J ∈ J . By Part 4 of Lemma 13 this means that up to symmetry, the only

possibility for J is that

J = {∅, {1, 2}, {3, 4}}. (20)

So, let e1 = x1x2x3x4 ∈ E∗ where xi ∈ Xi for i = 1, 2, 3, 4. By Part 5 of Lemma 13 and by (20),

there is e2 ∈ E∗ such that e1 ∩ e2 = {x1, x2}, say e2 = x1x2x
′
3x

′
4, where x′3 ∈ X3 and x′4 ∈ X4.

For the same reasons, there is e3 ∈ E∗ such that e1 ∩ e3 = {x3, x4}, say e3 = x′1x
′
2x3x4, where

x′1 ∈ X1 and x′2 ∈ X2. But then H contains a P4(1, 2) with edges x′2x
′
1x3, x

′
1x3x4, x4x1x2, x1x2x

′
3,

a contradiction. This proves Step 1.

6.4 Proof of Step 2

For Steps 2 and 3, we need a couple of new definitions. Call a 3-graph normal if it has no pairs of

vertices of codegree exactly 1. In a normal 3-graph H, for every edge xyz ∈ H, there is a vertex

h(xy; z) ̸= z such that {x, y, h(xy; z)} ∈ H. Such a vertex h(xy; z) does not need to be unique:

there are d(x, y)− 1 such vertices.

We will show Step 2 in the following form.

Lemma 14. Let C2 = 200
c(4,6) where c(4, 6) is from Lemma 13. If H is a P4(1, 2)-free and K3

4 -

free n-vertex 3-graph, then one can delete at most C2n edges so that the remaining 3-graph H ′ is

(K3
4 )

−-free or satisfies |H ′| ≤ |∂H ′|.

Proof. Suppose that lemma does not hold, and H is a counter-example with the fewest edges. If

our H is not normal, then deleting an edge containing a pair of codegree exactly 1 would create a

smaller 3-graph H ′ with |H ′| − |∂H ′| ≥ |H| − |∂H| ≥ 1 that is again P4(1, 2)-free and (K3
4 )

−-free,

contradicting the minimality of H. Thus H is normal.

Construct a 4-uniform family E of subsets of [n] with a special vertex in each member as follows.

First, let E0 = ∅, H0 = H. Then for j = 1, . . . , do

(i) If Hj−1 has no (K3
4 )

−-subgraphs, then let E = Ej−1 and H ′ = Hj−1.

(ii) Otherwise, choose some 4-set e = {i1, i2, i3, i4} ⊂ [n] with Hj−1[e] = (K3
4 )

−, say i2i3i4 /∈
E(Hj−1). Then let i1 be the special vertex in e, let Ej = Ej−1 ∪ {e} and

Hj = Hj−1 \ {i1i2i3, i1i2i4, i1i3i4}.
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By construction, |H ′| = |H| − 3|E|. So, if |E| ≤ C2
3 n, then the lemma is proved. Suppose |E| >

C2n/3. By a classic observation of Erdős and Kleitman, there is a 4-partite subfamily E ′ of E with

|E ′| ≥ 4!
44
|E| > C2

32 n. Let (X1, X2, X3, X4) be the corresponding 4-partition of [n]. By symmetry, we

may assume that at least 1
4 |E

′| members of E ′ have the special vertex in X1. Let F be the family

of such members. In particular, |F| ≥ 1
4 |E

′| > C2
27
n.

By Lemma 13 for r = 4 and s = 6 and Remark 1 after it, there is a family F∗ ⊆ F satisfying

properties 1-5 of the lemma (with the same partition (X1, X2, X3, X4)). In particular,

|E∗| ≥ c(4, 6)
C2

27
n > n.

By Remark 2,
⋃

J∈J J = [4]. Let us first show that

If J ∈ J is a singleton, then J = {1}. (21)

Indeed, if say J ∩ J1 = {4}, then F∗ contains sets f1 = {x1, x2, x3, x4} and f2 = {x′1, x′2, x′3, x4}.
So by the definition of F , H has a P4(1, 2) with edge set {x3x2x1, x2x1x4, x4x′2x′1, x′2x′1x′3}. This

proves (21).

