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Abstract

We obtain new lower bounds for the independence number of Kr-free graphs and linear k-

uniform hypergraphs in terms of the degree sequence. This answers some old questions raised

by Caro and Tuza [7]. Our proof technique is an extension of a method of Caro and Wei

[6, 20], and we also give a new short proof of the main result of [7] using this approach. As

byproducts, we also obtain some non-trivial identities involving binomial coefficients, which may

be of independent interest.

1 Introduction

For k ≥ 2, a k-uniform hypergraphH is a pair (V (H), E(H)) where E ⊆
(
V (H)
k

)
. A set I ⊂ V (H)

is an independent set of H if e 6⊆ I for every e ∈ E(H), or equivalently,
(
I
k

)
∩ E(H) = ∅. The

independence number of H, denoted by α(H), is the maximum size of an independent set in

H. For u ∈ V (H), its degree in H, denoted by dH(u), is defined to be |{e ∈ E(H) : u ∈ e}|
(we omit the subscript if it is obvious from the context). Throughout this paper, we use t to

denote k− 1 except in some places where it stands for some real value (the correct meaning can

be easily inferred from the context). Also, we use the term graph whenever k happens to be 2.

A k-uniform hypergraph is linear if it has no 2-cycles where a 2-cycle is a set of 2 hyperedges

containing at most 2t vertices. The dual of the above definition says that a linear hypergraph

is one in which every pair of vertices is contained in at most one hyperedge.

In [19], Turán proved a theorem giving a tight bound on the maximum number of edges that

a Kr-free graph can have, which has since become the cornerstone theorem of extremal graph

theory. Turán’s theorem, when applied to the complement G of a graph G, yields a lower bound

α(G) ≥ n
d+1 where d denotes the average degree in G of its vertices.
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Caro [6] and Wei [20] independently proved that α(G) ≥
∑
v

1
d(v)+1 which is at least n

d+1 . The

probabilistic proof of their result later appeared in Alon and Spencer’s book [5]. 1 One natural

extension of Turán’s theorem to k-uniform hypergraphs H is the bound α(H) > ck
n
d1/t

, and

this was shown via an easy probabilistic argument by Spencer [15]. Caro and Tuza [7] improved

this bound for arbitrary k-uniform hypergraphs. In order to state their lower bound, we need

the following definition (of fractional binomial coefficients) from [10].

Definition For t > 0, a ≥ 0, d ∈ N(
d+ 1/t

a

)
:=

(td+ 1)(t(d− 1) + 1)...(t(d− a+ 1) + 1)

a!ta

What Caro and Tuza [7] showed was that

α(H) ≥
∑

v∈V (H)

1(
d(v)+1/t
d(v)

) . (1)

Indeed, an easy consequence of (1) is the following result.

Theorem 1.1 (Caro-Tuza [7]) For every k ≥ 3, there exists dk > 0 such that every k-uniform

hypergraph H has

α(H) ≥ dk
∑

v∈V (H)

1

(d(v) + 1)1/t
.

As a corollary, one infers the bound of Spencer above. Later, Thiele [18] provided a lower

bound on the independence number of non-uniform hypergraphs, based on the degree rank (a

generalization of degree sequence).

In this paper, we prove new lower bounds for the independence number of locally sparse graphs

and linear k-uniform hypergraphs. The starting point of our approach is the probabilistic proof

of Boppana-Caro-Wei. This approach, together with some additional simple ideas, quickly yields

a new short proof of Theorem 1.1 (see Section 2 for the detailed proof).

1.1 Kr-free graphs

For certain classes of sparse graphs, improvements of the Caro-Wei bound (in terms of average

degree d) are known. Ajtai, Komlós and Szemerédi [2] proved a lower bound of Ω
(
n log d
d

)
for

the independence number of triangle-free graphs. An elegant and simpler proof was later given

by Shearer [12], who also improved the constant involved. Ajtai, Erdős, Komlos and Szemerédi

[1] showed that for Kr-free graphs (r > 3), the independence number is lower-bounded by

cr(n/d) log( (log d)
r ), where cr ∈ <+ depends only on r. They also conjectured that the optimal

bound is cr
n log d
d . Shearer [14] improved their bound to Ω

(
n log d

d log log d

)
.

1According to R. Bopanna [9], the probabilistic argument in [5] was obtained by him, although it is possible that

it was known earlier.
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Caro and Tuza [7] raised the following question in their 1991 paper :

(i) Can the lower bounds of Ajtai et al [2] and Shearer ([12], [14]) be generalized in terms of

degree sequences?

