HYPERGRAPHS WITH MANY EXTREMAL CONFIGURATIONS
XIZHI L1IU, DHRUV MUBAYI, AND CHRISTIAN REIHER

ABSTRACT. For every positive integer ¢ we construct a finite family of triple systems My,
determine its Turdn number, and show that there are ¢ extremal M;-free configurations
that are far from each other in edit-distance. We also prove a strong stability theorem:
every M;-free triple system whose size is close to the maximum size is a subgraph of one
of these ¢ extremal configurations after removing a small proportion of vertices. This is
the first stability theorem for a hypergraph problem with an arbitrary (finite) number of
extremal configurations. Moreover, the extremal hypergraphs have very different shadow
sizes (unlike the case of the famous Turdn tetrahedron conjecture). Hence a corollary of
our main result is that the boundary of the feasible region of M; has exactly ¢t global

maxima.

§1. INTRODUCTION

1.1. Stability. Let r > 2 and let F be a family of r-uniform hypergraphs (henceforth
called r-graphs). An r-graph #H is F-free if it contains no member of F as a subgraph.
For every natural number n the Turdn number ex(n,F) of F is the maximum number
of edges in an F-free r-graph on n vertices. The Turdn density w(F) of F is defined
as m(F) = lim,o ex(n, F)/("), and F is nondegenerate if 7(F) > 0. By a theorem of
Erdés [4], this is equivalent to F containing an r-graph which is not r-partite.

The study of ex(n, F) is perhaps the central topic in extremal graph and hypergraph the-
ory. Curiously, unlike the case for graphs, determining (F) for a family F of hypergraphs
is known to be notoriously hard in general. Indeed, the problem of determining 7 (K7)
raised by Turdn [30], where K is the complete r-graph on ¢ vertices, is still wide open for
all ¢ > r > 3. Erdds offered $500 for the determination of any m(K7j) with £ > r > 3 and
$1000 for the determination of all w(K}) with £ > r > 3.

Current research on hypergraph Turan problems is usually of one of the following two
somewhat distinct flavours: Either one takes a family F of very small hypergraphs and tries
to determine its Turdn density as well as the extremal configurations (e.g. see [3,7,8,24,26])

or one attempts to show that certain phenomena impossible for graphs are possible for
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r-graphs as soon as r > 3. For instance, the work of Frankl and Roédl on jumps [9] or
Pikhurko’s theorem that for r > 3 there exist uncountably many Turan densities of infinite
families of r-graphs [27] belong to this latter category, and so does the present article.
The classical Erdés-Simonovits stability theorem [29] motivated the second author [25]
to make the following definition. A family F of r-graphs is t-stable if for every m € IN
there exist r-graphs G;(m),...,Gi(m) on m vertices such that the following holds. For
every 0 > 0 there exist ¢ > 0 and ng such that for all n > ng if H is an F-free r-graph

on n vertices with
H| > (1 —¢e)ex(n, F),

then H can be transformed into an isomorphic copy of some G;(n) by adding and removing at
most §|H| edges. Say F is stableif it is 1-stable. There are many classical examples of stable
families of 3-uniform hypergraphs. For instance, Keevash and the second author [14] proved
the stability of cancellative hypergraphs; Fiiredi and Simonovits [10], and, independently,
Keevash and Sudakov [15] proved that the Fano plane is stable.

In general, we denote by {(F) the minimum integer ¢ such that F is t-stable, and set
¢(F) = oo if there is no such t. Call £(F) the stability number of F.

The Erdés-Stone-Simonovits theorem [5,6] and Erdés-Simonovits stability theorem [29]
imply that every nondegenerate family of graphs is stable. However, for hypergraphs there
are many families (whose Turén densities are unknown) which are conjecturally not stable.
Two famous examples are Turdn’s conjecture on tetrahedra (e.g. see [16,19,28]) and the
Erd6s-Sés conjecture on triple systems with bipartite links (e.g. see [7,19]). In fact, no
Turan density of a nondegenerate family of hypergraphs without the stability property was
known (e.g. see [13]) until very recently, when the first two authors constructed a 2-stable
family M of triple systems [19]. Our first main result states that, more generally, for every
natural number ¢ there exists a family of triple systems satisfying &(M;) = t.

We identify an r-graph H with its edge set, use V(H) to denote its vertex set, and
denote by v(H) the size of V(H). An r-graph H is a blow-up of an r-graph G if there
exists a map ¥: V(H) — V(G) so that ¢(F) € G iff E € H, and we say H is G-colorable if
there exists a map ¢: V(H) — V(G) so that o(F) € G for all E € ‘H. In other words, H is

G-colorable if and only if H occurs as a subgraph in some blow-up of G.

Theorem 1.1. For every positive integer t there exist constants 0 < ny < --- < ng,
0 <\ <1/6, t triple systems Gy, ..., G, with v(G;) = n; for i € [t], and a finite family M,
of triple systems with the following properties.

(a) The inequality ex (n, M;) < \n® holds for all positive integers n, and moreover,

equality holds whenever n is a multiple of n; for some i € [t].
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(b) For every 6 > 0 there exist ¢ > 0 and Ny so that the following holds for all n = Nj.
Every M-free triple system H on n vertices with at least (\;—e)n® edges can be made

Gi-colorable for some i € [t] by removing at most on vertices. Moreover, £(M,) = t.

1.2. Feasible regions. Recall that the shadow of an r-graph H is defined to be the
(r — 1)-graph
oH = {A € (‘;SHl)) : there is B € H such that A < B} :

Call d(H) = |"H|/(”(Z{)) the edge density and d(0H) = ]87—[\/(1;(1'[1)) the shadow density of H.

Given a family F the feasible region Q(F) of F is the set of points (z,y) € [0,1]?
such that there exists a sequence of F-free r-graphs (Hy,),_, with limg . v(Hg) = o0,
limy o d(0Hg) = x, and limy_,,, d(Hi) = y. The feasible region unifies and generalizes
many classical problems such as the Kruskal-Katona theorem [12,17] and the Turdn
problem. It was introduced recently in [18] to understand the extremal properties of
F-free hypergraphs beyond just the determination of m(F). The general shape of Q(F)
was analyzed in [18] as follows: For some constant ¢(F) € [0, 1] the projection to the first

coordinate,
projQ)(F) = {z: there is y € [0, 1] such that (x,y) € Q(F)},

is the interval [0, c¢(F)] . Moreover, there is a left-continuous almost everywhere differen-
tiable function g(F): projQ(F) — [0, 1] such that

QF) = {(x,y) € [0,¢(F)] x[0,1]: 0 <y < g(]:)(x)}

Let us call g(F) the feasible region function of F. There are examples showing that g(F)
is not necessarily continuous (see [18, Theorem 1.12]) and the present work is part of an
effort to figure out how “exotic” these functions can be.

The stability number of F can give information about the shape of Q(F), more precisely,
about the number of global maxima of g(F) (e.g. see Proposition 5.2). The family M of
triple systems from [19] for which £(M) = 2 has the following additional property: not
only are the two near extremal constructions for M far from each other in edit-distance,
but the same is true of their shadows. As a consequence, in addition to {(M) = 2, the
function g(M) has exactly two global maxima. The authors raised the question of whether
there exists a finite family M, of triple systems so that the function g(M;) has exactly ¢
global maxima for ¢t > 3 (see [18, Problem 6.10]). Our second main result asserts that the
objects constructed in the course of proving Theorem 1.1 give a positive solution to this

problem.
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Theorem 1.2. For every positive integer t there exist constants 0 < ny < --- < ng,
0 <\ < 1/6, and a finite family M, of triple systems such that projQ(M;) = [0, 1], and
g(My, z) < 6\ for all x € 0,1]. Moreover, g(My, z) = 6\ if and only if x = 1 — 1/n; for

some i € [t].

6¢

0 nyp—1 na—1 == ng—1 1
ni no ng

FIGURE 1.1. The function g(M,;) has exactly ¢ global maxima.

Roughly speaking, the connection between these results is as follows. An r-graph is a star
if there is a vertex v such that all edges contain v, and an r-graph H is semibipartite if it is
S-colorable for some star S. Note that this is the same as saying that V' (?{) has a partition
into two parts A and B such that all edges have exactly one vertex in A and r — 1 vertices
in B. We will see later that our definition of M, ensures that every semibipartite 3-graph
is M-free. By shrinking A, the shadow density of an n-vertex semibipartite 3-graph H can
be made arbitrarily close to 1 as n — o0, so projQ(M;) = [0, 1]. The shadows of the triple
systems G, ..., G; from Theorem 1.1 are complete graphs and thus their edge densities are
the distinct numbers 1 — 1/n4,...,1 — 1/n;. So g(M,, ) = 6\ holds if z is one of those

densities and stability allows us to exclude further solutions to this equation.