Case 1: A member J of J is a triple. Since the intersection of any two members of E cannot be

an edge of H, J = {2, 3, 4}, and J contains no other triples. Let J1 be a member of J containing

1. Then |J1| ≤ 2. By Part 4 of Lemma 13, J ∩ J1 ∈ J and |J ∩ J1| < |J1|. Then by (21), the set

J ∩ J1 is not a singleton and hence is ∅. If follows that the unique member of J containing 1 is

{1}.

Let y1 ∈ X1. By Part 5 of Lemma 13, F∗ contains sets A1, A2 such that for i = 1, 2, Ai =

{y1, yi,2, yi,3, yi,4} forming a 2-star with kernel {y1}. Since J = {2, 3, 4} ∈ J by the same Part

5, for i = 1, 2 and i′ = 1, 2, 3, F∗ contains sets Bi,i′ such that Bi,i′ = {zi′,1, yi,2, yi,3, yi,4} forming

3-stars with kernels {y1,2, y1,3, y1,4} and {y2,2, y2,3, y2,4}. Since 1 ≤ i′ ≤ 3, we choose z1,1 ̸=
y1 and then z2,1 /∈ {y1, z1,1}. Then by the definition of F , H has a P4(1, 2) with edge set

{z1,1y1,2y1,3, y1,2y1,3y1, y1y2,2y2,3, y2,2y2,3z2,1}, a contradiction.

Case 2: |J | ≤ 2 for each J ∈ J , and there are nonempty J1, J2 ∈ J with J1 ∩ J2 = ∅. If

|J1| = |J2| = 2, then we may assume J1 = {1, 2} and J2 = {3, 4}. In this case, we simply repeat the

last paragraph of the proof of Step 1. Otherwise, by (21) we may assume J1 = {1} and J2 = {3, 4}.
Then we take y1 ∈ X1 and sets A1, A2 as in Case 1. Since J2 = {3, 4} ∈ J , for i ∈ [2] and

i′ ∈ [3], F∗ contains sets Bi,i′ such that Bi,i′ = {zi′,1, zi′,2, yi,3, yi,4} forming 3-stars with kernels

{y1,3, y1,4} and {y2,3, y2,4}. Since 1 ≤ i′ ≤ 3, we choose z1,1 ̸= y1 and then z2,1 /∈ {y1, z1,1}. Then

by the definition of F , H has a P4(1, 2) with edge set {z1,1y1,3y1,4, y1,3y1,4y1, y1y2,3y2,4, y2,3y2,4z2,1},
a contradiction.

Case 3: |J | ≤ 2 for each J ∈ J , and for all nonempty J1, J2 ∈ J , J1 ∩ J2 ̸= ∅. Since the sets in J
cover [4], by (21),

{{1}, {1, 2}, {1, 3}, {1, 4}} ⊆ J ⊆ {∅, {1}, {1, 2}, {1, 3}, {1, 4}}. (22)

For each v ∈ V (H), the link graph H(v) is the simple graph G with V (G) =
⋃

e∈H:v∈e e \ {v} and
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E(G) = {e \ {v} : v ∈ e ∈ H}.

Observe that because H is normal, δ(H(v)) ≥ 2 for every vertex v ∈ V (H) that lies in at least one

edge of H. Indeed, if x ∈ H(v), then there is an edge vxy ∈ H and xy ∈ H(v). By normality of

H, there is another edge vxz ∈ H which implies that xz ∈ H(v). This shows that degH(v)(x) ≥ 2.

Let x1 ∈ X1. Since {1} ∈ J , F∗ contains sets A1, . . . , A6 such that Ai∩Ai′ = {1} for all 1 ≤ i < i′ ≤
6. This means that H(x1) has 6 vertex-disjoint triangles, say with vertex sets A′

i = {ai,1, ai,2, ai,3}
for i = 1, . . . , 6. Also, (22) implies that for every vertex y ∈ NF∗(x1) = {x : degF∗(x, x1) > 0}, we
have dH(x1)(y) ≥ 12. Indeed, (22) implies that we have at least 6 other edges in F∗ containing both

x1 and y with kernel {x1, y}, and each of these edges contains two edges of H(x1) that contain y.

