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Abstract

A triangle T (r) in an r-uniform hypergraph is a set of r + 1 edges such that r of them
share a common (r − 1)-set of vertices and the last edge contains the remaining vertex from
each of the first r edges. Our main result is that the random greedy triangle-free process on n
points terminates in an r-uniform hypergraph with independence number O((n log n)1/r). As
a consequence, using recent results on independent sets in hypergraphs, the Ramsey number

r(T (r),K
(r)
s ) has order of magnitude sr/ log s. This answers questions posed in [4, 10] and

generalizes the celebrated results of Ajtai-Komlós-Szemerédi [1] and Kim [9] to hypergraphs.

1 Introduction

An r-uniform hypergraph H (r-graph for short) is a collection of r-element subsets of a vertex

set V (H). Given r-graphs G and H, the ramsey number r(G,H) is the minimum n such that every

red/blue-edge coloring of the complete r-graph K
(r)
n :=

(
[n]
r

)
contains a red copy of G or a blue copy

of H (often we will write Kn for K
(r)
n ). Determining these numbers for graphs (r = 2) is known to

be notoriously difficult, indeed the order of magnitude (for fixed t) of r(Kt,Ks) is wide open when

t ≥ 4. The case t = 3 is one of the celebrated results in graph Ramsey theory:

r(K3,Ks) = Θ(s2/ log s). (1)

The upper bound was proved by Ajtai-Komlós-Szemerédi [1] as one of the first applications of the

semi-random method in combinatorics (simpler proofs now exist due to Shearer [12, 13]). The

lower bound, due to Kim [9], was also achieved by using the semi-random or nibble method. More

recently, the first author [3] showed that a lower bound for r(K3,Ks) could also be obtained by

the triangle-free process, which is a random greedy algorithm. This settled a question of Spencer

on the independence number of the triangle-free process. Still more recently, Bohman-Keevash [6]

and Fiz Pontiveros-Griffiths-Morris [8] have analyzed the triangle-free process more carefully and

improved the constants obtained so that the gap between the upper and lower bounds for r(K3,Ks)

is now asymptotically a multiplicative factor of 4.
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Given the difficulty of these basic questions in graph Ramsey theory, one would expect that the

corresponding questions for hypergraphs are hopeless. This is not always the case. Hypergraphs

behave quite differently for asymmetric Ramsey problems, for example, there exist K
(3)
4 -free 3-

graphs on n points with independence number of order log n, so r(K
(3)
4 ,K

(3)
s ) is exponential in s

unlike the graph case. Consequently, to obtain r-graph results parallel to (1), one must consider

problems r(G,Ks) where G is much sparser than a complete graph. A recent result in this vein

due to Kostochka-Mubayi-Verstraëte [10] is that there are positive constants c1, c2 with

c1s
3/2

(log s)3/4
< r(C

(3)
3 ,K(3)

s ) < c2s
3/2

where C
(3)
3 is the loose triangle, comprising 3 edges that have pairwise intersections of size one and

have no point in common. The authors in [10] conjectured that r(C
(3)
3 ,K

(3)
s ) = o(s3/2) and the

order of magnitude remains open. Another result of this type for hypergraphs due to Phelps and

Rödl [11] is that r(P
(3)
2 ,K

(3)
s ) = Θ(s2/ log s), where P

(3)
t is the tight path with t edges. Recently,

the second author and Cooper [7] prove that for fixed t ≥ 4, the behavior of this Ramsey number

changes and we have r(P
(3)
t ,K

(3)
s ) = Θ(s2); the growth rate for t = 3 remains open. These are

the only nontrivial hypergraph results of polynomial Ramsey numbers, and in this paper we add

to this list with an extension of (1).

Definition 1. An r-uniform triangle T (r) is a set of r + 1 edges b1, . . . , br, a with bi ∩ bj = R for

all i < j where |R| = r − 1 and a = ∪i(bi − R). In other words, r of the edges share a common

(r − 1)-set of vertices, and the last edge contains the remaining point in all these previous edges.

When r = 2, then T (2) = K3, so in this sense T (r) is a generalization of a graph triangle. We

may view a T (r)-free r-graph as one in which all neighborhoods are independent sets, where the

neighborhood of an R ∈
(
V (H)
r−1

)
is {x : R ∪ {x} ∈ H}. Frieze and the first two authors [4] proved

that for fixed r ≥ 2, there are positive constants c1 and c2 with

c1
sr

(log s)r/(r−1)
< r(T (r),K(r)

s ) < c2s
r.

They conjectured that the upper bound could be improved to o(sr) and believed that the log factor

in the lower bound could also be improved. Kostochka-Mubayi-Verstraëte [10] partially achieved

this by improving the upper bound to

r(T (r),K(r)
s ) = O(sr/ log r)

and believed that the log factor was optimal.

In this paper we verify this assertion by analyzing the T (r)-free (hyper)graph process. This

process begins with an empty hypergraph G(0) on n vertices. Given G(i− 1), the hypergraph G(i)

is then formed by adding an edge ei selected uniformly at random from the r-sets of vertices which

neither form edges of G(i−1) nor create a copy of T (r) in the hypergraph G(i−1)+ei. The process

terminates with a maximal T (r)-free graph G(M) with a random number M of edges. Our main

result is the following:

Theorem 1. For r ≥ 3 fixed the T (r)-free process on n points produces an r-graph with independence

number O
(
(n log n)1/r

)
with high probability.
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This result together with the aforementioned result of Kostochka-Mubayi-Verstraëte give the fol-

lowing generalization of (1) to hypergraphs.

Corollary 2. For fixed r ≥ 3 there are positive constants c1 and c2 with

c1
sr

log s
< r(T (r),K(r)

s ) < c2
sr

log s
.

Graph processes that iteratively add edges chosen uniformly at random subject to the condition

that some graph property is maintained have been used to generate interesting combinatorial objects

in a number of contexts. In addition to the lower bound on the Ramsey number r(K3,Ks) given

by the triangle-free graph process (discussed above), the H-free graph process gives the best known

lower bound on the Ramsey number r(Kt,Ks) for t ≥ 4 fixed and the best known lower bound

on the Turán numbers for some bipartite graphs [5]. The process that forms a subset of Zn by

iteratively choosing elements to be members of the set uniformly at random subject to the condition

that the set does not contains a k-term arithmetic progression produces a set that has interesting

properties with respect to the Gowers norm [2].

The T (r)-free (hyper)graph process can be viewed as an instance of the random greedy hy-

pergraph independent set process. Let H be a hypergraph. An independent set in H is a set of

vertices that contains no edge of H. The random greedy independent set process forms such a set

by starting with an empty set of vertices and iteratively choosing vertices uniformly at random

subject to the condition that the set of chosen vertices continues to be an independent set. We

study the random greedy independent set process for the hypergraph HT (r) which has vertex set(
[n]
r

)
and edge set consisting of all copies of T (r) on vertex set [n]. Note that, since an independent

set in HT (r) gives a T (r)-free r-graph on point set [n], the random greedy independent set process on

HT (r) is equivalent to the T (r)-free process. Our analysis of the T (r)-free process is based on recent

work on the random greedy hypergraph independent set process due to Bennett and Bohman [2].