We answer this question via the following two theorems.

Theorem 1.2 For every ε ∈ (0, 1) there exists c > 0 such that the following holds: Every

triangle-free graph G with average degree D has independence number at least

c(logD)
∑

v∈V (G)

1

max {Dε, d(v)}
.

Theorem 1.3 For every ε ∈ (0, 1) and r ≥ 4, there exists c > 0 such that the following holds:

Every Kr-free graph G with average degree D has independence number at least

c
logD

log logD

∑
v∈V (G)

1

max {Dε, d(v)}
.

A similar bound to Theorem 1.2 was obtained by Shearer [13], who showed that for a triangle-

free graph G, α(G) ≥ (1−o(1))
∑
v∈V (G)

log d(v)
d(v) . We remark that up to multiplicative constants,

the function logD
∑
v

1
d(v) is larger than the function

∑
v

log d(v)
d(v) used in Shearer’s bound.

1.2 Linear Hypergraphs

As mentioned earlier, a lower bound of Ω
(
n/d1/t

)
for an n vertex k-uniform hypergraph with

average degree d can be inferred from Theorem 1.1. Caro and Tuza [7] also raised the following

question:

(ii) How can one extend the lower bounds of Ajtai et al [2] and Shearer ([12], [14]) to hyper-

graphs?

As it turns out, such extensions were known for the class of linear k-uniform hypergraphs.

Indeed, the lower bound

α(H) = Ω

(
n

(
log d

d

)1/t
)
, (2)

where H is a linear k-uniform hypergraph with average degree d was proved by Duke-Lefmann-

Rödl [8], using the results of [4]. Our final result generalizes (2) in terms of the degree sequence

of the hypergraph.

Theorem 1.4 For every k ≥ 3 and ε ∈ (0, 1), there exists c > 0 such that the following holds:

Every linear k-uniform hypergraph H with average degree D has independence number at least

c(logD)1/t
∑

v∈V (H)

1

max {Dε/t, (d(v))1/t}
.

We also describe an infinite family of k-uniform linear hypergraphs to illustrate that the ratio

between the bounds of Theorem 1.4 and (2) can be unbounded in terms of the number of vertices.
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The remainder of this paper is organized as follows. In Section 2, we give a new short proof

of Theorem 1.1. In Section 3, we apply the analysis in Section 2 to the special case of linear

hypergraphs, and obtain a “warm-up” result - Theorem 3.1, which will be helpful in proving the

main technical result, Theorem 4.1, proved in Section 4. The expression obtained in Theorem

4.1 plays a crucial role in the proofs of Theorems 1.2, 1.3 and 1.4; these are provided in Section 5.

In Section 6, we give infinite families of Kr-free graphs and k-uniform linear hypergraphs which

illustrate that the bounds in Theorems 1.2, 1.3 and 1.4 can be bigger than the corresponding

bounds in [2, 4, 8, 12, 14] by arbitrarily large multiplicative factors. Finally, in section 8, we

state several combinatorial identities which follow as simple corollaries of Theorem 4.1.

2 A new proof of Theorem 1.1

In this section we obtain a new short proof of Theorem 1.1. First we obtain the following

theorem which is later used to prove Theorem 1.1.

Theorem 2.1 For every k ≥ 2, there exists a constant c = ck such that any k-uniform hyper-

graph H on n vertices and m ≥ 1 hyperedges satisfies∑
J⊂V (H)

1(
n
|J|
) > c

n

m1/k
. . . . . . (A)

where we sum over all independent sets J .

Proof Let tk(n,m) denote the LHS of (A). Consider any edge e ∈ E(H). The edge e can

belong to at most
(
n−k
j−k
)

non-independent sets of size j. Since there are m edges there are at

most m
(
n−k
j−k
)

sets of size j that are not independent. Thus, at least
(
n
j

)
−m

(
n−k
j−k
)

sets of size j

are independent. Hence we have

tk(n,m) ≥
n∑
j=1

(
1−m

(
n−k
j−k
)(

n
j

) ) =

n∑
j=1

(
1−m (j)k

(n)k

)

>

bn/(2m)1/kc∑
j=1

(
1−mjk

nk

)
≥

bn/(2m)1/kc∑
j=1

(
1−m 1

2m

)

≥ 1

2

⌊
n

(2m)1/k

⌋
≥ ck

n

m1/k

for some suitably chosen ck which is close to 2−(k+1)/k. �

Let H = (V,E) be a k-uniform hypergraph. For k ≥ 3 and for u ∈ V with dH(u) ≥ 1, the link

graph associated with u in H is the t-uniform hypergraph Lu = (U,F ) where U := {v 6= u :

∃e ∈ E : {u, v} ⊆ e} and F = {e\u : u ∈ e ∈ E}. Let I(H) denote the collection of independent

sets of H.