Thus, we have δ(H(v)) ≥ 6.

Let w = h(a6,1a6,2;x1). Since all A′
i are disjoint, we may assume that w /∈

⋃4
i=1A

′
i. If for some

1 ≤ i ≤ 4 and 1 ≤ i′ < i′′ ≤ 3, h(ai,i′ai,i′′ ;x1) /∈ {a6,1, a6,2, x1}, then H has a P4(1, 2) with edge

set {wa6,1a6,2, a6,1a6,2x1, x1ai,i′ai,i′′ , ai,i′ai,i′′h(ai,i′ai,i′′ ;x1)}, a contradiction. Since {w, a6,1, a6,2} ∩⋃4
i=1A

′
i = ∅, for similar reasons, for 1 ≤ i1 < i2 ≤ 4 and any 1 ≤ i′1 < i′′1 ≤ 3 and 1 ≤ i′2 < i′′2 ≤ 3,

h(ai1,i′1ai1,i′′1 ;x1) = h(ai2,i′2ai2,i′′2 ;x1).

But then there is w′ ∈ {w, a6,1, a6,2} such that for each yz ∈ H(x1) with w′ /∈ {y, z}, h(yz;x1) = w′.

Recall that δ(H(x1)) ≥ 6, so H(x1) − w′ has a cycle y1, . . . , ys, y1 for some s ≥ 6. Then H has a

P4(1, 2) with edge set {y1y2x1, y2x1y3, y3y4w′, y4w
′y5}, a contradiction.

6.5 Proof of Step 3

Suppose there exists a P4(1, 2)-free and (K3
4 )

−-free n-vertex 3-graph H with |H| > |∂H|. Then

|H| ≥ 1, so |∂H| ≥ 3, and hence |H| ≥ 4.

If our H is not normal, then deleting an edge containing a pair of codegree exactly 1 would create

a smaller 3-graph H ′ with |H ′|− |∂H ′| ≥ |H|− |∂H| ≥ 1 that is again P4(1, 2)-free and (K3
4 )

−-free,

contradicting the minimality of H. Thus H is normal. So as in Step 2, for every edge xyz ∈ H,

there is a vertex h(xy; z) ̸= z such that {x, y, h(xy; z)} ∈ H.

Since H is (K3
4 )

−-free,

for each v ∈ V (H), H(v) is triangle-free. (23)

We now prove another property:

for each v ∈ V (H), H(v) is C4-free. (24)

Indeed, suppose H contains edges vu1u2, vu2u3, vu3u4, vu4u1. Let h(uiui+1; v) = xi (indices count

modulo 4). If xi = ui+2, then H[{v, ui, ui+1, ui+2}] ⊇ (K3
4 )

−, a contradiction. Similarly, xi ̸=
ui−1. Thus if x3 ̸= x1, then H contains a P4(1, 2) with edges x1u1u2, u1u2v, vu3u4, u3u4x3, a

contradiction.

Therefore, x3 = x1 and d(u1, u2) = d(u3, u4) = 2. Similarly, x4 = x2.
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Suppose first x2 ̸= x1. Let w = h(x1u2;u1). Since H is (K3
4 )

−-free, w ̸= v. Since x2 ̸= x1,

w ̸= u3. Thus if w ̸= u4, then H contains a P4(1, 2) with edges wx1u2, x1u2u1, u1vu4, vu4u3, a

contradiction. It follows that w = u4 and d(u2, x1) = d(u4, x1) = 2. Similarly, h(x1u3;u4) = u1
and d(u3, x1) = d(u1, x1) = 2. But then the pairs u1x1, u2x1, u3x1, u4x1 are not in the shadow of

H ′ = H \ {u1u2x1, u2u4x1, u3u4x1, u1u3x1}, and so |H ′| − |∂H ′| = |H| − |∂H|, contradicting the

minimality of H.