Organization. In Section 2 we present some definitions related to the Lagrangian of
hypergraphs and prove a result about the Lagrangian of a class of almost complete 3-
graphs. In Section 3 we use the result from Section 2 to define the extremal configurations,
which are balanced blow-ups of Gy, ..., G;, define the forbidden family M,;, and prove the
first part of Theorem 1.1. We prove the second part of Theorem 1.1 in Section 4, and
Theorem 1.2 in Section 5. Section 6 contains some concluding remarks on generalisations

to r-graphs and open problems.
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§2. LAGRANGIAN

In this section we present some definitions related to the Lagrangian of a hypergraph,
introduced by Frankl and Ré6dl in [9], and prove a result (Proposition 2.2 below) about
certain almost complete triple systems.

Let G be an r-graph for some r > 2. The neighborhood of a vertex v € V(G) is defined
to be

Ng(v) = {ueV(G) \ {v}: thereis A € G such that {u,v} < A},

the link of v is
Lg(v) ={Ae€dG: Au{v}eqG},
and dg(v) = |Lg(v)| is called the degree of v. Denote by §(G), A(G) the minimum and

maximum degree of G, respectively. For a pair of vertices u,v € V(G) the neighborhood of

{u,v} is
Ng(u,v) = {we V(G) \ {u,v}: 3A € G such that {u,v,w} < A},

and dg(u,v) = |Ny(u,v)| is called the codegree of {u,v}. Denote by d2(G), Ay(G) the
minimum and maximum codegree of G, respectively.

For an r-graph G on n vertices (let us assume for notational transparency that V(G) = [n])
the multilinear function Lg: R™ — R is defined by

Lg(xy,...,x,) = Z Hxl for all (zq,...,x,) € R™.
EeH €E

Denote by A,_; the standard (n — 1)-dimensional simplex, i.e.
Apy={(21,...,2,) € [0,1]": 2y + - + 3, = 1}.

Since A, _1 is compact, a theorem of Weierstrafl implies that the restriction of Lg to A,,_;
attains a maximum value, called the Lagrangian of G and denoted by A(G).

For a hypergraph G the maximum number of edges in a blow-up of G is related to A\(G)
(e.g. see Frankl and Fiiredi [8] or Keevash’s survey [13, Section 3]).

Lemma 2.1 ([8,13]). Let r = 2 and let G, H be two r-graphs. If H is a blow up of G, then
[H| < A(G)v(H)".

Given a 3-graph G, by plugging (1/n,...,1/n) into Lg one immediately obtains the lower
bound A(Lg) = |G|/n®. Tt is well known that for cliques H = K3 this holds with equality
and, moreover, that (1/n,...,1/n) is the only point in the simplex A,,_;, where Ly, attains

this maximum value.
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The main result of this section, Proposition 2.2 below, exhibits a class of almost complete
3-graphs having the same properties. This will allow us later to construct for every given
positive integer ¢ a family {G;,...,G;} of 3-graphs and a rational number \; close to 1/6
such that \(G;) = |G:|/v(G;)® = X holds for all i € [t]. The extremal configurations for our
hypergraph Turan problem are then going to be balanced blow-ups of Gy, ...,G;. As we
can accomplish v(Gy) < --- < v(G;), this is relevant to Theorem 1.2.

Let us observe that every hypergraph G satisfying A\(G) = |G|/v(G)? needs to be regular
in the sense that all vertices have the same degree. In the converse direction, regular

hypergraphs can still have much larger Lagrangians than |G|/v(G)3.

For instance, the
Lagrangian of the Fano plane is 1/27 but not 1/49. To avoid such situations we utilize a
design theoretic construction.

For the purposes of this article, by an (n, k)-design we shall mean a k-graph D on n
vertices such that every pair of vertices is covered by a unique edge. With every such

design D we associate the 3-graph

on V(D). Note that

\H(D)| = @)E’E; _k . 2 p(n —1).

It will turn out that for n > 18k every 3-graph of the form G = K2 \ H(D), where D is
an (n, k)-design on [n], has the property \(G) = |G|/v(G)?. In order to increase our control
over the resulting value of A(G) Proposition 2.2 allows the extra flexibility to subtract a
very sparse regular 3-graph from G. Moreover, for reasons related to stability we state

slightly more than just the actual value of the Lagrangian.

Proposition 2.2. Suppose that n > 18k + 37s3, D is an (n, k)-design on [n], and S is an
s-reqular 3-graph on [n]. If S " H(D) = @ and G = K2 ~ (H(D) u S), then

1 & 1\* _|g] 1 k+1 k—2s
holds for all (xy,...,x,) € A1 and, consequently,
1 k+1 k—2s
A =—-1|1- . 2.2
9 -5 (1-E ) (2:2)

We start with a simple observation that will come in handily later.
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Fact 2.3. Let G be a 3-graph with vertex set [n] and let a« = 0 be a real number. If the

real numbers ay, ..., a, € [=1,a] sum up to zero, then
Lg(@la s 70571) < (an)g'

Proof of Fact 2.3. Define P = {i € [n]: a; > 0} to be the set of vertices of G with positive

weight. Let us decompose Lg(ay, ..., ) = So+ S1 + Sz + S5 such that for m € {0,1,2,3}

the sum S, consists of all terms o, a;a, contributing to Lg and satisfying |Pn{i, j, k}| = m
As the sums Sy and S5 possess no positive terms, we have Sy, S, < 0. Moreover, S3 has no

more than (lP |) n3/6 summands each of which amounts to at most o, wherefore S is at

most (an)?/6. Thus to conclude the argument it is more than enough to show S; < (an)3/2.
Writing W = >}, p a; we have >, pa; = —W and

Sy < Zai‘ Z oy < W - (W?)2) = W3 /2,

i€P (TP
which by |W| < «|P| < an completes the proof. O

Proof of Proposition 2.2. Since the left side of (2.1) is continuous in (zy,...,z,) and A,_;
is compact, there exists a point £ = (&1,...,&,) € A,_; such that

1 1\? 1 k+1 k-2
WZLQ<§1,...,£n)+9;<§i—n> —6<1— ;”L_ + n2 S) (23)

is maximum. Assume for the sake of contradiction that w > 0.

Claim 2.4. There exists an index i(x) € [n] such that &,y > + + 25

Proof of Claim 2.4. Define ay, ..., a, € [-1,n—1] by & = (1 + «a;)/n for every i € [n] and

observe that

nn
wn3:Lg(1+a1,...,1+an)+9204?—|g|

I<i<j<sn i=1

©\3

Since all vertices of G have the same degree and >, a; = n(};_, & —1) = 0, the first sum
on the right side vanishes. Moreover, all pairs of vertices have codegree n —k in K2~ H(D)
and thus we obtain

wn3=(n )Za— M ds(i, fava + Lo(an, ... ) (2.4)

9 I<i<g<n

First case: We have &,...,&, > 0.
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Collecting the quadratic and cubic terms in (2.4) separately we put

Q:<”_”—’€)Z&g_ S ds(i, asa; and K = Lg(an,...,an),
=1

9 2 1<i<j<n

so that
wn® =Q + K.

Now for every real number C sufficiently close to 1 the point (&,...,£)) defined by

¢ = (14 Ca;)/n belongs to A,,_; and the maximal choice of w reveals

) 1S, 1\ 1 k+1 k—2s
- o) — 21— <w.
Lg(él? 7511) + 9 2 gz n 6 n + n2 W

i=1

Multiplying by n? and repeating the above calculation we obtain QC? + KC3 < Q + K
and thus

0<(1-0O)1+C)Q+ (1+C+CHK] (2.5)

whenever |C' — 1| is sufficiently small. Letting C' tend to 1 from above and below we obtain
2Q + 3K = 0. Substituting this back into (2.5) we learn

0<(1-O)(C-1)Q+(C*+C—-2)K]=—(1-0)*Q + (C+2)K].

Thus @ + 3K < (1 — C)K holds whenever |C' — 1] is sufficiently small, which is only
possible if Q@ + 3K < 0. Together with Q + K = wn® > 0 this yields K < 0 and
wn® < Q—K = (-1)%Q + (—1)3Q. So the maximality of w tells us that for C' = —1 we
have (&,...,&.) ¢ A,—1. In other words, there is some i(*) € [n] such that
STy
T n T n n¥

as desired.

Second case: There exists some j(x) € [n] satisfying & = 0.

Now «;,) = —1 and, consequently,

n

dai=1. (2.6)

i=1
Next we observe that the hypothesis that S be s-regular yields

n

- 2 ds(i, j)aa; < 2 ds(i,j)a?;a?—SZoz?.

1<i<j<n 1<i<j<n i=1

Combined with (2.4) and the positivity of w this shows

n—k n <
( 2 —9—8);0512 < Lg(au, ..., an). (2.7)
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Due to n > 18k + 3753 we have

2 9
and together with (2.6), (2.7) this establishes

(95)* < Lg(aq, ..., ).