Proof of Theorem 1.1. As mentioned in the Introduction, the proof is an extension of the

technique used in Alon and Spencer’s book [5]. Let H = (V,E) be an arbitrary k-uniform

hypergraph. Choose uniformly at random a total ordering < on V . Define an edge e ∈ E to

be backward for a vertex v ∈ e if u < v for every u ∈ e \ {v}. Define a random subset I to be
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the set of those vertices v such that no edge e incident at v is backward for v with respect to

<. Clearly, I is independent in H. We have E[|I|] =
∑
v Pr(v ∈ I). If dv = 0, then v ∈ I with

probability 1. Hence, we assume that d(v) ≥ 1. ¿From the definition of I, it follows that v ∈ I
if and only if for every e incident at v, e \ {v} 6⊆ Sv = {u ∈ V (Lv) : u < v}. In other words, Sv

is an independent set in Lv. Let lv = |V (Lv)|. Then

Pr[v ∈ I] =
∑

J∈I(Lv)

|J |!(lv − |J |)!
(lv + 1)!

=
1

lv + 1

∑
J∈I(Lv)

1(
lv
|J|
)

Applying Theorem 2.1 to the t-uniform link graph Lv (with c = ck−1), we get

Pr[v ∈ I] ≥ c

lv + 1

(
lv

d(v)1/(k−1)

)
≥ clv

lv + 1

(
1

(d(v) + 1)1/(k−1)

)
.

Since lv ≥ k − 1, we get Pr[v ∈ I] ≥ ((k − 1)c/k) 1
(d(v)+1)1/(k−1) . By choosing dk = (k − 1)c/k,

we get the lower bound of the theorem. �

3 Linearity : Probability of having no backward edges

In this section, we state and prove a warm-up result on the probability of having no backward

edges incident at a vertex for a randomly chosen linear ordering (Theorem 3.1 below). The

problem is the same as in the previous section, only, now the hypergraph under consideration

is assumed to be linear and we get an explicit closed-form expression for this probability. This

result will be helpful for the proof of the main technical theorem, given in the next section.

Theorem 3.1 Let H be a linear k-uniform hypergraph and let v be an arbitrary vertex having

degree d. For a uniformly chosen total ordering < on V , the probability Pv(0) that v has no

backward edge incident at it, is given by

Pv(0) =
1(

d+1/t
d

)
Remark. It is interesting to note that the above expression when summed over all vertices,

is the same bound which Caro and Tuza obtain in [7] (using very different methods), although

their bound holds for independent sets in general k-uniform hypergraphs.

We prove the theorem using the well-known Principle of Inclusion and Exclusion (PIE). First

we state an identity involving binomial coefficients.

Lemma 3.2 Given non-negative integers d and t,

d∑
r=0

(−1)r
(
d

r

)
1

tr + 1
=

1(
d+1/t
d

)
For proof see [10], Equation 5.41. Alternatively, it can be proved using the Chu-Vandermonde

identity (see e.g. [10], Equation 5.93).
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Proof of Theorem 3.1 Firstly, observe that since H is linear, the number of vertices that are

neighbors of v is exactly (k−1)d = td. Next, notice that since the random ordering is uniformly

chosen, only the relative arrangement of these td neighbors and the vertex v, i.e. td+ 1 vertices

in all, will determine the required probability. Hence the total number of orderings under

consideration is (td+ 1)!.

Label the hyperedges incident at v with 1, ..., d arbitrarily. For a permutation π, we say that

π has the property T≥S if the edges with labels in S, S ⊆ [d] are backward. Also, say π has

the property T=S if the edges with labels in S are backward and no other edges are backward.