The remainder of the paper is organized as follows. In the following Section we establish some

notation and recall the necessary facts from [2]. The proof of Theorem 1 is given in the Section

that follows, modulo the proofs of some technical lemmas. These lemmas are proved in the final

Section by application of the differential equations method for proving dynamic concentration.

2 Preliminaries

Let H be a hypergraph on vertex set V = V (H). For each set of vertices A ⊆ V , let NH(A)

denote the neighborhood of A in H, the family of all sets Y ⊆ V \ A for which A ∪ Y ∈ H. We

then define the degree of A in H to be dH(A) = |NH(A)|. For a nonnegative integer a, we define

∆a(H) to be the maximum of dH(A) over all A ∈
(
V
a

)
. Next, for a pair of (not necessarily disjoint)

sets A,B ⊆ V , we define the codegree of A and B to be the number of sets X ⊆ V \ (A ∪B) for

which A ∪X,B ∪X both lie in H.

Recall that we define G(i) to be the r-graph produced through i steps of the T (r)-free process.

We let Fi denote the natural filtration determined by the process (see [3], for example). We also

simplify our notation somewhat and write Ni(A) in place of NG(i)(A), di(A) in place of dG(i)(A),

etc., when appropriate.
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The r-graph G(i) partitions
(

[n]
r

)
into three sets E(i), O(i), C(i). The set E(i) is simply the set

of i edges chosen in the first i steps of the process. The set O(i) consists of the open r-sets: all

e ∈
(
n
r

)
\E(i) for which G(i) + e is T (r)-free. The r-sets in C(i) :=

(
[n]
r

)
\ (E(i)∪O(i)) are closed.

Finally, for each open r-set e ∈ O(i), we define the set Ce(i) to consist of all open r-sets f ∈ O(i)

such that the graph G(i) + e + f contains a copy of T (r) using both e and f as edges. (That is,

Ce(i) consists of the open r-sets whose selection as the next edge ei+1 would result in e ∈ C(i+1).)

We now introduce some notation in preparation for our application of the results in [2]. Set

N :=

(
n

r

)
D := (r + 1) ·

(
n− r
r − 1

)
s :=

N

D1/r
.

Note that N is the size of the vertex set of the hypergraph HT (r) and D is the vertex degree of HT (r)

(in other words, every r-set in [n] is in D copies of T (r)). The parameter s is the ‘scaling’ for the

length of the process. This choice is motivated by the heuristic that E(i) should be pseudorandom;

that is, E(i) should resemble in some ways a collection of r-sets chosen uniformly at random

(without any further condition). If this is indeed the case then the probability that a given r-set is

open would be roughly (
1−

(
i

N

)r)D
≈ exp

{
−
(
i

N

)r
D

}
and a substantial number of r-sets are closed when roughly s edges have been added. In order to

discuss the evolution in more detail, we pass to a limit by introducing a continuous time variable t

where t = t(i) = i/s.

The evolution of key parameters of the process closely follow trajectories given by the functions

q(t) := exp {−tr} and c(t) := −q′(t) = rtr−1q(t).

We introduce small constants ζ, γ such that ζ � γ � 1/r. (The notation α � β here means that

α is chosen to be sufficiently small relative to β.) The point where we stop tracking the process is

given by

imax := ζ ·ND−1/r(log1/rN) and tmax := imax/s = ζ log1/rN.

For i∗ ≥ 0, let Ti∗ denote the event that the following estimates hold for all steps 0 ≤ i ≤ i∗:

|O(i)| =
(
q(t)±N−γ

)
N (2)

and for every open r-set e ∈ O(i)

|Ce(i)| =
(
c(t)±N−γ

)
D1/r. (3)

It follows from the results of Bennett and Bohman that Timax holds with high probability. We now

recall the results of [2] in order to verify that this is indeed the case.

Bennett and Bohman studied the random greedy independent set process applied to an r̂-

uniform, D-regular hypergraph H. As we discuss above, the T (r)-free process is identical to the

random greedy independent set process on the hypergraphHT (r) . Note thatHT (r) is (r+1)-uniform,

and so in our application of Bennett-Bohman we have r̂ = r + 1. Define the (r̂ − 1)-codegree of

a pair of distinct vertices v, v′ in the hypergraph H to be the number of edges e, e′ ∈ H such that

v ∈ e \ e′, v′ ∈ e′ \ e and |e ∩ e′| = r̂ − 1. We let Γ(H) be the maximum (r̂ − 1)-codegree of H.
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Theorem 3 (Theorem 1.1 of [2]). Let r̂ and ε > 0 be fixed. Let H be an r̂-uniform, D-regular

hypergraph on N vertices such that D > N ε. If

∆`(H) < D
r̂−`
r̂−1
−ε for ` = 2, . . . , r̂ − 1 (4)

and Γ(H) < D1−ε then the random greedy independent set algorithm produces an independent set

I in H with

|I| = Ω

(
N ·

(
logN

D

) 1
r̂−1

)
(5)

with probability 1− exp
{
−NΩ(1)

}
.

Note that ∆`(HT (r)) = Θ(nr−`) = Θ(nr̂−1−`) and Γ(HT (r)) = 0, and therefore the work of Bennett-

Bohman applies to the T (r)-free process. We require more detailed information from [2]. Theorem 3

is proved by tracking key parameters of the process, these include the following, where we let I(i)

be the independent set that has been formed through i steps of the random greedy independent

set algorithm:

• The size of the set V (i) of vertices of H that remain available for inclusion in the independent

set after i vertices have been added to the independent set. Note that for the T (r)-free

process, the set of vertices that remain available for inclusion in the independent set in HT (r)

is precisely the collection of open edges O(i).

• For every vertex v available at step i, the number d2(v, i) of available vertices u 6= v with the

property that there is some edge e ∈ H such that u, v ∈ e and |e ∩ I(i)| = r̂ − 2. Note such

an available vertex v in the vertex set of HT (r) is an open edge in the T (r)-free process, and

the collection of vertices u that satisfy these conditions in HT (r) is the set of open edges in

the T (r)-free process in the set Ce(i).

Bounds on |V (i)| and d2(v, i) are given in equations (8) and (9), respectively, of [2]. These bounds

immediately give the estimates (2) and (3) quoted above. Note that s2 = s+
2 −s

−
2 , d2 = d+

2 −d
−
2 , and

the error functions fv, f2 can be bounded above by D to an arbitrarily small constant, uniformly

in t. Moreover, s2 (defined on page 11 of [2] and translated to our notation) is equal to rD1/rtr−1q

which matches the main term in (3) as c(t) = rtr−1q(t).