In view of Fact 2.3 we deduce that ;) > 9s/n holds for some i(x) € [n] and now

51(*)

follows. Thereby Claim 2.4 is proved. U

n n  n?

Now for every i € [n] we set

_ 0Lg(w,...,xn)

D;
a.ﬁ[i

= ) &,

(gl ----- fn) jkeL;

where L; denotes the link graph of ¢ in G. Owing to the maximality of w in (2.3) the

Lagrange multiplier method leads to the existence of a real number M such that

2 1
Di+<fi—)=M
9 n

holds for every vertex i € [n] with & > 0. Notice that

n n )
M=MY&=2% (Dﬁé(@-—i)) =3Lg(51,...,§n)+32<§j_;)
=1

j=1

for every vertex i € [n] satisfying & > 0.

By our design theoretic construction, the link in K2 \. H(D) of every vertex i € [n] is a
g-partite Turdan graph with vertex classes of size k — 1, where ¢ = (n — 1)/(k — 1) is an
integer. Consequently, there exist real numbers /1, ..., 8, such that & + (81 +---+ 5,) = 1

and

pix Y A<t G vay= e

1<v<w<yg 2q (n - 1)
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Summarizing, we have

() i) g ((-0) o) e

for every vertex of positive weight. For the rest of the argument we fix a vertex i(x) € [n]

such that §(,) is maximal. Let us add the trivial estimate

to the case i = i(*) of (2.8). Because of

Zn: <§j )2 + 2 &G — &) = ié (&(*) — i) — 7112 <§j — le) (2.9)

j=1 j=1 J=1
i (2.10)
—Si) T :
this yields
1 1 n—=k 1 1 s
i(* > i(x) = 2——— i(* )
s (60 =5) >3t (60 3) (-0 ) =3
n—=k 1 S 4 1 S
o (@M - n) "7 (@M n> n?’
whence
1 9s
i < — + —.
i) n  n?
Owing to the maximal choice of ;) this contradicts Claim 2.4. O
§3. CONSTRUCTIONS AND TURAN NUMBERS
Given a positive integer ¢t we define in this section the triple systems G, ...,G; and

the forbidden family M, appearing in Theorem 1.1. For every i € [t] there will be three
integers n;, k;, s; such that G, = K3 ~ (H(D;) u &;) holds for some (n;, k;)-design D;
on [n;] and some s;-regular triple system S; on [n;] that is disjoint to H(D;). As we shall
have n; » k;, s;, Proposition 2.2 will imply

| i+ 1 k- 2s
A@g=6(1— + 28).

Part of our goal is that balanced blow-ups of Gy, ..., G; should be extremal M;-free triple
systems and for this reason we need to ensure A(G;) = -+ = A(G;). We shall achieve this

by letting k; = 2s; for i € [t], and by guaranteeing

S B
o on

(3.1)
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The details of this construction are given in Subsection 3.1 and the exact Turdn numbers

of our families M, are determined in Subsection 3.2.

3.1. The extremal configurations and forbidden family. First, we need the following

theorem about the existence of designs due to Wilson [31-33].

Theorem 3.1 (Wilson [31-33]). For every integer k = 2 there exists a threshold ng(k)
such that for every integer n = ny(k) satisfying the divisibility conditions (k—1) | (n — 1)
and (k — 1)k | (n — 1)n there exists an (n, k)-design.

Our next lemma deals with the arithmetic properties the numbers k1, ..., k; and ny, ..., n,
entering the construction of G, ..., G, need to satisfy. Apart from (3.1) and the divisibility
conditions in Theorem 3.1 we will require that ny,...,n, are divisible by 3 so that (k;/2)-
regular triple systems on n; vertices exist. Thus the case ¢ = 3 of the following lemma is

exactly what we need.

Lemma 3.2. Given positive integers t and q there exist t even integers 3 < ki < --- <k
such that for every constant C' > 0 there exist t integers ny < --- < ny with the following

properties.

(a) We have q | n;, (k; —1) | (n; — 1), and ki(k; — 1) | ny(n; — 1) for all i € [t].
(b) Moreover,

is an integer with QQ = C.

Proof of Lemma 3.2. Starting with an arbitrary positive multiple s; of ¢ we recursively

define integers 1 < s; < --- < s; by setting s;41 = [ [, 5;(2s; —1) + 1 for every i € [t — 1].

J<i

Now whenever 1 <i < j <t we have s; =1 (mod s;(2s; — 1)) and, consequently,
s;j(2s; —1)=1 (mod s;(2s; — 1)).
In particular, the numbers
s1(2s1 —1),...,8(28 — 1)

are pairwise coprime and by the Chinese remainder theorem there exists an even integer
Q > C such that Q/2 = s? (mod s;(2s; — 1)) holds for all ¢ € [t]. Multiplying these

7

congruences by 2 and setting k; = 2s; we obtain

Q=4k2/2 (mod k;(k; —1)). (3.2)
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Now it is plain that the numbers n; = Q(k; +1) satisfy (b). Moreover, the case i = 1 of (3.2)
yields ¢ | k1 | @ and, therefore, ny,...,n; are divisible by ¢. Finally, multiplying (3.2) by

ki + 1 we learn
for which reason k; | n; and (k; — 1) | (n; — 1). So altogether (a) holds as well. O

Given two r-graphs H; and Hsy with the same number of vertices a packing of Hq and Hs
is a bijection p: V(H;) — V(Hz) such that p(FE) ¢ Hy for all E € H;. In order to
proceed with our construction of the triple systems Gy, ..., G; we need to argue that, under
natural assumptions, if D; denotes an (n;, k;)-design, then there is an s;-regular 3-graph
S; € K3\ H(D;), where s; = k;/2. Provided that 3 | n; and s; < ("51) the existence of
some s;-regular 3-graph S; € K3 is a well known fact that follows, e.g., from Baranyai’s
factorisation theorem [2]. For making S; and H(D;) disjoint we use a packing argument

based on the following result of Lu and Székely.

Theorem 3.3 (Lu-Székely [23]). Let Hq and Hz be two r-graphs on n vertices. If
1 /n

A + A < (1),

er \r

then there is a packing of Hy and Hs.

In fact, we only require the following consequence.

Corollary 3.4. Suppose 3 | n and that D is an (n,k)-design on [n]. If s < W_i), then

there exists an s-regular 3-graph S on [n] such that S n H(D) = @.

Proof of Corollary 3.4. By 3 | n and s < (”;1) there is an s-regular 3-graph S’ on n

vertices. Since

A(S")H(D)| + A(H(D))|S'| = sk _ 2n(n— 1)+ k ; 2(n— 1)%
k—2 n—2 k-2
=sTn(n—1)<6€(k_2) 3 n(n —1)

1 /n
~ 3e\3)’
Theorem 3.3 yields a packing ¢: V(S') — [n] of §" and H(D). It is clear that S = ¢(S’)

satisfies the requirements of Corollary 3.4. U

Now we are ready to present the definition of Gy, ..., G;.

Construction 3.5. Given a positive integer t perform the following steps.

o Apply Lemma 3.2 with q = 3, thus getting some even integers 3 < ky < --- < ky.
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o Take an integer C = max{ng(k1),...,no(k:), 2k}, 3%}, where the thresholds no(k;)

are given by Theorem 3.1.

e Now Lemma 3.2 applied to C' and kq, ..., k; yields integers C' < ny < --- < ny such
that, in particular,
- nq - _ g
@= ki +1 k + 1

is an integer with QQ = C.
Now, for every i € [t]
e let D; be an (n;, k;)-design on [n;] (as obtained by Theorem 3.1)
o let S; be a (k;/2)-regular 3-graph on [n;] such that S; n H(D;) = & (as obtained by
Corollary 3.4).
e and, finally, define

Gi=K:~(HD)US).

ng

By Proposition 2.2 we have

1 ki+1  ki—2k/2\ 1/ 1
A(gi)_6<1— " + - >—6<1 Q)'

)

for every ¢ € [t], so some rational )\, satisfies

In the remainder of this subsection we introduce the family M,;. For an r-graph H and
aset S < V(H) we say that S is 2-covered in H if for every pair of vertices in S there is an
edge in ‘H containing it. If this holds for S = V(#H) then H itself is said to be 2-covered.

For all integers ¢ > r > 2 we let K denote the family of r-graphs F' with at most (g)
edges that contain a 2-covered set S of ¢ vertices called a core of F'. The family K was first
introduced by the second author [24] in order to extend Turdn’s theorem to hypergraphs. It
also plays a key réle in in the construction of the family M with two extremal configurations
in [19]. In the present work, we also need the larger family 162’ defined to consist of all
r-graphs F with at most (f) edges that contain a 2-covered set S of ¢ vertices, which is
again called a core of F.

Let us recall that the transversal number of a hypergraph H is the nonnegative integer
T(H) =min{|S]: S V(H) and Sn E # & for all E € H}.