For a set S of hyperedges incident at v, let N(T≥S) denote the number of orderings having the

property T≥S , that is, the number of permutations such that the hyperedges in S will all be

backward edges. N(T=S) is similarly defined. N(T≥S) is determined as follows :

Suppose S has r hyperedges incident at v. For a fixed arrangement of the vertices belonging to

edges in S, the number of permutations of the remaining vertices is (td+ 1)!/(tr + 1)!. In each

allowed permutation, the vertex v must occur only after the vertices of S (i.e. the rightmost

position). However the remaining tr vertices can be arranged among themselves in (tr)! ways.

Thus we have

N(T≥S) = (td+ 1)!
(tr)!

(tr + 1)!
=

(td+ 1)!

(tr + 1)
.

Clearly, if a permutation has the property T≥S , it has the property T=S′ for some S′ ⊇ S.

Hence for every S ⊂ [d],

N(T≥S) =
∑
S′⊇S

N(T=S′).

Therefore, by PIE (see [16], Chapter 2),

N(T=∅) =
∑
S

(−1)|S|N(T≥S).

∑
|S|=r

N(T≥S) =

(
d

r

)
N(T≥[r]) =

(
d

r

)
(td+ 1)!

tr + 1
.

Hence we get the required probability to be

Pv(0) =

(
d∑
r=0

(
d

r

)
(−1)r

(td+ 1)!

tr + 1

)
× 1

(td+ 1)!

=

d∑
r=0

(
d

r

)
(−1)r

1

tr + 1
.

By Lemma 3.2,

Pv(0) =
1(

d+1/t
d

) ,
and this completes the proof. �
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4 Linearity : Probability of having few backward edges

Now, we consider the more general case when at most A − 1 backward edges are allowed. In

this section, we get an exact expression for the corresponding probabiity. This estimate plays

an important role later in getting new and improved lower bounds on α(H) for locally sparse

graphs and linear hypergraphs. Our goal in this section is to prove the following result.

Theorem 4.1 For a k-uniform linear hypergraph H, a vertex v having degree d, a uniformly

chosen permutation π induces at most A− 1 backward edges with probability Pv(A− 1) given by

Pv(A− 1) =

{
1 if d ≤ A− 1;
tA
tA+1

[(
d
A

)
/
(
d+1/t
d−A

)]
if d ≥ A.

Corollary 4.2 As d→∞, the asymptotic expression for the probability Pv(A− 1) is given by

Pv(A− 1) ∼ 1

1 + (1/(tA))

(
A

d

)1/t

= Ω((A/d)
1/t

)

Proof The asymptotics are w.r.t. d → ∞, d ≥ A. The expression for having at most A − 1

backward edges is

Pv(A− 1) =
1

1 + (tA)−1
d(d− 1)...(A+ 1)

(d−A)!

(d−A)!

(d+ 1/t)(d− 1 + 1/t)...(A+ 1 + 1/t)

=
1

1 + (tA)−1
1

(1 + 1/td)(1 + (t(d− 1))−1)...(1 + (t(A+ 1))−1)

Now, for 0 < x, we have (1 + x)−1 > e−x. So we get

Pv(A− 1) > (1 + (tA)−1)−1e(−1/t)
∑d

r=A+1(1/r)

= (1 + (tA)−1)−1e(−1/t)[
∑d

r=1(1/r)−
∑A

r=1(1/r)]

= (1 + (tA)−1)−1e(−1/t)[ln d−lnA]+O((d−A)/(tdA))

= (1 + (tA)−1)−1e(−1/t) ln(d/A)−O((d−A)/(tdA))

= (1 + (tA)−1)−1(A/d)1/tΩ(1)

= Ω((A/d)1/t)

The above expression therefore becomes Ω((A/d)1/t). �

The version of PIE used most commonly deals with N(T=∅), i.e. the number of elements in the

set of interest - in this case, permutations of [td + 1] which do not have any of the properties

under consideration (in this case, backward edges with respect to v). However we need something

slightly different - an expression for the number of permutations which have at least A backward

edges. Clearly, the remaining permutations are those which have at most A−1 backward edges.

Therefore, we use a slightly modified version of PIE, which is stated below in Theorem 4.5.

This form is well-known (see e.g. [16], Chapter 2, Exercise 1), although it seems to be used

less frequently. For the sake of completeness, we provide a simple proof. First we state two

identities involving binomial coefficients. The first can be proved easily by induction on b and

we omit the proof, and the second is proved in the appendix.
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Lemma 4.3 For a, b nonnegative integers,

b∑
i=0

(−1)i
(
a+ b

a+ i

)(
a+ i− 1

i

)
= 1

Lemma 4.4 Given non-negative integers d,A, d ≥ A and a positive integer t,

d−A∑
r=0

(−1)r
(

d

r +A

)(
A+ r − 1

r

)
1

t(r +A) + 1
= 1−

(
At

tA+ 1

) (
d
A

)(
d+1/t
d−A

)
We now present the generalized PIE and its well-known proof.