We will also make use of the following fact regarding r-graphs that appear as subgraphs of the

T (r)-free process.

Lemma 4 (Lemma 5.1 of [2]). Fix a constant L and suppose e1, . . . , eL ∈
(

[n]
r

)
form a T (r)-free

hypergraph. Then for all steps j ≤ imax,

P [{e1, . . . , eL} ⊆ E(j)] = (j/N)L · (1 + o(1)).

Note that the fact that Timax holds with high probability does not prove that the independence

number of G(M) is O
(
(n log n)1/r

)
with high probability. This is the main result in this work; it is

proved below. Before commencing with the details of the proof, we briefly observe that the desired

bound on the independence number of G(M) can be viewed as a pseudorandom property of the
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r-graph G(i). Indeed, if G(i) resembles a collection of r-sets chosen uniformly at random then the

expected number of independent sets of size k would be(
n

k

)(
1−

(
k
r

)(
n
r

))i = exp

{
Θ (k log n)−Θ

(
i
kr

nr

)}
.

If the process lasts through i = Θ(ND−1/r(log1/rN)) = Θ(nr−1+1/r log1/r n) steps then we would

anticipate an independence number of O
(
(n log n)1/r

)
. In the remainder of the paper we make this

heuristic calculation rigorous.

3 Independence number: Proof of Theorem 1

We expand the list of constants given in the previous section by introducing large constants κ

and W , and small constant ε such that

1

κ
� ζ � 1

W
� ε� γ. (6)

In the course of the argument we introduce dynamic concentration phenomena that will stated in

terms of the error function

f(t) := exp {W (tr + t)} .

Define the constant λ := κ−γ
2 , and then let

k := κ(n log n)1/r and ` := λ(n log n)1/r,

noting that as γ is small, k ≈ 2`. Our aim is to show that the independence number of G(imax) is

at most k with high probability. To do so, we will show that provided κ is suitably large, w.h.p.

for every step 0 ≤ i ≤ imax, every k-element set of vertices has at least Ω
(
q(t)

(
k
r

))
open r-sets. As

equation (2) establishes (1 +o(1))q(t)N open r-sets in total w.h.p., the probability that Timax holds

and a given k-set remains independent over all imax steps is then at most

imax∏
i=1

(
1− Ω

(
q(t)kr

q(t)N

))
=

(
1− Ω

(
κr log n

nr−1

))imax

= exp
{
−ζκr · Ω(n1/r log1+1/r n)

}
,

where our O(·),Ω(·),Θ(·) notation does not suppress any constant that appears in (6). Since

nk = exp
{
κ ·O(n1/r log1+1/r n)

}
,

this suffices by the union bound, provided κ is suitably large with respect to r and ζ.

There is a significant obstacle to proving that every set of k vertices contains the ‘right’ number

of open r-sets. Since the forbidden r-graph T (r) consists of an (r−1)-set (R) along with an edge (a)

contained in its neighborhood, it follows that all r-sets within the neighborhood of an (r−1)-set in

G(i) must be closed. (That is, if A ∈
(

[n]
r−1

)
then

(
Ni(A)
r

)
⊆ C(i)). So a set of k vertices that has a

large intersection with the neighborhood of an (r− 1)-set does not have the ‘right’ number of open

r-sets. To overcome this obstacle, we extend the argument in [3] for bounding the independence

number of the triangle-free process. Our argument has two steps:
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1. We apply the differential equations method for establishing dynamic concentration to show

that unless a certain ‘bad’ condition occurs, a pair of disjoint `-sets will have the ‘right’

number of open r-sets that are contained in the union of the pair of `-sets and intersect both

`-sets, that is about q(t) · [
(

2`
r

)
− 2
(
`
r

)
] open r-sets. Note that

(
2`
r

)
− 2
(
`
r

)
> 1

3

(
k
r

)
, say, as γ is

small.

2. We then argue that w.h.p., every k-set contains a (disjoint) pair of `-sets which is ‘good’, i.e.,

for which the bad condition does not occur.

We formalize this with the notion of r-sets which are open ‘with respect to’ a pair of disjoint `-sets.

Definition 2. Fix a disjoint pair A,B ∈
([n]
`

)
. The stopping time τA,B is the minimum of imax

and the first step i for which there exists a (r − 1)-set X such that

Ni(X) ∩A 6= ∅, Ni(X) ∩B 6= ∅, and |Ni(X) ∩ (A ∪B)| ≥ k/n2ε.

Definition 3. For each step i ≥ 0, we say that an r-set e ⊆ A∪B is open with respect to the

pair A,B in G(i) if e ∩A 6= ∅, e ∩B 6= ∅, and either

• e ∈ O(i) or

• e ∈ O(i− 1) ∩ C(i) and i = τA,B.

Let QA,B(i) count the number of r-sets which are open with respect to the pair A,B in G(i).

Lemma 5. With high probability, for every disjoint pair A,B ∈
([n]
`

)
and all steps 0 ≤ i ≤ τA,B,

QA,B(i) =

(
q(t)± f(t)

nε

)
·
[(

2`

r

)
− 2

(
`

r

)]
. (7)

Lemma 6. With high probability, for every step 0 ≤ i < imax and every set K ∈
([n]
k

)
, there exists

a pair of disjoint `-sets A,B contained in K for which τA,B > i.

Lemmas 5 and 6, respectively, complete steps 1 and 2 of the proof outlined above. The ‘bad’

condition for a pair A,B of disjoint `-sets is the event that we have reached the stopping time τA,B;

that is, the bad condition is that there is some (r−1)-set whose neighborhood intersects both A and

B and has large intersection with A ∪ B. Note that if i < τA,B then QA,B is equal to the number

of open r-sets that are contained in A ∪B and intersect both A and B. Thus, Lemma 5 says that

if we do not have the ‘bad’ condition then we have the ‘right’ number of such sets. Lemma 6 then

says that every k-set contains a pair disjoint pair A,B of `-sets for which the ‘bad’ condition does

not hold. Taken together, Lemmas 5 and 6 yield that w.h.p., for every step 0 ≤ i < imax, every

k-set contains at least q(t)(1 + o(1))[
(

2`
r

)
− 2
(
`
r

)
] = Ω

(
q(t)

(
k
r

))
open r-sets, as required. We now

prove Lemma 6 modulo the proof of Lemma 7 which bounds the maximum degree of an (r−1)-set.

Lemmas 5 and 7 are proved in the next Section.

Proof of Lemma 6. We require a bound on the maximum degree of (r − 1)-sets of vertices. For

each step i ≥ 0 let Di denote the event that ∆r−1(G(i)) ≤ ε(n log n)1/(r−1).

Lemma 7. Timax ∧ Dimax holds with high probability.
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The proof of Lemma 7 is given in the next Section.