Suppose now that x2 = x1. If the co-degree of each pair x1ui (1 ≤ i ≤ 4) is 2, then similarly to

above, the 3-graph H ′′ = H \ {u1u2x1, u2u3x1, u3u4x1, u1u4x1} has the property |H ′′| − |∂H ′′| =
|H| − |∂H|, contradicting the minimality of H. So by symmetry we may assume that there is

some w /∈ {v, u1, u2, u3, u4, x1} such that wu1x1 ∈ H. Then H contains a P4(1, 2) with edges

wx1u1, x1u1u2, u2vu3, vu3u4. This contradiction proves (24).

Fix v ∈ V (H). Since H is normal, δ(H(v)) ≥ 2, so H(v) has cycles. Let C = u1, uu, . . . , us, u1 be

a shortest cycle in H(v). By (23) and (24), s ≥ 5. We now show

for each 1 ≤ i ≤ s, h(uiui+1; v) ∈ {u1, . . . , us}. (25)

Indeed, suppose w = h(u1u2; v) /∈ {u1, . . . , us}. Let w′ = h(u1w;u2). Since H is (K3
4 )

−-free,

w′ ̸= v. If w′ /∈ {u3, u4}, then H contains a P4(1, 2) with edges w′wu1, wu1u2, u2vu3, vu3u4, a

contradiction. Otherwise, suppose w′ = uq where q ∈ {3, 4}. Then H has a P4(1, 2) with edges

u2u1w, u1ww
′, w′vuq+1, vuq+1uq+2, unless q + 2 > s which yields s = 5 and q = 4. In this case,

u4 = h(wu1;u2). Then by symmetry, also u4 = h(wu2;u1). Hence |H[{w, u1, u2, u4}]| ≥ 3, a

contradiction. This proves (25).

Our next claim is

for each v ∈ V (H) with d(v) > 0, H(v) is a cycle. (26)

Indeed, suppose d(v) > 0. Let C = u1, uu, . . . , us, u1 be a shortest cycle in H(v). Suppose there is

w ∈ V (H(v))− V (C). Since C is a shortest cycle in H(v) and s ≥ 5, w has at most one neighbor

in C. Then, since δ(H(v)) ≥ 2, w has a neighbor w′ /∈ V (C). Let x = h(ww′; v). We may rename

the vertices of C so that if x ∈ V (C), then x = u1. By (25), the vertex y = h(u2u3; v) is in V (C),

and since H is (K3
4 )

−-free, y ̸= u1. Then the edges xww′, ww′v, vu2u3, u2u3y form a P4(1, 2) in H,

a contradiction. This proves (26).

Since
∑

v∈V (H) |V (H(v))| = 2|∂H| and
∑

v∈V (H) |H(v)| = 3|H|, inequality |H| > |∂H| yields that

for some v ∈ V (H), |H(v)| > 3
2 |V (H(v))|, which contradicts (26). This finishes Step 3, and hence

the proof of Theorem 12.

7 Concluding remarks

In this paper we determined for b ≤ a < r the asymptotic behavior of exr(n, T ) when T ∈ Ts,t(a, b)
is an (a, b)-blowup of a tree T with parts of sizes s and t where s ≥ t and σ(T ) = t. The extremal
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problem appears to be more difficult when s < t, in which case the smallest crosscut of T has size

s. We pose Conjecture 15, which covers all cases except a = r − 1.

Conjecture 15. If T ∈ Ts,t(a, b) where b ≤ a < r − 1, σ = σ(T ) = min{s, t}, and H is a T -free

n-vertex r-graph, then for large enough n, |H| ≤ (σ − 1)
(

n
r−1

)
+ o(nr−1), with equality only if H is

isomorphic to a hypergraph obtained from Ψσ−1(n, r) by adding or deleting o(nr−1) edges.

The case a = r − 1. If t > s (and n ≥ |V (T )|), then Ψ1
t−1(n, r) contains T so Conjecture 15

does not hold. Since Ψ1
s−1(n, r) does not contain T , it is natural to ask whether Ψ1

s−1(n, r) is

(asymptotically) extremal for T . In some cases when a = r − 1, this is certainly not so because

certain Steiner systems do not contain a blowup of a star K1,t and are denser than Ψs−1(n, r).