Theorem 4.5 Let S be an n-set and E1, E2, ...Ed not necessarily distinct subsets of S. For any

subset M of [d], define N(M) to be the number of elements of S in ∩i∈MEi and for 0 ≤ j ≤ d,

define Nj :=
∑
|M |=j N(M). Then the number N≥a of elements of S in at least a, 0 ≤ a ≤ d

of the sets Ei, 1 ≤ i ≤ d, is

N≥a =

d−a∑
i=0

(−1)i
(
a+ i− 1

i

)
Ni+a ... (MPIE)

Proof Take an element e ∈ S.

(i) Suppose e is in no intersection of at least a Ei’s. Then e does not contribute to any of the

summands in the RHS of the expression (MPIE), and hence, its net contribution to the

RHS is zero.

(ii) Suppose e belongs to exactly a+ j of the Ei’s, 0 ≤ j ≤ d− a. Then its contribution to the

RHS of (MPIE) is
j∑
l=0

(−1)l
(
a+ j

a+ l

)(
a+ l − 1

l

)
and by Lemma 4.3 this is equal to 1. �

Proof of Theorem 4.1 If d ≤ A − 1, then Pv(A − 1) = 1 obviously. The proof is similar to

the proof of Theorem 3.1, except that in place of the PIE, we use Theorem 4.5. The set under

consideration is the set of permutations of [td+1], the subsets Ei correspond to the permutations

for which the i-th edge is backward. It is easy to see that N(M) = N(T≥M ) under the notation

used in Theorem 3.1 and hence N(M) = (td+1)!
t|M |+1 . Therefore we have Nj =

(
d
j

) (td+1)!
tj+1 as before.

Hence the expression for the probability Qv(A) that at least A edges are backward under a

uniformly random permutation π, becomes:

Qv(A) =

d−A∑
i=0

(−1)i
(

d

i+A

)(
A+ i− 1

i

)
1

t(i+A) + 1
.

By Lemma 4.4 the RHS of the above expression is

Qv(A) = 1−
(

1

1 + (tA)−1

) (
d
A

)(
d+1/t
d−A

) .
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Hence the probability of having at most A− 1 backward edges is given by

Pv(A− 1) =
1

1 + (tA)−1

(
d
A

)(
d+1/t
d−A

)
and the proof is complete. �

5 Lower bounds for linear hypergraphs and Kr-free graphs

In this section we prove Theorems 1.2, 1.3, and 1.4. These follow by a simple application

of Corollary 4.2. Since the proofs follow the same outline, we prove them simultaneously,

highlighting only the differences as and when they occur.

Proofs of Theorems 1.2, 1.3 and 1.4. Consider a uniformly chosen random permutation of

the vertices of the graph/hypergraph under consideration. Let D be the average degree of the

graph or hypergraph and A = Dε. Let I be the set of those vertices each having at most A− 1

backward edges incident on it. Clearly, the expected size of I is

E[|I|] =
∑
v∈V

Pv(A− 1) ≥ c
∑
v∈V

(
A

max {A, d(v)}

)1/t

= cA1/t
∑
v∈V

(
1

max {A, d(v)}

)1/t

for some constant c = c(k, ε). (For a graph, k = 2 and hence t = 1). Also, by construction, the

average degree of the sub(hyper)graph induced by I is at most k(A− 1). Therefore, there exists

an independent set I ′ of size at least as follows

(i) Case t = 1, graph is K3-free: By [12], α(G) is at least

Ω

(
log(2(A− 1))

|I|
2(A− 1)

)
= Ω

(
logD

∑
v∈V

1

max {A, d(v)}

)

(ii) Case t = 1, graph is Kr-free (r > 3): By [14], α(G) is at least

Ω

(
log(2(A− 1))

log log(2(A− 1))

|I|
2(A− 1)

)
= Ω

(
logD

log logD

∑
v∈V

1

max {A, d(v)}

)

(iii) Case t > 1, hypergraph is linear: By [8], α(H) is at least

Ω

(
(log k(A− 1))1/t

|I|
(k(A− 1))1/t

)
= Ω

(
(logD)1/t

∑
v∈V

1

(max {A, d(v)})1/t

)

The above three cases prove Theorems 1.2, 1.3 and 1.4 respectively.