Fix a step 0 ≤ i < imax, and a set K ∈
([n]
k

)
. Note that, by Lemma 7, we may assume that Di

holds. We also note that the maximum co-degree of a pair of sets A,B ∈
(

[n]
r−1

)
is at most 5r with

high probability. This follows from Lemma 4 and the union bound:

Pr

(
∃A,B ∈

(
[n]

r − 1

)
with co-degree 5r

)
≤
(

n

r − 1

)(
n

r − 1

)
n5r

(
i

N

)10r

= n8−3r+o(1) = o(1). (8)

Given these two facts (i.e. these degree and co-degree bounds for (r − 1)-sets), the remainder of

the proof is deterministic.

To begin, define the set

X :=

{
X ∈

(
[n]

r − 1

)
: |Ni(X) ∩K| ≥ k/n2ε

}
.

Claim 1. |X | < 2n2ε.

Proof. Suppose ∃Y ⊆ X with |Y| = 2n2ε. Let N =
⋃
Y ∈Y(Ni(Y ) ∩K). By inclusion-

exclusion,

k ≥ |N | ≥ |Y| · (k/n2ε)− |Y|25r ≥ 2k − 20rn4ε,

a contradiction as ε is small and k = n1/r+o(1).

Next, we ‘discard’ from K the vertices which are common neighbors of (r − 1)-sets in X : let

Kbad := {v ∈ K : ∃X,Y ∈ X with X 6= Y and v ∈ Ni(X) ∩Ni(Y )}

and Kgood := K \Kbad. Then

|Kbad| ≤ |X |25r ≤ 20rn4ε <
γ

2
· (n log n)1/r,

say, for large n.

We find disjoint `-subsets A,B of Kgood as follows, noting |Kgood| ≥ 2`+ (γ/2)(n log n)1/r. For

each subset Y ⊆ X , let

N(Y) =
⋃
Y ∈Y

Ni(Y ) ∩Kgood.

Now, choose a maximal subset X ∗ ⊆ X subject to |N(X ∗)| ≤ `. If X ∗ = X , then let A,B be `-sets

satisfying N(X ∗) ⊆ A ⊆ Kgood and B ⊆ Kgood \A.

Otherwise, pick any set X∗ ∈ X \ X ∗, so

` < |N(X ∗ ∪ {X∗})| < `+ ε(n log n)1/r;

let A ⊆ N(X ∗ ∪ {X∗}) and B ⊆ Kgood \N(X ∗ ∪ {X∗}) be `-sets.

Observe now that if X ∗ = X , then Ni(X)∩B = ∅ for all X ∈ X . Otherwise, if X ∈ X ∗ ∪{X∗},
Ni(X)∩B = ∅, but if X ∈ X \ (X ∗∪{X∗}) then Ni(X)∩A = ∅ as we are working within Kgood. In

either case, for every (r−1)-set X for which |Ni(X)∩ (A∪B)| ≥ k/n2ε holds, either Ni(X)∩A = ∅
or Ni(X) ∩B = ∅, and τA,B > i follows.
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4 Dynamic Concentration

In this section we prove Lemmas 5 and 7. Both of these statements assert dynamic concentration

of key parameters of the T (r)-free process. We apply the differential equations method for proving

dynamic concentration, which we now briefly sketch.

Suppose we have a combinatorial stochastic process based on a ground set of size n that generates

a natural filtration F0,F1, . . . . Suppose further that we have a sequence of random variables

A0, A1, . . . and that we would like to prove a dynamic concentration statement of the form

Ai ≤ Ti + Ei for all 0 ≤ i ≤ m(n) with high probability, (9)

where T0, T1, . . . is the expected trajectory of the sequence of random variables Ai and E0, E1, . . . is

a sequence of error functions. (One is often interested in proving a lower bound on Ai in conjunction

with (9). The argument for proving this is essentially the same as the upper bound argument that

we discuss here.) We often make this statement in the context of a limit that we define in terms of

a continuous time t given by t = i/s where s is the time scaling of the process. The limit of the

expected trajectory is determined by setting Ti = f(t)S(n) where S = S(n) is the order scaling

of the random variable Ai. Given these assumptions we should have

E [Ai+1 −Ai | Fi] = Ti+1 − Ti = [f(t+ 1/s)− f(t)]S ≈ f ′(t) · S
s
.

Thus the trajectory is determined by the expected one-step change in Ai.

We prove (9) by applying facts regarding the probability of large deviations in martingales with

bounded differences. In particular, we consider the sequence

Di = Ai − Ti − Ei.

Note that if we set T0 = A0 (which is often the natural initial condition) then D0 = −E0. If we

can establish that the sequence Di is a supermartingale and E0 is sufficiently large then it should

be unlikely that Di is ever positive, and (9) follows. In order to complete such a proof we show

that the sequence Di is a supermartingale, a fact that is sometimes called the trend hypothesis

(see Wormald [14]). The trend hypothesis will often impose a condition that the sequence of

error functions Ei is growing sufficiently quickly (i.e. the derivative of the limit of error function

is sufficiently large). We then show that the one-step changes in Di are bounded in some way

(this is sometimes called the boundedness hypothesis). This puts us in the position to apply a

martingale inequality. In order to get good bounds from the martingale inequality one generally

needs to make E0 large.

In this section we appeal to the following pair of martingale inequalities (see [3]). For positive

reals b, B, the sequence A0, A1, . . . is said to be (b, B)-bounded if Ai − b ≤ Ai+1 ≤ Ai +B for all

i ≥ 0.

Lemma 8. Suppose b ≤ B/10 and 0 < a < bm. If A0, A1, . . . is a (b, B)-bounded submartingale,

then P [Am ≤ A0 − a] ≤ exp
{
−a2/3bmB

}
.

Lemma 9. Suppose b ≤ B/10 and 0 < a < bm. If A0, A1, . . . is a (b, B)-bounded supermartingale,

then P [Am ≥ A0 + a] ≤ exp
{
−a2/3bmB

}
.
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Our applications of these Lemmas make use of stopping times. Formally speaking, a stopping time

is simply a positive integer-valued random variable τ for which {τ ≤ n} ∈ Fn. In other words, τ is

a stopping time if the event τ ≤ n is determined by the first n steps of the process. We consider

the stopped process (Di∧τ ), where x∧y := min{x, y}, in the place of the sequence D0, D1, . . . . Our

stopping time τ is the first step in the process when any condition on some short list of conditions

fails to hold, where the condition Di ≤ 0 is one of the conditions in the list. Note that, since

the variable (Di∧τ ) does not change once we reach the stopping time τ , we can assume that all

conditions in the list hold when we are proving the trend and boundedness hypotheses. Also note

that if the stopping time τ ′ is simply the minimum of imax and the first step for which Di > 0 then

{Dimax∧τ ′ > 0} contains the event {∃i ≤ imax : Di > 0}.