Note that if H is empty, then we can take S = &, whence 7(#H) = 0 holds in this case.
After these preparations, the family M, is defined as follows.
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Definition 3.6. For every positive integer t the family M; consists of all 3-graphs F' €
Ur<n, l%? which do not occur as a subgraph in any blow-up of G, ...,G, and which have a
core S such that T7(F[S]) = 2.

3

We conclude this subsection with a simple sufficient condition for 3-graphs F' € KC;

guaranteeing that they are in M, (see Lemma 3.9 below). For this purpose we require the
following observation analysing the extent to which 7(H) > 2 is a “local” property of a

hypergraph H.

Fact 3.7. If r = 2 and H denotes an r-graph with T(H) = 2, then there is a subgraph
H' = H with at most r + 1 edges satisfying T(H') = 2.

Proof. Pick two distinct edges E', E” € H and write E' n E” = {vy,...,v,}, where
0 <m < r— 1. For every i € [m] the assumption that {v;} fails to cover ‘H yields an edge
E; € H such that v; ¢ E;. Now H' = {FE',E" FEi,..., E,} has the desired properties. [

Notice that the example H = K, shows that the bound [H'| < r + 1 is optimal.

Lemma 3.8. Suppose that F is a 3-graph and that S < V(F) is a 2-covered set in F.
If 7(F[S]) = 2, then F contains a subgraph F' such that F' € Kis and 7(F'[S]) = 2.
Moreover, if 12 < s < |S|, then F has a subgraph F" € K2 possessing a core S” such that
T(F"[S"]) = 2.

Proof of Lemma 3.8. The case r = 3 of Fact 3.7 yields a subgraph G of F[S] with at most

four edges such that 7(G) > 2. Notice that |G| = 2 and |0G| = 5. Since S is 2-covered in F,

S
2

F' = {euw: uw € (g) ~ ag} ug
has the properties that S is 2-covered in F’ and 7(F'[S]) = 2. Together with

e ( ¢
| < (2)—yag+|g\< <2>—5+4< (2>

this proves F" € Kjg. Moreover, if any s € [12, |S|] is given, we can take a set S” of size s
with V(G) € §” < S and apply the first part of the lemma to S” rather than S. O

we can choose for every pair uw € ( ) N 0G an edge e, € F containing u and w. Now

Lemma 3.9. If S denotes a core of F € K2 . and 7(F[S]) = 2, then F € M,.

12 there exists a set S” < S such that |S"| = n,

>
and 7(F[S"]) = 2. Since |F| < (")) < ("), we can regard F as a member of I%f;t with

core S” and it remains to prove that F' cannot be G;-colorable for any i € [t]. This is due

Proof. By the previous lemma and ny

to the fact that the shadows of blow-ups of G; are complete n;-partite graphs, while S
induces a K, in 0F. O



HYPERGRAPHS WITH MANY EXTREMAL CONFIGURATIONS 15

3.2. Turan numbers of M,. Having now introduced the main protagonists Gi,...,G;
and M; we shall determine the extremal numbers ex(n, M;) in this subsection. More

precisely, setting
M(n) = max {|G|: G is G;-colorable for some i € [t] and v(G) = n}
for every positive integer n we shall prove the following result.

Theorem 3.10. The equality ex(n, M) = IM(n) holds for all positive integers n.

Notice that in view of Lemma 2.1 and (3.3) this implies ex(n, M;) < \n? for every
positive integer n. Moreover, whenever n is a multiple of n; for some i € [¢], the balanced
blow-up of G; with factor n/n; exemplifies that this holds with equality. For these reasons,
Theorem 3.10 is stronger than Theorem 1.1 (a). Let us start with the lower bound
on ex(n, My).

Fact 3.11. We have ex(n, M,) = 9(n) for every positive integer n.

Proof of 5.11. This is an immediate consequence of the fact that by Definition 3.6 for every
i € [t] all blow-ups of G; are M-free. O

Our proof for the upper bound uses the Zykov symmetrization method [34]. The applica-
bility of this technique in the current situation hinges on the fact that if a hypergraph H is
M-free, then there is no homomorphism from a member of M, to H (see Proposition 3.12
below). Let us recall that given two r-graphs F' and H a map ¢: V(F) — V(H) is said to
be a homomorphism if ¢ preserves edges, i.e., if (E) € H holds for all E € F. Further, H
is F'-hom-free if there is no homomorphism from F' to H or, in other words, if F' fails to be
‘H-colourable. For a family F of r-graphs, we say that H is F-hom-free if it is F-hom-free
for every F' e F.

Proposition 3.12. A 3-graph H is M-hom-free if and only if it is M;-free.

Proof of Proposition 3.12. Notice that the forward implication is clear. Now suppose
conversely that H fails to be M;-hom-free, i.e., that there is a homomorphism ¢: V(F) —
V(H) for some F' € M,. Clearly the restriction of ¢ to a core S of F' is injective. So
o(F) e I/C\f’s‘ N M, and in view of ¢(F) € H it follows that H fails to be M;-free. O

As an immediate consequence of Definition 3.6, semibipartite triple systems are M;-free.

We analyze the semibipartite case as follows.

Lemma 3.13. If H denotes a semibipartite triple system on n vertices, then

|H| < min{2n®/27, M(n)}.
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Proof. Fix a partition V(H) = A v B such that |E n A| = 1 holds for every E' € H. Now
the AM-GM inequality yields

B 2lAl-|1B|-|B| 1 [/2|A| +|B|+|BI\® 2n3
‘HK,A,|I<|\!!||<* Al + [B[ + |BI\" _ 2n”
2 4 4 3 27

and it remains to show |H| < 9M(n). If n is large this is an immediate consequence of
M(n) = (A —o(1))n® and \; = 5/32 > 2/27, but for a complete proof addressing all values
of n we need to argue more carefully.

To this end we consider a random map ¢: [n] — [n;] together with the random
blow-up G of G; determined by ¢. Explicitly G has vertex set [n] and a triple ijk forms an
edge of G if and only if o(1)e(j)e(k) € Gi. Now every potential edge of G is present with
probability %g{' = 6, and thus the expectation of |QA | is 6\, (73‘) So by averaging we obtain

M(n) = 6, (g) > 12 (Z) (3.4)

which for n > 5 implies the desired estimate 9(n) > 2n3/27. Moreover, (3.4) yields
M(4) = 3, which still suffices for the case n = 4 of our lemma. Finally, the case n < 3 is
trivial. 0

The central notion in arguments based on Zykov symmetrization is the following:
Given an r-graph H, two non-adjacent vertices u,v € V(H) are said to be equivalent if
Ly (u) = Ly(v). Evidently, equivalence is an equivalence relation. Since any two equivalent
vertices have the same degree and the same link, we can write dy(C) and Ly (C) for the

common degree and the common link of all vertices in an equivalence class C| respectively.

Lemma 3.14. Let ‘H be an M;-free 3-graph with equivalence classes Cy,...,Cy,. If for
all distinct k, ¢ € [m] the shadow 0H induces a complete bipartite graph between Cy and Cy,

then H is either semibipartite or G;-colourable for some i € [t].

Proof of Lemma 3.14. Let T < V(H) be a set containing exactly one vertex from each
equivalence class of H, and let 7 be the subgraph of H induced by T. By assumption, 7
is 2-covered, |T| = m, and H is a blow-up of 7. If 7(7) < 2, then T is a star and H is
semibipartite. So we may assume 7(7) = 2 from now on.

Since T is 2-covered and |T| < (') we have T € K3 . So if m < ny, then in view of
Definition 3.6 and T ¢ M, there exists an index i € [t] such that T is G;-colorable. As H
is a blow-up of 7, it follows that H is G;-colorable as well.

Now assume for the sake of contradiction that m > n;. Since n; > 12, Lemma 3.8 leads
to a subgraph 7" € K2 | of T having a core S” such that 7(7”[S"]) = 2. By Lemma 3.9

this contradicts ‘H being M-free. O
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Now we are ready to establish the main result of this subsection.

Proof of Theorem 5.10. Fix some positive integer n. By Fact 3.11 it suffices to establish
the upper bound ex(n, M;) < 9(n). Arguing indirectly we choose an M,-free triple
system ‘H on n vertices with more than 9%(n) edges such that the number m of equivalence
classes of H is minimal. Let C,...,C,, be the equivalence classes of H.

By Lemma 3.13 we know that H is not semibipartite and the definition of 9t(n) implies
that H fails to be G;-colorable for every i € [t]. For these reasons, Lemma 3.14 tells us
that 0H is not the complete m-partite graph with vertex classes C1,...,C,,. Without loss
of generality we may assume that at least one possible edge between € and () is missing
in dH. Due to the definition of equivalence there are actually no edges between C; and Cy
in 0H. By symmetry we may suppose further that dy(C1) < dy(Cs).