More precisely: Let T be a tree on s + t vertices and let T = T (a, b), its (a, b)-blowup. Suppose

a = r − 1 and let λ = maxx∈U degT (x). Then ex(n, T ) is at least the number of edges in a Steiner

(n, r, r − 1, λ− 1)-system – an r-graph on n vertices where each (r − 1)-set is contained in exactly

λ− 1 edges. In this case, ex(n, T (r − 1, 1)) ≥ λ−1
r

(
n

r−1

)
for infinitely many n (due to the existence

of those designs [18]) whereas σ(T ) = s and it could be much less than λ−1
r .

No stability for a = r − 1. It is important in the above proof that a ̸= r − 1. If a = r − 1,

then there is no stability theorem: consider for instance an (r− 1, 1)-blowup T of a path with four

edges. Let H be the n-vertex r-graph constructed as follows. Let V (H) = [n], let G1 ⊔ G2 be a

partition of the edge set of the complete (r − 1)-graph on {3, 4, . . . , n}, and let H consist of the

edges e ∪ {i} such that e ∈ Gi, for i ∈ {1, 2}. Then |H| =
(
n−2
r−1

)
and H does not contain T .

The case a = b = r/2. Let T be a tree on s+ t vertices then for T = T (r/2, r/2) one can use an

argument of Frankl [9] (applied by many others, see [23]) to prove that

exr(n, T ) ≤ ex(⌊2n/r⌋, T )(⌊2n/r⌋
2

) (
n

r

)
∼ ex(⌊2n/r⌋, T )

⌊2n/r⌋

(
n

r − 1

)
. (27)

Indeed, similarly to the idea of templates, given a T -free r-graph H on n vertices take a random

partition of [n] into r/2-sets, (where for simplicity r/2 divides n), and consider only those r-edges

of H which are unions of two partite sets. Then this subfamily consists of at most ex(2n/r, T )

edges of H, out of the possible
(
2n/r
2

)
.

The bound is asymptotically tight, due to Ψ1
t−1(n, r), if σ(T ) = t and T has 2t − 1 edges. So the

inequality (27) completes the proof of Theorem 1 showing that exr
(
n, P2k−1

(
r
2 ,

r
2

))
∼ (k− 1)

(
n

r−1

)
(the other cases follow from Theorems 6 and 7). It also gives a better upper bound for the even

length, exr
(
n, P2k

(
r
2 ,

r
2

))
≤ (1 + o(1))

(
k − 1

2

) (
n

r−1

)
.

However, the proof of (27) does not reveal the extremal structure.

The case of forests. Many of our ideas can be generalized for the case of T = F (a, b), when F

is a forest, but we do not have a general conjecture.

Problem 16. Given a, b ≥ 1 and a forest F on s+t vertices. Determine limn→∞ ex(n, F (a, b))
(

n
r−1

)−1
.

Other bipartite graphs. The class of (a, b)-blowups of bipartite graphs contains well-studied

instances including blowups of complete bipartite graphs. In particular, Füredi [13] made the

following conjecture for blowups of a 4-cycle. Let Cr
4 = {C4(a, b) : a+ b = r, a, b > 0}.
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Conjecture 17 ([13]). If r ≥ 3 then ex(n, Cr
4) ∼

(
n

r − 1

)
.

The current record is due to Pikhurko and the last author [24], who showed

exr(n, Cr
4) ≲ (1 +

2√
r
)

(
n

r − 1

)
and ex3(n,C4(2, 1)) ≲ 13

9

(
n
2

)
. When G is an even cycle of length six or more, it is only known [17]

that exr(n,G(a, b)) = Θ(nr−1) and the asymptotic behavior of exr(n,G(a, b)) is not known. One

can show, however, that for F = Ks,t(a, b) with a + b = r, b ≤ a, and t sufficiently large as a

function of s and r,

exr(n, F ) = Θ(nr− 1
s )

via a randomized algebraic construction.
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[15] Z. Füredi, T. Jiang, and R. Seiver, Exact solution of the hypergraph Turán problem for k-uniform linear

paths. Combinatorica 34 (2014), 299–322.
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