4.1 Proof of Lemma 7. For each set A ∈
(

[n]
r−1

)
and step i ≥ 0, let OA(i) := {e ∈ O(i) : A ⊆ e},

and QA(i) = |OA(i)|. We define sequences of random variables

Y +
A (i) := q(t) · n−QA(i) + f(t) · n1−ε,

Y −A (i) := q(t) · n−QA(i)− f(t) · n1−ε,

ZA(i) := di(A)− t ·D−1/rn− f(t)q(t)−1 · n1/r−ε,

Finally, we define the stopping time τ to be the minimum of
(
n
r

)
, the first step i where Ti fails, or

where any of Y +
A (i) < 0, Y −A (i) > 0, or ZA(i) > 0 holds for some A ∈

(
[n]
r−1

)
.

To prove Lemma 7, we show that for each A ∈
(

[n]
r−1

)
,

P
[
Y +
A (imax ∧ τ) < 0

]
= o(n−(r−1)), (10)

P
[
Y −A (imax ∧ τ) > 0

]
= o(n−(r−1)), and (11)

P [ZA(imax ∧ τ) > 0] = o(n−(r−1)). (12)

Consider the event τ ≤ imax. This event is the union of the event that Timax fails and the event

that there exists A ∈
(

[n]
r−1

)
such that Y +

A (imax ∧ τ) < 0 or Y −A (imax ∧ τ) > 0 or ZA(imax ∧ τ) > 0.

Since Timax holds with high probability, it follows from (10)–(12) and the union bound that w.h.p.

τ > imax. In particular, ZA(i) ≤ 0 for all (r − 1)-sets A and steps 0 ≤ i ≤ imax. It then follows –

since ζ � min{1/W, ε} implies that we may bound f(tmax) < nε/2, say – that we have

∆r−1(G(imax)) ≤ tmaxD
−1/rn+ f(tmax)n1/r−ε/2 = ζ ·O((n log n)1/r) ≤ ε(n log n)1/r,

for n sufficiently large. (We remark in passing that the bounds on Y ±A (i) given when i < τ are

necessary for our proof of the bounds on ZA(i).)

For the remainder of this argument, fix a set A ∈
(

[n]
r−1

)
. We first prove (10) and (11).

Claim 2. For n sufficiently large, the variables Y +
A (0), . . . , Y +

A (imax∧τ) form an (O(n/s), O(n1− 1
2r ))-

bounded submartingale, and the variables Y −A (0), . . . , Y −A (imax ∧ τ) form an (O(n/s), O(n1− 1
2r ))-

bounded supermartingale.

Proof. We begin by fixing a step 0 ≤ i ≤ imax, and we assume that i < τ . Throughout we write

t = t(i), and note t(i+ 1) = t+ s−1 and that s−1 = D1/r/N = Θ(n1−1/r−r).
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To aid the calculations to follow, we begin by estimating the quantity

Ξ := f(t+ s−1)− f(t).

Since f(t) = exp(Wtr + Wt), f ′(t) and f ′′(t) are products of f(t) with polynomials in t. As

ζ � max{1/W, ε}, tmax is polylogarithmic in n, and n is large, we have the crude bounds f(t) ≤ nε/2
and f ′′(t) ≤ no(1)f ′(t). Thus, by Taylor’s Theorem,∣∣∣∣Ξ− f ′(t)

s

∣∣∣∣ = O

(
maxt∗≤tmax f

′′(t∗)

s2

)
= o

(
f ′(t)

s

)
. (13)

Observe now that we may write

Y ±A (i+ 1)− Y ±A (i) = (q(t+ s−1)− q(t)) · n− (QA(i+ 1)−QA(i))± Ξ · n1−ε.

(Note that this stands for the pair of equations in which each ± is replaced with + or with −,

respectively.) We begin by establishing the boundedness claims: it is routine to verify that c(t) and

c′(t)

are bounded over the reals, implying

|q(t+ s−1)− q(t)− c(t) · s−1| = O(s−2), (14)

and so

0 ≥
(
q(t+ s−1)− q(t)

)
· n ≥ −O

(n
s

)
.

As we have the bound |f ′(t)| = nε/2+o(1) and (13), we have |Ξ| · n1−ε = o(n/s), and the lower

bound in the boundedness claims follows. To establish the upper bounds, it remains to bound

QA(i)−QA(i+ 1). Consider the ‘next’ edge ei+1 ∈ O(i) and observe that

QA(i)−QA(i+ 1) = |
(
{ei+1} ∪ Cei+1(i)

)
∩OA(i)|.

We bound |Cei+1(i) ∩OA(i)| by considering five cases depending on |ei+1 ∩A|:

Case 1: |ei+1 ∩ A| = 0. Let f ∈ OA(i) ∩ Cei+1(i): then f = A ∪ {v} for some vertex v, and since

G(i) + ei+1 + f contains a copy of T (r), v ∈ ei+1 must hold. (Recall that every pair of edges in T (r)

either shares exactly one or r − 1 vertices.) In this case, |Cei+1(i) ∩OA(i)| ≤ |ei+1| = r.

Case 2: |ei+1 ∩ A| = r − 1. In this case, we may write ei+1 = A ∪ {u1}. Now, let f = A ∪ {v} ∈
OA(i)∩Cei+1(i): since f ∩ei+1 = A and f ∈ Cei+1(i), there must exist vertices u2, . . . , ur−1 ∈ Ni(A)

so that {u1, . . . , ur−1, v} ∈ E(i). As then v ∈ Ni({u1, . . . , ur−1}), we may bound the number of

such choices of v (and hence of f) in this case above by ∆r−1(G(i))r−1 ≤ ζr−1(n log n)(r−1)/r. (Note

the bound on the maximum degree follows as ZA(i) ≤ 0 since i < τ .)

Case 3: |ei+1∩A| = 1. Write A = {x1, . . . , xr−1}, where we take ei+1∩A = {x1}. Let f = A∪{v} ∈
Cei+1(i) ∩ OA(i), and suppose v /∈ ei+1 (as there are at most r − 1 such v), so f ∩ ei+1 = {x1}.
Consider a copy of T (r) in G(i)+ei+1 +f using both ei+1 and f as edges: without loss of generality,

we may assume that one of ei+1, f maps to the edge b1 of T (r), the other to the edge a.

11



If ei+1 maps to b1, then the (r − 1)-set ei+1 \ {x1} maps to the common intersection B of

b1, . . . , br. Consequently v ∈ Ni(ei+1 \ {x1}) must hold, and so there are at most ∆r−1(G(i)) such

r-sets f ∈ Cei+1(i) ∩OA(i).

Otherwise, if ei+1 maps to the edge a and f maps to b1, then {x2, . . . , xr−1, v} maps to the

common intersection B. Thus, for each u ∈ ei+1\{x1} we have {u, x2, . . . , xr−1, v} ∈ E(i), implying

v ∈ Ni({u, x2, . . . , xr−1}) and (as ei+1 is fixed), there are again at most ∆r−1(G(i)) such choices of

f . Thus, in this case we have |Cei+1(i) ∩OA(i)| ≤ 2 + 2∆r−1(G(i)) = n1/r+o(1).