Note: An inspection of the proofs above show why we need ε to be a fixed constant. It is

because all three expressions above essentially have logA i.e. ε logD in the numerator. So, if

ε = o(1), then logA = o(logD), and we would get asymptotically weaker results. �
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6 Construction comparing average degree vs. degree se-

quence based bounds

A degree sequence-based bound obviously reduces to a bound based on average degree, when

the (hyper)graph is regular. However, the convexity of the function x−1/t, x ≥ 1 and t ∈ N,

shows that the bounds in Theorems 1.2, 1.3 and 1.4 are better than the corresponding average

degree-based bounds proved in [4], [12] and [14] respectively provided the minimum degree is

at least A, although it is not clear a priori if the improvement can become significantly larger.

Also, at least half the vertices will have degree at most 2D, so even in the general case (no

restriction on the minimum degree) our bounds are no worse than the average degree based

bounds (ignoring the constant factors). In fact, they can be much larger than the latter bounds.

We now give infinite families of Kr-free graphs and linear k-uniform hypergraphs which show

that

(i) The bounds given by Theorem 1.2, 1.3 can be better than the bounds in [2, 12, 14]

respectively by a multiplicative factor of log(|V (G)|).
(ii) The bound in Theorem 1.4 can be better than the bound in [4] by a multiplicative factor of

((log |V (H)|)/(log log |V (H)|))(1−ε)/t, where ε is the constant mentioned in Theorem 1.4.

Case (i) Take a set of n disjoint graphs, K1,1, K2,2, K4,4, ... , K2n−1,2n−1 . For each i ∈ [n], join

one of the parts of the component K2i,2i to one of the parts in K2i−1,2i−1 , by introducing

a complete bipartite graph between them. (Use the other part of K2i,2i for joining to

K2i+1,2i+1). Let G denote the resulting connected triangle-free graph.

The total number of vertices is 2n+1 − 2, whereas the average degree is

dav = 2|E(G)|/|V (G)| = (2n + 1)/2− o(1). Hence, the average degree based bound gives

Θ(|V (G)| log dav/dav) = Θ(log dav). Denote by l the maximum j such that 3.2j ≤ A <

3.2j+1, where A := dεav. For every fixed ε ∈ (0, 1), we have n − l = Θ(n). Theorem 1.2

gives

c log dav
∑
v∈V

1

max{d(v), A}
= c log dav

 1

A
+

l∑
j=1

3.2j

A
+

n−2∑
j=l+1

(
3.2j

3.2j

)
+

2n−1

2n−1


= c(log dav) [Θ(1) + Θ(n)]

= c(log dav)Θ(log(|V (G)|)

The same example works for Theorem 1.3 also, since triangle-free graphs are obviously

Kr-free, for r ≥ 3.

Case (ii) Fix some m = m(n) = k2
n

. For each i ∈ {0, . . . , n − 1}, first create a connected linear

hypergraph as follows: Take the vertex set as [k]2
i

, i.e. the set of 2i-dimensional vectors

with each co-ordinate of a vector taking values in {1, 2, . . . , k}. Let each hyperedge consists

of the k vertices which have all but one co-ordinate fixed. Call this hypergraph an i-unit.

It can be verified easily that each i-unit is k-uniform and 2i-regular. Now for each i, create

an i-component as follows:

(i) Take mi = d m
k2i
e disjoint unions of i-units and linearly order them, say i1, . . . , imi .

(ii) Consider the sets of vertices of size k formed by choosing at most one vertex from

each i-unit. Add such edges greedily, ensuring the following:
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(i) No vertex belongs to more than one such edge;

(ii) Choose the first edge from i-units i1, . . . , ik, the second one from i2, . . . , ik+1,

etc. - in general the j-th such edge has one vertex from each of the i-units

ij (mod mi), ij+1 (mod mi), . . . ij+k−1 (mod mi).