Now let H' be the unique 3-graph satistying V(H') = V(H), H' — C; = H — C4, and
Ly (v) = Ly(w) for all v e C; and w € Cy. Observe that {C} U Cy, Cs, ..., C,y,} refines the

partition of V(#') into the equivalence classes of H’ and

So our minimal choice of m implies that H' cannot be M,-free. As there exists a ho-
momorphism from H’ to H, it follows that H fails to be M;-hom-free. But owing to
Proposition 3.12 this contradicts H being M;-free. O

§4. STABILITY

In this section we prove most of Theorem 1.1 (b) — only the proof of £(M;) = t is
postponed to Section 5. Our goal is to show that after deleting a small number of low-degree
vertices an “almost extremal” M,-free 3-graph becomes G;-colorable for some ¢ € [¢]. More

precisely, we aim for the following result.

Theorem 4.1. If ¢ > 0 is sufficiently small, n is sufficiently large, and H is an M;-free

3-graph on n vertices with |[H| = (A\; — e)n?, then the set
Z ={ueV(H): dy(u) < (3)\ — 2¢"*)n’}
has size at most €'?n and the 3-graph H — Z is G;-colorable for some i € [t].

As the proof of this result will occupy the entire section, we would like to start with a
quick overview. The argument is somewhat similar in spirit to [3,19,26] and ultimately it is
based on the Zykov symmetrization method [34]. There are certain kinds of complications
that often arise when one uses this strategy in order to establish stability results and

we overcome several of these common difficulties by introducing the so-called W-trick in
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Subsection 4.1. By means of this trick, the problem to prove Theorem 4.1 gets reduced to
an apparently much simpler task: If a triple system H with n vertices and minimum degree
(3\¢ — o(1))n? can be made G;-colorable by deleting a single vertex, then, actually, H itself
is G;-colorable (see Lemma 4.3). The W-trick can also be used to reprove some known
stability results with improved control over the dependence of the constants (see [20]).
The proof of Lemma 4.3 is still quite long. We will collect some auxiliary results in

Subsection 4.2 and defer the main part of the argument to Subsection 4.3

4.1. General preliminaries. This subsection reduces the task of proving Theorem 4.1
to the apparently much simpler task of verifying Lemma 4.3 below. There are only few
“special properties” of M; we are going to utilize in the course of this reduction and we
refer to [20] for a more systematic treatment.

Throughout this subsection we use the following notation: For every 3-graph H on n

vertices and every € > 0 we set
Z.(H) = {ue V(H): du(u) < (3N, —2c"*)n} .
Lemma 4.2. Ife € (0,1), n > e Y2 and H is an M,-free 3-graph on n vertices with at
least (A — e)n? edges, then
(a) the set Z.(H) has at most the size */*n

(b) and the subgraph H' = H — Z(H) of H satisfies S(H') = (3\; — 3e'/?)n? as well as
[H'| = (N — 2e/2)n3.

Proof of Lemma 4.2. Set Z = Z.(H). Assuming that part (a) fails we can take a set
X < Z of size 2¢'/*n < | X| < 2¢"?n. The definition of Z leads to
H— X| = (\ —e)n® — |X]|(3)\ — 2e2)n?
> (A —e)n® — | X| (3N — 26V — 3n(|X| — 2e"2n)(2¢"2n — | X|)
= Ae(n — [X])? 4+ 3(1/4 = A)n| X + A X]P > Ae(n — | X])?,

where we used \; < 1/6 < 1/4 in the last step. However, by Theorem 1.1 (a) this
contradicts the fact that H — X is M-free.
Now we prove part (b). For every u € V(H') the definition of Z and (a) yield

Qo () = dy(u) — |Z|n = (3 — 25Y2)n? — £/2n2 = (3), — 3eV/2)n2.
Similarly, we have
H| = (M| — |Z|n? = (N — e)n® — V03 > (N — 220’ O

The following lemma will be shown to imply Theorem 4.1.
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Lemma 4.3. There exist constants ¢ € (0,1) and Nog € IN such that the following holds for
alln = Ny. Let H be an M;-free 3-graph on n vertices with at least (\; — {)n? edges and
§(H) > (3\s — ()n?. If there exists a vertex v e V(H) such that H — v is G;-colorable for

some i € [t], then H itself is G;-colorable as well.

We postpone the proof of this result to Subsection 4.3. The deduction of Theorem 4.1

from Lemma 4.3 factorises through the following statement.

Lemma 4.4. There exists € € (0,1/16) such that the following holds for every sufficiently
large integer n. Let H denote an M;-free 3-graph with n vertices and at least (A\; — €)n>
edges. If Q < V(H) has size |Q| < 2e¥*n and H — Q is G;-colourable for some i € [t], then

H — Z.(H) is Gs-colourable as well.

Proof of Lemma 4./ using Lemma 4.3. We show that e = (?/25 has the desired property,
where ¢ denotes the constant provided by Lemma 4.3. Given a sufficiently large 3-graph H
and a set () as described in the statement of Lemma 4.4 we set Q' = Q ~\ Z.(H) and
Vi=V(H) N (Z.(H) v Q).

By our assumption, there is an index i(*) € [t] such that H[V"] is G;()-colorable. Choose
aset S < Q' of maximum size such that H[V’ U 5] is still G;(.y-colorable. If S = Q' we are
done, so suppose for the sake of contradiction that there exists a vertex v € Q' . S.

Due to the maximality of S the triple system H' = H[V' U S U {v}] is not G;.)-colorable.
On the other hand, Lemma 4.2 (a) and |Q| < 2¢'/?n entail

S(H) > (3N — 2eY2)n? — | Z(H) U Qn > (3)\, — 5e/*)n?
and H'| > (A —e)n® — |Z(H) U Qn* > (N — 4e¥*)n?.

So by Lemma 4.3 and ¢ = 5¢'/2 the G;(,)-colorability of H'—v = H[V' U S] implies that H’

itself is G;(,)-colorable as well. This contradiction completes the proof of Lemma 4.4  [J

It remains to deduce Theorem 4.1. The argument involves the following invariant of

3-graphs: Given a 3-graph H with equivalence classes C1, ..., C,, we set U(H) = " |Cy]?.

Proof of Theorem /.1 using Lemma 4./. Let € be the constant delivered by Lemma 4.4
and fix a sufficiently large natural number n. Assuming that the conclusion of Theorem 4.1
fails for our values of e and n we pick a counterexample H such that the pair (|H], V(H))
is lexicographically maximal. Let C',...,C,, be the equivalence classes of H.

Recall that Lemma 4.2 (a) tells us |Z.(H)| < £"/?n. Since H is a counterexample, it

cannot be G;-colorable for any i € [t]. Moreover, (3.3) yields

|H| > (N —e)n® = (5/32 — 1/16)n® = 3n?/32 > 2n*/27
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and thus H cannot be semibipartite. So by Lemma 3.14 there exist two equivalence classes,
say () and Cy, such that 0H possesses no edges from C4 to C5. We may assume that
(dy(CY), |C1]) <iex (di(C3),|Cs]), where <oy indicates the lexicographic ordering on IN%.

Pick arbitrary vertices v; € C; and vy € Cy and symmetrize only them. That is, we let H’
be the 3-graph with V(H') = V(H), H' — vy = H — vy and Ly (v1) = Ly (v2). Clearly,
if dy(v1) < dy(vq), then |H'| > |H|. Moreover, if dy(v1) = dy(ve), then |H'| = |H]|,
|Cy| < |0y, and

V(H) = U(H) = (IC1] = 1)° + (|Cof +1)* = [C1f* = [Cof” = 2(|Ca| = [C1] + 1) > 2.

In both cases (|H'|, U(H')) is lexicographically larger than (||, ¥(H)) and our choice
of H implies that H' — Z.(H') is Gi-colourable for some i € [t]. By Lemma 4.2 (a) the set
Q = Z.(H') U {v.} has size |Q| < e/2n+1 < 2¢'/2n. Since the hypergraph H—Q = H' — Q
is G;-colourable, Lemma 4.4 implies that H — Z(H) is G;-colourable too. This contradiction
to the choice of ‘H establishes Theorem 4.1. U

4.2. Transversals. Roughly speaking, the hypergraph ‘H — v appearing in Lemma 4.3
arises from an almost balanced blow-up of G; by deleting a small number of edges. When
we randomly select one vertex from each partition class of H — v it is thus very likely that
the resulting transversal induces a copy of G;. In the proof of Lemma 4.3 there are several
places where we argue similarly in situations where some vertices from the transversals have
been selected in advance. The precise statement we shall use in these cases is Lemma 4.5
below.