Case 4: 1 < |ei+1∩A| = r−2. Let f = A∪{v} ∈ OA(i)∩Cei+1(i). Since |f∩ei+1| ≥ |A∩ei+1| > 1,

|f ∩ ei+1| = r − 1 must hold, implying v ∈ ei+1 and so |OA(i) ∩ Cei+1(i)| ≤ r as in Case 1.

Case 5: 2 ≤ |ei+1 ∩ A| ≤ r − 3. In this case, |Cei+1(i) ∩ OA(i)| = 0, as every f ∈ OA(i) satisfies

1 ≤ |f ∩ ei+1| ≤ r − 2.

From the cases above it follows that QA(i) − QA(i + 1) ≤ n(r−1)/r+o(1), and combining the above

bounds, it follows that the sequences Y ±A (0), . . . , Y ±A (imax ∧ τ) are (O(n/s), O(n1− 1
2r ))-bounded.

We turn now to the sub- and supermartingale claims: all expectation calculations to follow are

implicitly conditioned on the history of the process up to step i, and we recall that we assume

i < τ . For each open r-set f ∈ OA(i), we have f /∈ OA(i + 1) if and only if ei+1 ∈ Cf (i) ∪ {f}.
Thus,

E
[
Y ±A ((i+ 1))− Y ±A (i)

]
= (q(t+ s−1)− q(t)) · n+

∑
f∈OA(i)

|Cf (i)|+ 1

|O(i)|
± Ξ · n1−ε.

To establish the submartingale claim, consider the following chain of inequalities:

∑
f∈OA(i)

|Cf (i)|+ 1

|O(i)|
≥ (q(t)− f(t)n−ε) · n · (c(t)−N−γ) ·D1/r

(q(t) +N−γ) ·N

=

(
1− N−γ + f(t)n−ε

q(t) +N−γ

)
(c(t)−N−γ) · n

s
.

≥
(
1− 2q(t)−1f(t)n−ε

)
(c(t)−N−γ) · n

s

≥
(
c(t)− 2c(t)q(t)−1f(t)n−ε −N−γ

)
· n
s

≥
(
c(t)− (2c(t)q(t)−1 + 1) · f(t)n−ε

)
· n
s
.

The first inequality follows from the bounds given by (2) and (3) on the event Ti and as Y −A (i) ≤ 0,

since i < τ . In the second and fourth inequalities we bounded N−γ < f(t)n−ε, valid as f(t) ≥ 1

and ε� γ. Thus, applying this bound and (14) gives

E
[
Y +
A (i+ 1)− Y +

A (i)
]
≥ Ξ · n1−ε − (2c(t)q(t)−1 + 1)f(t)

n1−ε

s
−O

(
1

s2

)
≥ Ξ · n1−ε − (2c(t)q(t)−1 + 2)f(t)

n1−ε

s
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=
(
(1 + o(1))f ′(t)− (2c(t)q(t)−1 + 2)f(t)

)
· n

1−ε

s

by (13). Since f ′(t) = (Wrtr−1 +W )f(t) and 2c(t)q(t)−1 = 2rtr−1, this final bound is nonnegative

for large n as W is large, and so Y +
A (0), . . . , Y +

A (imax ∧ τ) forms a submartingale.

We similarly bound E [QA(i)−QA(i+ 1)] above to establish the supermartingale claim: as

1 < N−γD1/r for large n, and as Ti holds and Y +
A (i) ≥ 0,

∑
f∈OA(i)

|Cf (i)|+ 1

|O(i)|
≤ (q(t) + f(t)n−ε) · n · (c(t) + 2N−γ) ·D1/r

(q(t)−N−γ) ·N

=

(
1 +

N−γ + f(t)n−ε

q(t)−N−γ

)
(c(t) + 2N−γ) · n

s

≤
(
1 + 4q(t)−1f(t)n−ε

)
(c(t) + 2N−γ) · n

s

≤
(
c(t) + (4c(t)q(t)−1 + 4)f(t)n−ε

)
· n
s
.

In addition to the bound N−γ ≤ f(t)n−ε used above, in the second inequality, we bounded

q(t) − N−γ ≥ q(t)/2, and in the final we bounded 2N−γ(1 + 4q(t)−1f(t)n−ε) ≤ 4f(t)n−ε as

q(t)−1f(t)n−ε ≤ 1 which holds as 2Wζr < ε and n is large.

Thus,

E
[
Y −A (i+ 1)− Y −A (i)

]
≤ −Ξ · n1−ε + (4c(t)q(t)−1 + 4)f(t)

n1−ε

s
+O

(
1

s2

)
≤ −Ξ · n1−ε + (4c(t)q(t)−1 + 5)f(t)

n1−ε

s

=
(
−(1 + o(1))f ′(t) + (4c(t)q(t)−1 + 5)f(t)

)
· n

1−ε

s
,

and again, as W is large, this is strictly negative for n sufficiently large. Thus, the sequence

Y −A (0), . . . , Y −A (imax ∧ τ) forms a supermartingale, completing the proof.

Since QA(0) = n− r + 1, Y +
A (0) = r − 1 + n1−ε and Y −A (0) = r − 1− n1−ε. Applying Lemmas

8 and 9, respectively, we have

P
[
Y +
A (imax ∧ τ) < 0

]
≤ exp

{
−Ω

(
n2−2ε

n
s · ζs log1/rN · n1− 1

2r )

)}
= exp

{
−n

1
2r
−2ε+o(1)

}
< exp

{
−n

1
4r

}
(valid for large n as ε is small), and an identical calculation yields

P
[
Y −A (imax ∧ τ) > 0

]
≤ exp

{
−n

1
4r

}
.

We have established (10) and (11).

It remains to prove (12).
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Claim 3. The variables ZA(0), . . . , ZA(imax ∧ τ) form a (2n/N, 2)-bounded supermartingale.

Proof. We begin by fixing a step 0 ≤ i ≤ imax, and we assume that i < τ . Throughout we write

t = t(i). Let f1(t) = f(t)q(t)−1 = exp((W + 1)tr +Wt), and let Ξ1 := f1(t+ s−1)− f1(t).

By the same reasoning given in Claim 2, we may bound |f1(t)| < nε/2, say, for large n, and

f ′′1 (t) ≤ no(1)f ′1(t), and so∣∣∣∣Ξ1 −
f ′1(t)

s

∣∣∣∣ = O

(
maxt∗<tmax f

′′
1 (t∗)

s2

)
= o

(
f ′1(t)

s

)
. (15)

Next, we observe that

ZA(i+ 1)− ZA(i) = di+1(A)− di(A)− n

N
− Ξ1 · n1/r−ε.