Each i-component is a connected, linear k-uniform graph and the degree of every vertex

is either 2i or 2i + 1. Take the disjoint unions of n such i-components, one for every

i ∈ {0, . . . , n− 1}, to get the hypergraph H = H(n) = (V,E). For each j ∈ {0, . . . , n− 2},
greedily add a maximal matching between components j and j + 1, with each edge taking

only one vertex from component j (and remaining k−1 from the component j+1), and no

vertex belonging to more than one such edge. Let G be the resulting connected, linear k-

uniform graph. The total number of vertices in the j-th component ismj ·k2
j

= m(1+o(1)),

and hence |V | = nm(1 + o(1)). Also, the average degree is dav ∼ (2n− 1)/n ∼ 2n/n. Let l

denote the greatest integer j such that 2j ≤ (dav)
ε ∼ 2εn/nε. Therefore the average degree

based bounds in [4, 8] give a lower bound of

α(H) = Ω(mn1+1/t(log dav)
1/t/2n/t) . . . (A)

Notice that the degree of any vertex in the i-th component (after G has been constructed)

is always between 2i and 2i + 3. For a vertex v such that d(v) < dεav, the actual degree

does not play a role in the expression in Theorem 1.4. For vertices v such that d(v) ≥ dεav,
this increase is negligible (2εn/nε + 3) ∼ 2εn/nε. Therefore, the bound in Theorem 1.4

gives

α(H) = Ω

(log dav)
1/t

 l∑
j=0

mnε/t

2εn/t
+

n−1∑
j=l+1

m

2j/t


= Ω

(
m(log dav)

1/t

[
ε2−εn/tn1+ε/t + 2−εn/tnε/t

(1− 2−(n−l−1)/t)

1− 2−1/t

])
= Ω

(
m(log dav)

1/t × 2−εn/t
[
εn1+ε/t + nε/t

(1− 2−(n−l−1)/t)

1− 2−1/t

])
= Ω

(
m(log dav)

1/t × 2−εn/t(εn1+ε/t + Θ(nε/t))
)

. . . (B)

The ratio of the bound in (B) to the one in (A) can be seen to be Ω((2n/n)
(1−ε)/t

), which

is Ω((log |V |/ log log |V |))(1−ε)/t).

7 Binomial Identities

In the course of this paper, certain non-trivial binomial identities were also obtained, with semi-

combinatorial proofs. Some of the identities are new, to the best of our knowledge, and may be

of independent interest. These are described below:

A∑
a=0

d−a∑
i=0

(
d

a+ i

)(
a+ i

i

)
2i(2d− 2a− i)!(2a+ i)! = (d!)24d−A(A+ 1)

(
2A+ 1

A

)
(3)
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The LHS (when divided by (2d+ 1)!) amounts to the expression for Pv(A) when k = 3: choose

a+ i hyperedges from the d hyperedges incident on v, of these a hyperedges are backward, while

i hyperedges each have one vertex occurring prior to v in the random permutation. These i

vertices can be chosen from i pairs in 2i ways. The (2a + i) vertices before v can be arranged

in (2a + i)! ways amongst themselves. The remaining (2d − 2a − i) vertices occur after v and

can be arranged amongst themselves in (2d − 2a − i)! ways. The RHS is easily obtained from

Theorem 4.1 by taking t = 2.

Even the A = 0 case of the above identity gives (after some rearrangements):

d∑
i=0

(
d+ i

d

)
2−i = 2d

The above identity merits discussion in some detail in [10] (Chapter 5, eqs. 5.20, 5.135-8); a

nice combinatorial proof of it is provided in [17].

The next identity (for the more general case k ≥ 3) is much more complicated:

A∑
a=0

d−a∑
i=0

∑
∑t−1

j=1 ij=i;ij≥0

(
d

a+ i

)(
a+ i

a, i1, . . . , it−1

)(
t

1

)i1(t
2

)i2
. . .

(
t

t− 1

)it−1

×

(ta+ i1 + 2i2 + . . . (t− 1)it−1)!(td− ta− i1 − . . .− (t− 1)it−1)!

= (td+ 1)!(1 + (tA+ t)−1)−1
[(

d

A+ 1

)/(
d+ 1/t

d−A− 1

)]
(4)

The LHS again follows by similar arguments as for (3), this time for general t. There are a

backward edges, i1 edges which have one vertex before v, i2 edges with 2 vertices before v, and

so on. The RHS follows from Theorem 4.1.

Our proof techniques for identities (3, 4) involving PIE, are non-standard. It may be an in-

teresting problem in Enumerative Combinatorics to come up with combinatorial proofs of the

identities (3, 4). In particular, for (4), it would be interesting to come up with proofs using any

standard technique such as induction, generating functions, the WZ method etc.