Consider a 3-graph with V(G) = [m] and pairwise disjoint sets V3, ..., V,,. The blow-up
G[WV1,..., V] of G is obtained from G by replacing each vertex j € [m] with the set V; and
each edge {1, j2, js} € G with the complete 3-partite 3-graph with vertex classes V},, V},,
and Vj,. For a 3-graph H we say that a partition V(H) = Uje[m] V; is a G-coloring of H if
H<SG[Vi,. .., Vil

Lemma 4.5. Fiz a real n € (0,1) and integers m,n = 1. Let G be a 3-graph with vertex
set [m] and let H be a further 3-graph with v(H) = n. Consider a vertex partition
V(H) = Uicpny Vi and the associated blow-up G =GVi,...,Vi] of G. If two sets T < [m]
and S < UNT V; have the properties

(a) [Vj| = (IS| + D|T|n"*n for all je T,
(0) Vi, Via, Vil = 1G[Vyi, Vias Vi ]| — i for all {j1, ja. js} € (5),
(C) and ‘LH(U)[V}UVJQH = |L§(U)[‘/j1v VJ2]| - 77n2 fOT’ allve S and {j1>j2} € (T)7

2
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then there exists a selection of vertices u; € V; for all j € [T| such that U = {u;: j € T}
satisfies G[U] < H[U] and Ls()[U] € Ly (v)[U] for allv e S. In particular, if H < g,
then G[U] = H[U] and Ls(0)[U] = Ly(v)[U] for allve S.

Proof of Lemma 4.5. Choose for j € T the vertices u; € V; independently and uniformly

at random and let U = {u;: j € T'} be the random transversal consisting of these vertices.
By (a) and (b) we have

‘H[‘/}17‘/}27‘/}3]| < 77n3 1

IP({U'UU'Q,U'}¢H)=1— < <
e VillVillVisl - [VillViu Vil (ST + 12T

for all edges {j1, j2,j3} € G. Similarly (a) and (c¢) lead to

_ |LH(U)[V}17 ‘/;2“ < 77n2
ViVl ViVl
1/3

P ({uj17uj2} ¢ LH(U) | {ujlvujz} € LQ(U)) =1

< T
(15T + 12T

for all v € S and all distinct j1, j2 € [m]. Therefore, the union bound reveals
N |T| 1 1
P U Ul) < - - -z
(611 ¢ wiw1) < 3 ) UST+ DPITF =6

7] 't o1
2 ) (SI+ 02T 2(S]+ 1)

and P (Lg(v) & Ly(v)) < < for every v e S.

Altogether, the probability that U fails to have the desired properties is at most

1 |51

6 205+ 1)

2
3
So the probability that U has these properties is positive. 0

In practice the sets U obtained by means of Lemma 4.5 will be 2-covered and thus they
will be cores of some subgraphs F' e I€|3U| of H. In such situations F' will be M;-free and
in order to exploit this fact we need to know that for ¢ # j the triple system §; is in some
sense far from being G;-colorable (see Lemma 4.7 below). The verification of this statement
requires that we take a closer look into Construction 3.5 and the observation that follows

summarizes everything we need in the sequel.

Observation 4.6. The triple systems Gy, ..., G, have the following properties.
(a) Forie [t] and v € G; the clique number w (Lg,(v)) of the link graph Lg,(v) satisfies

nifl k’l
ki—1 2

< w(Lg, < )
w (Lg,(v)) p—
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(b) We have
ni—1 ngi—1_ @
J— > —_
ki—1  kig—1" K

for every i € [t — 1], where

Q=

ny L
ki+1 k41

c) Forie [t] the 3-graph G; is reqular with degree 3\n? and
(c) [4] grap g g ;

> 2k} > 16.

Proof. Part (a) follows from the fact that due to G; = (K2~ H(D;)) \ S; the link Lg, (v)
arises from an ((n; — 1)/(k; — 1))-partite Turdn graph by the deletion of k;/2 edges. The

proof of part (¢) is similar. For part (b) it suffices to calculate

ni—1 np—1 Qki+1)—1 Qlhiyi+1)—1

ki—1 k-1 ki—1 ki1 —1
1 1
— (20 -1 _
1 1\ Q@
> - >3 -
Q(ki—l k:i)>l<:i2

As indicated earlier, this has the following consequence.

Lemma 4.7. If i € [t] and the triple system G. arises from G; by the deletion of at most
Q/(2k2) wvertices, then G| fails to be G;-colorable for every j € [t] \ {i}.

Proof of Lemma /4.7. Suppose first that j € [¢ — 1]. Due to

Q
2k?

(2

52(G) = 62(Gi) — > 1

we know that G/ is 2-covered. Together with
v(G)) =ni—Q/(2k7) > Q(ki+1) — Q > Qkj +1) =n;
it follows that G/ is indeed not G;-colorable.
If j € (i, t] we take an arbitrary vertex v € V(G!). The parts (a) and (b ) of Observation 4.6

yield

_Q>ni_1 ki Q>”j_1_
2k2 7 ki—1 2 2k? T k-1

w (Lg(v) = w (Lg,(v))

On the other hand, by Observation 4.6 (a) again, any G;-coloring of G; would show that

w(Lg(v) Sw (Lg,(v)) < Z] : i O

J

On most occasions the following corollary of Lemma 4.7 will suffice.
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Corollary 4.8. Ifi € [t], the 3-graph H is M;-free and U < V(H) denotes a 2-covered
set of size n; + 1, then H|U] is G;-free.

Proof. Assume for the sake of contradiction that H[U] has a subgraph isomorphic to G;.
If i <t we can take a subgraph F € /6;3#1 of H with F[U] = H[U] having U as a core.
As H[U] contains a copy of G;, we have 7(F[U]) = 2. Now F ¢ M, implies that F is
Gj-colorable for some j € [t]. In particular, G; is G;-colorable and by Lemma 4.7 this leads
to ¢ = j. In other words, F is G;-colorable, contrary to the fact that 0F contains a copy
of Ky, +1.

It remains to discuss the case i = t. Now Lemma 3.8 yields a subgraph F” of F which
belongs to le’“ +1, and whose induced subgraph on its core has covering number at least 2.
By Lemma 3.9 this contradicts H being M,-free. O

4.3. Proof of the main lemma. This entire subsection is devoted to the proof of

Lemma 4.3. Select constants ( and Nj fitting into the hierarchy
Nyt « ¢ «nit.

Consider an M-free 3-graph H on n > Ny vertices satisfying |H| = (A — {)n® and
6(H) = (3X\ — ¢)n? such that for some v € V(H) and i € [¢t] the 3-graph H, = H ~\ {v}
is Gi-colorable. Set V' = V(H) and fix a partition ();,,,; Vi = V ~\ {v} exemplifying the
G,-colorability of H,. We divide the argument that follows into three main parts each of

which consists of several claims.
Part I. Analysis of H,. The three claims that follow only deal with 4, but say nothing
about v and its link.

Claim 4.9. We have |V;| = n/n; £ 5¢Y?n for every j € [n,].

Proof of Claim 4.9. Set x; = |V;|/(n — 1) for every j € [n;]. By Proposition 2.2 (and the

proof of Lemma 2.1) we obtain

1 1Y

Je[nq
Combined with
Mol = (N — On® — dy(v) > (N — 20)n®
this leads to %ZJE[nZ] (‘Tj - 1/711)2 < QCa whence XT; = 1/77/1 + (186)1/2 and

Vi = n/mi| < (n = 1)|z; — 1/ni| + 1/n; < (180)Y%n + 1/n; < 5¢Y2n. O
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Recall that the sets Vi, ..., V,, have been chosen in such a way that H, is a subgraph
of the blow-up QAz = Gi|Vi,..., V] of G;. Our next objective is to compare the links of
an arbitrary vertex u € V \ {v} in H, and in é . As a consequence of H, < QAZ we know
L, (u) € Lg (u) and Ly, (u)| < [Lg (u)|. Members of Lg (u) \ Ly, (u) are referred to as
the missing pairs of u. By Lemma 2.1 the global number of missing edges can be bounded

from above by
G~ Ha| < M(n—1)° = (A — On® + dyg(v) < 200, (4.1)
Locally we obtain the following.

Claim 4.10. Everyu e V ~{v} satisfies |Lg (u)] < (3\;+6n;¢'?)n?. Moreover the number
of missing pairs of u is bounded by |Lg (u) \ Ly, (u)| < 7¢2nm?.

Proof of Claim 4.10. Since G; is (3\in?)-regular, Claim 4.9 yields

)

2
‘Lgl(u)’ < 3\n7 (: + 5C1/2n) — 3\ (1 i 5C1/2ni)2 < (3)\ + 6C1/2ni)n2,

where we used \; < 1/6 and our hierarchy ¢ « n;*'.

condition 6(H) = (3\; — {)n? this entails the upper bound

Owing to the minimum degree

‘Lg} (u) N Ly, (u)| < (3\n® + 6(1/2nin2) — (3xn* —¢(n® —n) < 7¢H%nn?

on the number of missing pairs of w. U

It can now be shown that in H, all neighborhoods have roughly the expected size ”n—jln,

but for our concerns it suffices to establish a lower bound.
Claim 4.11. We have [Ny, (u)| = “=tn — 17¢Y*nn for every u e V ~ {v}.