The boundedness claim then follows for n sufficiently large as 0 ≤ dA(i+ 1)− dA(i) ≤ 1 and as

|Ξ1| · n1/r−ε ≤ nε/2+o(1) · n1/r−ε · s−1 < n/N

as s−1 = D1/r/N = Θ(n1−1/r/N).

Turning to the supermartingale condition, observe that di+1(A) = di(A) + 1 if and only if ei+1

lies in the set of open r-sets counted by QA(i). Conditioned on the history of the process up to

step i, it follows that

E [ZA(i+ 1)− ZA(i)] =
QA(i)

|O(i)|
− n

N
− Ξ1 · n1/r−ε

≤ (q(t) + f(t)n−ε) · n
(q(t)−N−γ) ·N

− n

N
− Ξ1 · n1/r−ε

=
N−γ + f(t)n−ε

(q(t)−N−γ)
· n
N
− Ξ1 · n1/r−ε

≤ (N−γ + f(t)n−ε) · 2q(t)−1 · n
N
− Ξ1 · n1/r−ε

= (2q(t)−1N−γ + 2f1(t)n−ε) · n
N
− Ξ1 · n1/r−ε

≤ 4f1(t) · n−ε · n
N
− Ξ1 · n1/r−ε (16)

Note that the first inequality holds as Ti and Y +
A (i) ≥ 0 since i < τ , the second as q(t) − N−γ ≥

q(t)/2 since ζ � γ, and the final as N−γ ≤ f(t) · n−ε, since f(t) ≥ 1 and ε � γ. Noting that for

large n, D ≥ nr−1/rr and so s−1 ≥ n1−1/r/(rN), by (15) we have

Ξ1 · n1/r−ε = (1 + o(1)) · f
′
1(t)

s
· n1/r−ε

≥ (1 + o(1)) · Wf1(t) · n1−1/r

rN
n1/r−ε

>
W

2r
· f1(t) · n−ε · n

N
.

Thus, since we assume W is large, the supermartingale condition follows now from (16).
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Finally, to show (12), we apply Lemma 9 to yield

P [ZA(imax ∧ τ) > 0] ≤ exp

{
−Ω

(
n2/r−2ε

n
N · ζs log1/rN

)}

= exp

{
− n2/r−2ε

n1−(r−1)/r+o(1)

}
= exp

{
−n1/r−2ε−o(1)

}
which suffices as ε is small. This completes the proof of Lemma 7.

4.2 Proof of Lemma 5 We begin by letting

S = S(n) =

(
2`

r

)
− 2

(
`

r

)
,

and we note that S = Θ(kr).

We fix a pair A,B of disjoint `-element subsets of [n], and define the following sequences of

random variables: for each step i ≥ 0, let

X+(i) = q(t) · S −QA,B(i) + f(t) · Sn−ε, and

X−(i) = q(t) · S −QA,B(i)− f(t) · Sn−ε.

We next define the stopping time τ∗ to be the minimum of τA,B and the first step i for which

X+(i) ≤ 0, X−(i) ≥ 0, or the event Ti fails to hold.

Claim 4. The sequence X+(0), . . . , X+(imax ∧ τ∗) forms a (O(kr/s), O(kr−1/n4ε))-bounded sub-

martingale, and the sequence X−(0), . . . , X−(imax ∧ τ∗) forms a (O(kr/s), O(kr−1/n4ε))-bounded

supermartingale.

Proof. We fix a step 0 ≤ i ≤ imax, and we suppose that i < τ∗. Throughout we write t = t(i), and

note t(i+ 1) = t+ s−1 and that s−1 = D1/r/N = Θ(n1−1/r−r).

To aid the calculations to follow, we begin by estimating the quantity Ξ := f(t + s−1) − f(t).

Recall equation (13): ∣∣∣∣Ξ− f ′(t)

s

∣∣∣∣ = O

(
maxt∗≤tmax f

′′(t∗)

s2

)
= o

(
f ′(t)

s

)
.

Observe that we may write

X±(i+ 1)−X±(i) = (q(t+ s−1)− q(t)) · S − (QA,B(i+ 1)−QA,B(i))± Ξ · Sn−ε.

(As above, this stands for the pair of equations in which each ± is replaced with + or with −,

respectively.) We begin by establishing the boundedness claims: by (14) and as S = Θ(kr), we

have

0 ≥
(
q(t+ s−1)− q(t)

)
· S ≥ −O

(
kr

s

)
.
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Next, bounding |f ′(t)| ≤ nε/2+o(1),

|Ξ| · Sn−ε ≤ n−ε/2+o(1) · k
r

s

In order to establish the boundedness part of the claim, it remains to bound the quantity QA,B(i+

1) − QA,B(i). Let OA,B(i) denote the set of r-sets that are open with respect to the pair A,B in

G(i), and let Oτ denote the set of all open r-sets whose selection as ei+1 would result in τA,B = i+1.

Now, if ei+1 ∈ Oτ , then QA,B(i+ 1)−QA,B(i) = 0 by definition, and, otherwise, we have

QA,B(i+ 1)−QA,B(i) = −|OA,B(i) ∩ (Cei+1(i) ∪ {ei+1})|.

It suffices, then, to bound the quantity |Ce(i) ∩ OA,B(i)| for all e ∈ O(i) \ Oτ : fix such an open

r-set e. Now, for any f ∈ Ce(i) ∩ OA,B(i), there is a copy Tr,f of T (r) in the graph G(i) + e + f

using both e and f as edges. Up to isomorphism, there are only three possibilities for the pair (e, f)

in that copy: (e, f) maps to (b1, b2), or to (b1, a), or to (a, b1). We treat these three cases separately.

Case 1: (e, f) maps to (b1, b2). In this case, the r − 1 vertices that map to the set R lie entirely

in e, and f is the union of those r− 1 vertices along with another vertex lying in A ∪B. Thus, we

may bound the total number of such f above by rk.

Case 2: (e, f) maps to (b1, a). Let R′ = e − f , the set of r − 1 vertices shared by all edges bj
in this copy of T (r). Since f maps to a, it follows that f ⊆ Ni(R

′), and as f ∈ OA,B(i), we know

f ⊆ A∪B, f ∩A 6= ∅, and f ∩B 6= ∅. Consequently, Ni(R
′) intersects both A and B: since e /∈ Oτ ,

it follows that |Ni(R
′) ∩ (A ∪B)| ≤ (k/n2ε) must hold.

Thus, by first selecting R′ ⊆ e, which then identifies the sole vertex in e∩ f , and then selecting

the r−1 vertices comprising f − e from Ni(R
′)∩ (A∪B), we can therefore bound the total number

of such open r-sets f above by r(k/n2ε)r−1.

Case 3: (e, f) maps to (a, b1). There exists an (r− 1)-set R′ ⊆ A∪B and a vertex v ∈ e so that

f = R′ ∪ {v} and so that e \ {v} ⊆ Ni(R
′). To bound the number of such f , it suffices to bound

the number of (r − 1)-sets R′ ⊆ A ∪B for which Ni(R
′) contains (r − 1) vertices from e.