8 Concluding Remarks

As the constructions of Section 6 show, our degree-sequence-based lower bounds can be asymp-

totically better than the previous average-degree-based bounds. This is in spite of using the

previous bounds in the proof. The power of the random permutation method lies in that it

allows us to obtain a relatively large sparse induced subgraph, over which the application of the

average-degree bound yields a much better result than a straightforward application over the

entire graph would have.

With regard to the tightness of our results and the weakening parameter A, firstly, from the

proof of Theorems 1.2-1.4, it is clear that ε = logA/ logD has to be at least a constant. Ideally,

we may want to have ε = 0 in the bounds of Theorems 1.2, 1.3 and 1.4. The following example,

12



however, shows that it is possible to construct a triangle-free graph for which the bound in say,

Theorem 1.2 would give a value more than the number of vertices: Take a disjoint union of

A = Kn/3,n/3 and B = Kn/3, and introduce a perfect matching between B and one of the parts

of A. Now, |V | = n, D ∼ 2n/9, and hence if ε = 0, Theorem 1.2 would give a lower bound of

Ω(n log n), which is asymptotically larger than |V |. Similar examples can be constructed with

linear hypergraphs also.
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9 Appendix

Proof of Lemma 4.4 Let the LHS be denoted by Sd. Then, using the identity(
n

r

)
=

(
n− 1

r

)
+

(
n− 1

r − 1

)
,

we have

Sd =

d−A∑
r=0

(−1)r
[(

d− 1

r +A

)
+

(
d− 1

r +A− 1

)](
A+ r − 1

r

)
1

tr + tA+ 1

= Sd−1 +

d−A∑
r=0

(−1)r
(

d− 1

r +A− 1

)(
A+ r − 1

r

)
1

tr + tA+ 1

since
(
d−1
d

)
= 0. Now the second sum can be simplified as

Td =

d−A∑
r=0

(−1)r
(

d− 1

r +A− 1

)(
A+ r − 1

r

)
1

tr + tA+ 1

=

(
(d− 1)!

(d−A)!(A− 1)!

) d−A∑
r=0

(−1)r
(
d−A
r

)
1

tr + tA+ 1

=

(
d− 1

A− 1

)
1

tA+ 1

d−A∑
r=0

(−1)r
(
d−A
r

)
1

(t/(tA+ 1))r + 1

By Lemma 3.2, we get

Td =
1

tA+ 1

[(
d− 1

A− 1

)/(
d−A+ (tA+ 1)/t

d−A

)]
Therefore,

Sd = Sd−1 +
1

tA+ 1

[(
d− 1

A− 1

)/(
d+ 1/t

d−A

)]
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Unraveling the recursion and noticing that SA = 1/(tA+ 1), we get that

Sd = (1/(tA+ 1))

d−A∑
r=0

[(
d− r − 1

A− 1

)/(
d+ 1/t− r
d−A− r

)]

= (1/(tA+ 1))

d−A∑
r=0

[(
A− 1 + r

A− 1

)/(
A+ 1/t+ r

r

)]
by reversing the order of summation. Finally, the following claim completes the proof.

Claim. For d ≥ A, t ≥ 0,

1

tA+ 1

d−A∑
r=0

(
A−1+r
A−1

)(
A+1/t+r

r

) = 1− tA

tA+ 1

(
d
A

)(
d+1/t
d−A

)
Proof of Claim. We use induction on d. When d = A, the LHS is (tA+ 1)−1, while the RHS

is 1− At
tA+1 , so we have equality. Now assume equality for d and consider the LHS for d+ 1:

1

tA+ 1

d−A+1∑
r=0

(
A−1+r

r

)(
A+1/t+r

r

)
= 1− At

tA+ 1

[(
d

A

)/(
d+ 1/t

d−A

)]
+ (At+ 1)−1

[(
d

d−A+ 1

)/(
d+ 1 + 1/t

d−A+ 1

)]
= 1− At

(tA+ 1)
(
d+1+1/t
d−A+1

) [(d
A

)
d+ 1 + 1/t

d−A+ 1
− (At)−1

(
d

d−A+ 1

)]
= 1− At

(tA+ 1)
(
d+1+1/t
d−A+1

) [(d+ 1

A

)
+

(
d+ 1

d−A+ 1

)
(t(d+ 1))−1 − (At)−1

(
d

A− 1

)]
= 1− At

(tA+ 1)
(
d+1+1/t
d−A+1

)(d+ 1

A

)
which is the required expression on the RHS. �
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