Proof of Claim 4.11. Let j € [n;] be the index satisfying u € V;. Since every vertex in
V (Vi U Ny, (u) U {v}) belongs to at least d2(G) - min{|V}|: £ € [n;]} missing pairs of u,

and every missing pair is counted at most twice in this manner, Claim 4.10 yields
}V N (VU Ny, (u) {v})‘ - 02(G) - min{|Vg\: le [nl]} < 14¢Y2nm?.

So by Observation 4.6 (¢) and Claim 4.9 the assumption |Ny, (u)| < 2=tn — 17¢?n;n

would yield the contradiction

(17{1/2nm — 5% — 1) . 7;%

)

: (" — 551/%,) < 14¢Y2nm?.

Thereby Claim 4.11 is proved. 0
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Part II. Choice of a vertex class for v. Our strategy for showing that H is G;-colorable
is to adjoin v to one the partition classes Vi, ..., V,,. In fact, there is only one of these
classes v fits into. Before finding this class we show a statement that has to hold if our

plan is sound.

Claim 4.12. We have Ly (v) n (*}) = @ for every j € [n;].

Proof of Claim /.12. Without loss of generality we may assume that 7 = 1. Let ug,u; € V)
be two distinct vertices. By Lemma 4.5 applied to S = {ug, u1} and T' = 2, n;] there exist
vertices u; € V; for j € [2,n;] such that the subgraphs of H induced by {ug, us, ..., u,,}

and {uy,us, ..., u, } are isomorphic to G;. Now Corollary 4.8 informs us that the set
U = {ug,uq,...,uy,} cannot be 2-covered, for which reason ugu; ¢ 0H. So, in particular,
we have uguy ¢ Ly (v). O

Claim 4.13. There erists j € [n;] such that |Ny(v) 0 V;| < (Yn.

Proof of Claim 4.13. Suppose for the sake of contradiction that the sets W; = Ny(v) n'V;
satisfy |W;| = ¢Y"n for every j € [n;]. Applying Lemma 4.5 to W; here in place of V;
there and to S = @, T' = [n;] we obtain vertices u; € V; for all j € [n;] such that the set
U = {uy,...,u,,} induces a copy of G; in H. But now the 2-covered set U U {v} contradicts
Corollary 4.8. 0

It will turn out later that the index j delivered by Claim 4.13 is unique. Without loss of

generality we may assume that
[Ny (v) n V3| < ¢Yn. (4.2)

Part ITI. The link of v. It remains to show that Ly (v) < Lg (V1). To this end we define

N,(u) = {7 € [n]: [Nu(uv) A V| = ¢Vn)

for every uw € Ny(v) . The upper bound on Ay(G;) in Observation 4.6 (¢) transfers to these

sets as follows.
Claim 4.14. We have |N,(u)| < n; — k; for every u € Ny(v).

Proof of Claim 4.1/. Assume for the sake of contradiction that there is a set N, < N,(u)
such that |N,| = n; — k; + 1 < n; — 2. As in the proof of Claim 4.13 there exist ver-
tices u; € Ny(u,v) n'V; for j € N, such that G;[NV,] is isomorphic to H[U], where
U={u;: je N.}.

Now we consider the 3-graph F' = H[U u {u,v}]. Clearly U u {u,v} is 2-covered in F
and 7(F) = 7(G;[N.]) = 2. So F' ¢ M, tells us that F' is Gs-colorable for some s € [t].
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On the other hand by Lemma 4.7 and |U| = n; — k; + 2 > n; — Q/(2k?) the subgraph
F[U] of F cannot be G,-colorable for any s € [t] \ {i}.

Summarizing this discussion, F' is G;-colorable. As F' is also 2-covered, F' is actually
isomorphic to a subgraph of G; and, consequently, n; — k; < |N,| = dp(u,v) < Ax(G)),
contrary to Observation 4.6 (c¢). O

Claim 4.15. We have |Ny(v) n V| = ¢V for every j € [2,n].

Proof of Claim 4.15. The minimum degree condition imposed on ‘H and 6\, = 1 — %

7

yield

(1 Sl 2<) n® = 203\ — On® < 2du(v) < A(Ly(0))[Nu(v)]

L
Claim 4.14 allows us to bound the first factor on the right side from above by

% %

Altogether we obtain
n; — (ki + 1) — 2n;¢ _ | N3 (v)]
(ni — ki) + 2kiniCV7T

which due to

N AU R 1—
TLZ‘—]{IZ‘ ni—k‘i -~ n;
and ¢ « n; " implies
3/2
(1-22) 0 < It
n;

On the other hand, setting I = {j € [2,n;]: [Nyu(v) n V;| = ¢(¥"n} Claim 4.9 and (4.2)

lead to

1
Nyu(w)] < 1] ( . 5<1/2) 0+ i,
n.

)

Combining both estimates we arrive at |I| > n; — 7/4, whence I = [2,n;]. O
Claim 4.16. We have Ny(v) n'V) = @.

Proof of Claim 4.16. Suppose that there exists u; € Ny (v) n V1. Owing Claim 4.15 we can
apply Lemma 4.5 with S = {u;} and T' = [2, n;] in order to obtain vertices u; € Ny (v) NV}
for j € [2,n;] such that H induces a copy of G; on U = {uy,...,up,}. Since U U {v} is
2-covered, this contradicts Corollary 4.8. O

Let us recall that Lg (V1) denotes the common Gi-link of all vertices in V.

Claim 4.17. We have Ly(v) < Lg (V1).
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Proof of Claim 4.17. Due to the Claims 4.12 and 4.16 we know that L (v) is an (n; — 1)-
partite graph with vertex classes V5, ...,V . So if Claim 4.17 fails we may assume without
loss of generality 123 ¢ G; and that there exists a pair usus € Ly (v) with uy € Vo, uz € V3.

Since |Vi| > n/(2n;) and |Ny(v) 0 V| = ¢Y™n for j € [4,n;], Lemma 4.5 applied to
S = {ug,us} and T = {1,4,...,n;} delivers vertices vy € V; and u; € Ny(v) n'V; for

J € [4,n;] such that the set U’ = {uy,uq, ..., uy,,} satisfies
H[U'] = Gi[U'] and Ly (u)[U'] = Lg (uw)[U'] for (=23 (4.3)

Consider the set U = {uy,...,uy,,}. Because of (4.3) and 123 ¢ G; the map i — wu; is an
embedding of Lg, (1) into H and for this reason we have

vy (ur) = dg,(1). (4.4)

Next we choose for every j € [4,n;] an edge e; € H such that u;,v € e; and observe
that U is 2-covered in the 3-graph

F = {vugus} v {e;: 4 < j <n;} v H[U].

Moreover, |F| < |G| + n; —2 < () implies F € IE?L Since F|U’] = H[U'] is isomorphic
to G; — {2,3}, Lemma 4.7 tells us that F' cannot be G;-colorable for any j € [¢] \ {i}. But
on the other hand we have 7(F[U]) = 2 and F ¢ M,, so altogether F' is G;-colorable.

Fix a homomorphism ¢: V(F) — V(G;) from F to G;. Since U and U, = U u {v} ~{u;}
are 2-covered subsets of ' whose size is n; = v(G;), the map ¢ has to be bijective on U
and U,, which is only possible if ¢(v) = p(u;). Now ¢ embeds the link Lgy(u;) into
the link Lg, (¢(u1)). Moreover, vugug € F implies that ¢(us)@(us) belongs to the link
Lg,(¢(uy1)) as well and by 123 ¢ G; this edge is not in the image ¢(Lpp(u1)). Altogether
this proves dpp(u1) +1 < dg, (¢(u1)), which in view of F[U] = H[U] and (4.4) contradicts

the regularity of G;. O

By Claim 4.17 the partition Uje[ni] XA/j, where

~ Viv{v} ifj=1

=

is a G;-coloring of H. This completes the proof of Lemma 4.3.

§5. FEASIBLE REGION OF M; AND &(M;)

We prove Theorem 1.2 and that £(M;) = ¢ in this section. First, let us show a simple

lemma.
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Lemma 5.1. Suppose that H is an n-vertexr G;-colorable 3-graph for some i € [t]. If
M| = (A — e)n®, then |0H] = (%L — 3e'?n;)n?,

2n;
Proof of Lemma 5.1. Let V(H) = Uje[ni] V; be a G;-coloring of H. Now by Proposition 2.2,
V| = (1/n; £+ 3e¥?)n for all j € [n;]. Call a pair {u,v} with u € Vj,v € V}, and j # k
missing if uv ¢ dH, and let M denote the set of all missing pairs. Since §5(G;) = Tn;/8, we

obtain

™m; 1
|M]| - " '(—351/2)n<35n3,

8 T,

which yields |M| < 4en?. Therefore,

i 1 ? i— 1
|0H| > (2) X < — 351/2) n® — |M| > nTnQ — 3¢"2n;n?. O
n; n;

(2

n;—1
2TL¢

arguing more carefully, but this is immaterial to what follows.