To that end, fix a vertex v ∈ e and let Hv denote the (r− 1)-uniform hypergraph on (A∪B) \ e
whose edges are the (r − 1)-subsets X for which Ni(X) ⊇ e \ {v}. We claim that

∆r−2(Hv) < 4r.

Suppose to the contrary that this does not hold: then there exist an (r − 2)-set Y ⊆ (A ∪ B) \ e
and vertices x1, x2, . . . , x4r ∈ (A ∪ B) \ (Y ∪ e) so that for each for each vertex u ∈ e \ {v},
{u} ∪ Y ∪ {xj} ∈ E(i) for 1 ≤ j ≤ 4r. It follows from Lemma 4 that such a configuration does

not appear in G(i). Indeed, as this configuration spans 6r− 3 vertices and has 4r(r− 1) edges, the

probability that such a configuration appears is at most

n6r−3

(
i

N

)4r(r−1)

= n6r−3−4(r−1)2+o(1) = o(1).
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It follows that |Hv| < 4r
(
k
r−2

)
, and thus the total number of such open r-sets f as above is less

than 4r2kr−2.

As ε is small and as k = n1/r+o(1), it follows that for large n we have

|Ce(i) ∩OA,B(i)| ≤ rk + r · (k/n2ε)r−1 + 4r2kr−2 = O(kr−1/n2ε(r−1)),

and as r ≥ 3 we conclude that

0 ≥ QA,B(i+ 1)−QA,B(i) = −O(kr−1/n4ε).

Thus, it follows that the sequences X±(0), . . . , X±(imax ∧ τ∗) are (O(kr/s), O(kr−1/n4ε))-bounded

as claimed.

We now turn to the sub- and supermartingale claims, and we remark that all expectation and

probability calculations to follow are implicitly conditioned on the history of the process up to step i.

We begin by bounding the expected value of QA,B(i+1)−QA,B(i). Recall that we assume i < τA,B
and that Oτ ⊆ O(i) consists of the open r-sets whose selection as ei+1 would yield τA,B = i + 1.

We claim that

|Oτ | ≤ 4n2ε · k (17)

To see this, let

R :=

{
X ∈

(
[n]

r − 1

)
: |Ni(X) ∩ (A ∪B)| ≥ k/(2n2ε)

}
.

Then |R| < 4n2ε, which can be argued as follows. Suppose by way of contradiction that ∃S ⊆ R
with |S| = 4n2ε. Let N =

⋃
Y ∈S(Ni(Y ) ∩ (A ∪ B)). By inclusion-exclusion and the fact that

Lemma 4 implies that the co-degree of any pair of (r − 1)-sets is at most 5r (see (8)), we have

k ≥ 2` = |A ∪B| ≥ |N | ≥ |S| · k/(2n2ε)− |S|25r ≥ 2k − 80rn4ε,

a contradiction as ε is small and k = n1/r+o(1). To deduce (17) it suffices to observe that each open

r-set e ∈ Oτ can be written e = {v} ∪X for some vertex v ∈ A ∪ B and (r − 1)-set X satisfying

|Ni(X) ∩ (A ∪B)| ≥ k/n2ε − 1 (and thus X ∈ R).

Conditioning on the event ei+1 /∈ Oτ then yields

E [QA,B(i+ 1)−QA,B(i)] = −
∑

e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)|

by linearity of expectation. Consequently,

E
[
X±(i+ 1)−X±(i)

]
= (q(t+ s−1)− q(t)) · S +

∑
e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)|

± Ξ · Sn−ε.

To establish the submartingale claim, we note first that as r ≥ 3 and ε � γ � 1/r, from (17)

we have |Oτ | = n1/r+2ε+o(1) < N−γ ·D1/r. Now, as i < τ∗, Ti and X−(i) ≤ 0 hold, we have∑
e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)|

≥
(
q(t)− f(t)

nε

)
· S · (c(t)− 2N−γ)D1/r

(q(t) +N−γ)N
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=

(
1− N−γ + f(t)n−ε

q(t) +N−γ

)
(c(t)− 2N−γ) · S

s

≥
(
1− 2q(t)−1f(t)n−ε

)
(c(t)− 2N−γ) · S

s

≥
(
c(t)− 2c(t)q(t)−1f(t)n−ε − 2N−γ

)
· S
s

≥
(
c(t)− (2c(t)q(t)−1 + 1)f(t)n−ε

)
· S
s
.

Note that these bounds follow for large n since f(t) ≥ 1 and ε � γ imply N−γ ≤ f(t)n−ε/2.

Applying this and (14) gives

E
[
X+(i+ 1)−X+(i)

]
≥ Ξ · Sn−ε − (2c(t)q(t)−1 + 1)f(t)

Sn−ε

s
−O

(
1

s2

)
≥ Ξ · Sn−ε − (2c(t)q(t)−1 + 2)f(t)

Sn−ε

s

=
(
(1 + o(1))f ′(t)− (2c(t)q(t)−1 + 2)f(t)

)
· Sn

−ε

s

by (13). Since f ′(t) = (Wrtr−1 +W )f(t) and 2c(t)q(t)−1 = 2rtr−1, this final bound is nonnegative

for large n as W is large, and so X+(0), . . . , X+(imax ∧ τ) forms a submartingale.

Turning to the supermartingale claim, we take a similar approach and begin by noting as Ti
holds and X+(i) ≥ 0,∑

e∈OA,B(i)

|Ce(i) \Oτ |
|O(i)|

≤
(
q(t) +

f(t)

nε

)
· S · (c(t) +N−γ)D1/r

(q(t)−N−γ)N

=

(
1 +

N−γ + f(t)n−ε

q(t)−N−γ

)
(c(t) +N−γ) · S

s

≤
(
1 + 2q(t)−1f(t)n−ε

)
(c(t) +N−γ) · S

s

≤
(
c(t) + (2c(t)q(t)−1 + 1)f(t)n−ε

)
· S
s
.

The supermartingale condition then follows in essentially the same way as the submartingale con-

dition above.

Now, as X+(0) = Sn−ε, X−(0) = −Sn−ε, S = Θ(kr) and imax = s ·no(1), it follows from Claim

4 and Lemmas 8 and 9 that

P
[
X+(imax ∧ τ∗) ≤ 0

]
≤ exp

{
−Ω

(
S2n−2ε

kr

s ·
kr−1

n4ε · sno(1)

)}
= exp

{
−k · n2ε−o(1)

}
.

Similarly, we have

P
[
X−(imax ∧ τ∗) ≥ 0

]
≤ exp

{
−k · n2ε−o(1)

}
.

Since there are fewer than n2k = exp{2k log n} choices of the pair of sets A and B, Lemma 5 follows

from the union bound.
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