We remark that the stronger conclusion [0H| = ( — 5€ni)n2 could be shown by

Proof of Theorem 1.2. Recall from Section 3 that semibipartite 3-graphs are M;-free.
This yields projQ2(M,;) = [0, 1], as for every x € [0, 1] there exists a good sequence of
semibipartite 3-graphs such that the edge densities of their shadows converges to x.

Theorem 1.1 (a) implies that g(M,,z) < 6\, for all x € [0,1]. Furthermore for every
i € [t] the sequence of balanced blow-ups of G; shows the equality g(M;,1—1/n;) = 6X;. So,
in order to finish the proof it suffices to show that if some x € [0, 1] satisfies g(My, ) = 6,
then there is an index i € [¢] such that x = 1 — 1/n,.

Fix such an z € [0,1] and let (H,))_, be a good sequence of M;-free 3-graphs realizing
(x,6);). Consider an arbitrary § > 0 and let ¢ > 0, Ny be the constants guaranteed
by Theorem 1.1 (b). Without loss of generality we may assume ¢ < 0. By our choice
of (H,),_, there exists ng € N such that

dH,) =6\ +ec and d(0H,) =z+e

hold for all n = ngy. By Theorem 1.1 (b), for every n = max{ng, Ny} the 3-graph H,, is
Gi-colorable for some i = i(n) € [t] after removing at most dv(#H,) vertices. Therefore,
n; —1

i 5 . 2

|0H,| < (

and, on the other hand, by Lemma 5.1,

ni—l

|0H.,| > (7122;1 - 351/271@-) (1—06)%v(H,)? > v(H,)? — (351/2711- +20) v(H,)?.

27’LZ‘
Summarizing and taking ¢ < ¢ into account we arrive at

— (66"2n, + 46) < d(dH,) <

n; n;

+ 26, (5.1)
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where, let us recall, i = i(n) might depend on n. So what (5.1) means is that if we set

ni—1 60Y2n; — 49, n — 1

n; ny;

+ 20

I;(6) = [
for every i € [t], then
d(0Hy) € [1(0) U -+ - U I(0)

holds for every n > ng. As the set on the right side is closed we obtain
zel1(6)u---u ()
in the limit n — co. Since § > 0 was arbitrary,

ve (VL) v UL) = {1 —1/n;: i€ [t]}

6>0

follows. O

Recall that we already proved that M, is t-stable, which, by definition, shows that
£(M;) < t. Therefore, in order to prove £(M;) = t it suffices to show that £(M;) > t, and

this is an easy consequence of the following proposition and Theorem 1.2.

Proposition 5.2. Let F be a family of r-graphs and let M be the set of global maxima
of g(F). If M is finite, then |M| < £(F).

The proof of this result involves the edit distance of hypergraphs: Given two r-graphs H

and H' with the same number of vertices we set
di(H,H") = min{|HAH"|: V(H") =V (H) and H" ~ H'}.
It is well known and easy to confirm that this distance satisfies the triangle inequality.

Proof of Proposition 5.2. If F is degenerate, then g(F) is the constant function whose
value is always 0 and M is infinite. So we may assume that the Turdn density y = 7(F)
is positive. Let us write M = {(x;,y): ¢ € [m]} such that z; < --- < x,, and m = |M|.
For every i € [m] we select a good sequence (H;(n)),_, of F-free r-graphs realizing (z;,y).
Without loss of generality we have v(H;(n)) = n for every positive integer n. Now suppose

for the sake of contradiction that t = £(F) is smaller than m.

Claim 5.3. For every 6 > 0 there are distinct i,j € [m] and n > 1/6 such that

L), W) <00 and min{H ol ()l > - 0) (7).
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Proof of Claim 5.3. By the definition of {(F) = t there are ng € IN and € > 0 such that for
every n = ng there exists a family {Gi(n),...,G;(n)} of r-graphs on n vertices such that
for every F-free r-graph H with v(#) = n and |H| = (y — £)(") there is some s € [t] such
that dy(H,Gs(n)) < (0/2)n” As usual, we may suppose that ¢ < 0.

Now choose n = ng, 6! such that for every i € [m] we have d(H;(n)) = y — . Stability
allows us to select for every i € [m] an index s(i) € [t] such that d;(H;(n),Gs(n)) < dn".
By t < m the map i — (i) cannot be injective, i.e., there are distinct 7,5 € [m] and

s € [t] such that s(i) = s(j) = s. Now the triangle inequality yields
di(Hi(n), H;(n)) < di(Hi(n), Gs(n)) + di(Gs(n), H;(n)) < on’,
as desired. O

Notice that, as stated, Claim 5.3 allows ¢ and j to depend on ¢. However, a quick
thought reveals that there actually have to be two indices ¢ < j that work for every ¢ > 0.
Now we intend to contradict the finiteness of M by proving [z;, z;] x {y} < M.

To this end, let z € [x;,z,] and a large integer N be given. It suffices to construct
an F-free r-graph H satisfying v(H) > N, d(0H) = x + 1/N and d(H) = y £ 1/N. By
Claim 5.3 applied to § « N~! there is some n > N such that di(H;(n), H;(n)) < on” and
min{|H;(n)|, |H;(n)[} = (y — 6)("). Assume without loss of generality that

|H:(n)AH;(n)| < dn'.

Now consider the following process transforming H;(n) into H;(n): Start with #;(n)
and remove edges one by one until H;(n) N H;(n) is reached. Then, keep adding edges
one by one until you arrive at H,;(n). Every r-graph occurring along the way is F-free.
Moreover, since deleting or adding an edge can affect the size of the shadow by at most r,
in every step of the process the shadow density changer by at most r/ (rfl). Thus at
some moment we pass an r-graph H such that |d(0H) — z| < r/(,",) < ¢. Finally,
d(H) = d(Hi(n) 0 H;(n)) = d(Hi(n)) — |[Hi(n)AH;(n)|/(7) = y — O(5) completes the
proof that H has all desired properties. O

§6. CONCLUDING REMARKS

For every positive integer ¢t we constructed a family of 3-graphs {Gi, ..., G;} that have
the same Lagrangian \;, and we showed that there is a family M, of 3-graphs whose
extremal configurations are balanced blow-ups of Gy, ..., G;, and whose stability number
is £(M;) = t. Notice that our choice of \; is very close to 1/6, which is the supremum
of the Lagrangians of all 3-graphs. It would be interesting to find for every integer t > 2

the minimum value (if it exists) of A = A(t) so that there exists a t-stable family F; with



HYPERGRAPHS WITH MANY EXTREMAL CONFIGURATIONS 31

7(F:) = 6A. A result of Erdds [4] implies that there are no Turdn densities in the interval
(0,2/9). This motivates the following question.

Problem 6.1. Does there ezist a family F of triple systems with m(F) = 2/9 but &(F) # 12

For a family F of r-graphs let M (F) = {z € projQ2(F): g(F)(z) = n(F)) be the set of
abscissae of the global maxima of its feasible region function. As we have shown here,
|M(F)| can be every finite cardinal except zero. In would be interesting to know whether
M (F) can be infinite and, in case the answer is affirmative, there immediately arise further

questions.

Problem 6.2. Forr > 3 does there exist a non-degenerate family F of r-graphs so that
g(F) has infinitely many global mazxima? If so, can the set M(F) be uncountable? Can it

even contain a non-trivial interval?

Notice that if the last question on intervals has a negative answer, then in Proposition 5.2
the assumption that M should be finite can be omitted. In fact, it is somewhat bizarre

that we do not know the following.

Problem 6.3. Let F be a non-degenerate family of r-graphs such that M (F) is infinite.
Can it nevertheless happen that F has finite stability number?

In a forthcoming work [21] we will show an extension of our results about triples
systems to r-graphs for all 7 > 4 and exhibit a family M that is ¢-stable such that the

function g(Mj}) has exactly ¢-global maxima.

Added in proof. After the submission of this article, all questions raised in Section 6 have
been answered affirmatively. In [11] Hou, Li, Zhang, and the first two authors construct
a family of 3-graphs whose Turdn density is 2/9 and whose stability number is infinite,
thus solving Problem 6.1 in a very strong form. Moreover, they show that that M (F) can
indeed contain an interval, which is the most bizarre possibility mentioned in Problem 6.2.
Moreover, Pikhurko and the first author show in [22] that M (F) can even look like a
Cantor-type set. In these exmaples, the stability number is always infinite.

Balogh, Clemen, and Luo [1], on the other hand, show that that there also exists a
1-stable family F such that M (F) contains a nontrivial interval, thus giving a different

solution to Problem 6.2. Moreover, they obtained a positive solution to Problem 6.3.
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