When is an almost monochromatic K_{4} guaranteed?

Alexandr Kostochka *
Dhruv Mubayi ${ }^{\dagger}$

June 13, 2006

Abstract

Suppose that $n>(\log k)^{c k}$, where c is a fixed positive constant. We prove that no matter how the edges of K_{n} are colored with k colors, there is a copy of K_{4} whose edges receive at most two colors. This improves the previous best bound of $k^{c^{\prime} k}$, where c^{\prime} is a fixed positive constant, which follows from results on classical Ramsey numbers.

1 Introduction

Let p, q be positive integers with $2 \leq q \leq\binom{ p}{2}$. A (p, q)-coloring of K_{n} is an edge-coloring such that every copy of K_{p} receives at least q distinct colors on its edges. Let $f(n, p, q)$ denote the minimum number of colors in a (p, q)-coloring of K_{n}. This parameter, introduced in [1] and subsequently investigated by Erdős and Gyárfás [2] is a generalization of the classical Ramsey numbers. Indeed, if $R_{k}(p)$ denotes the minimum n so that every k-edge-coloring of K_{n} results in a monochromatic K_{p}, then determining all $R_{k}(p)$ is equivalent to determining all $f(n, p, 2)$. Many special cases of $f(n, p, q)$ lead to nontrivial problems (see, e.g. [3, 5, 7, 8]). One particular interesting case is $f(n, 4,3)$. In [1] it was observed that an easy application of the probabilistic method yields $f(n, 4,3)=o(n)$. This was subsequently improved in [2] to $f(n, 4,3)=O(\sqrt{n})$ via the Local Lemma. The second author [4] then improved the upper bound further to $e^{O(\sqrt{\log n})}=n^{o(1)}$, and this is the current best known upper bound. The lower bound follows from the well-known fact $R_{k}(4)<k^{O(k)}$, which implies that there is a constant c such that

$$
f(n, 4,3) \geq f(n, 4,2)>\frac{c \log n}{\log \log n}
$$

[^0]Here we give the first improvement of this lower bound.

Theorem 1 Let $a \geq 1$ be fixed. There is a constant c depending on a such that for all $n \geq 2 a$,

$$
f(n, 2 a, a+1)>\frac{c \log n}{\log \log \log n}
$$

Let $R_{k}(p, q)$ be the minimum n so that every k-edge-coloring of K_{n} yields a copy of K_{p} with at most $q-1$ colors. Then $R_{k}(p, q) \leq n$ implies that every k-edge coloring of K_{n} yields a copy of K_{p} with at most $q-1$ colors. Therefore, in order to edge-color K_{n} with every copy of K_{p} receiving at least q colors, we need at least $k+1$ colors. This means that $f(n, p, q)>k$. Our main result is

$$
\begin{equation*}
R_{k}(2 a, a+1) \leq c^{\prime}(\log k)^{c^{\prime} k} \tag{1}
\end{equation*}
$$

where c^{\prime} is a positive constant depending only on a.
Let us argue that Theorem 1 follows from (1). First observe that (1) implies that

$$
f\left(\left\lfloor c^{\prime}(\log k)^{c^{\prime} k}\right\rfloor, 2 a, a+1\right)>k
$$

Now suppose that $a \geq 1$ is fixed and n is sufficiently large. Let k be the largest integer such that $n \geq\left\lfloor c^{\prime}(\log k)^{c^{\prime} k}\right\rfloor$. Then

$$
f(n, 2 a, a+1) \geq f\left(\left\lfloor c^{\prime}(\log k)^{c^{\prime} k}\right\rfloor, 2 a, a+1\right)>k
$$

Note that as $n \rightarrow \infty$, we also have $k \rightarrow \infty$. All asymptotic notation below is taken as both of these parameters approach infinity. It suffices to solve for k in terms of n. By definition of k, we clearly have $n=c^{\prime}(\log k)^{c^{\prime} k+O(1)}$. Taking logs this yields $\log n=\Theta(k \log \log k)$ or

$$
\begin{equation*}
k=\Theta\left(\frac{\log n}{\log \log k}\right) . \tag{2}
\end{equation*}
$$

Taking logs of the previous expresssion yields $\log \log n=\Theta(\log k+\log \log \log k)=\Theta(\log k)$ and taking logs once again gives $\log \log \log n=\Theta(\log \log k)$ or

$$
\log \log k=\Theta(\log \log \log n)
$$

Plugging this into (2) gives us a constant c such that $k>c \log n / \log \log \log n$ and this proves Theorem 1.

2 The setup of the proof

Let $a \geq 1$ be a positive integer throughout the rest of the paper.

Clearly, $f(n, 2,2)=0$ for $n \geq 2$. The idea of our proof is to run induction on something related to a, but not on a itself, since in this case the scale would be too rough. To facilitate the induction, we introduce some definitions.

Definition 2 A k-edge-coloring χ of K_{n} is a $\left(\gamma_{1}, \ldots, \gamma_{k}\right)$-coloring if, for each $i \in[k]$, color i does not appear in any subgraph $K_{2 \gamma_{i}+2}$ whose edges are colored with at most $\gamma_{i}+1$ colors. In particular, if $\gamma_{i}=0$, then color i does not appear in any subgraph K_{2} whose edges are colored with 1 color, that is, does not appear at all.

Note that a k-edge-coloring of K_{N} is a $(2 a, a+1)$-coloring iff it is an $(a-1, \ldots, a-1)$-coloring. Consequently, Equation (1) states that if K_{N} admits an $(a-1, \ldots, a-1)$-coloring with k colors, then $N \leq c^{\prime}(\log k)^{c^{\prime} k}$, where c^{\prime} depends only on a.

Definition 3 For an edge-coloring χ of K_{n} and a color i, the weakness $\gamma_{i}(\chi)$ of i is the minimum p such that color i does not appear in a $K_{2 p+2}$ with at most $p+1$ colors. In particular, $\gamma_{i}(\chi)=0$ iff color i is not present in χ at all. Then $\gamma(\chi)=\sum_{i=1}^{k} \gamma_{i}(\chi)$ is called the weakness of χ.

Note that by definition, each edge-coloring χ of K_{n} is a $\left(\gamma_{1}(\chi), \ldots, \gamma_{k}(\chi)\right)$-coloring. Also by definition, the weakness of any $(a-1, \ldots, a-1)$-coloring with k colors is at most $(a-1) k$. Then (1) will follow from the following fact.

Theorem 4 There is a positive constant c_{1} such that if χ is an edge-coloring of K_{N}, then

$$
N \leq c_{1}(\log \gamma(\chi))^{c_{1} \gamma(\chi)}
$$

In everything that follows, let γ_{0} be sufficiently large so that for $\gamma \geq \gamma_{0}$, we have $\log \log \gamma>1$,

$$
\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{15}>\frac{\log \gamma}{4500 \log \log \gamma}, \quad \text { and } \quad 10^{4}\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{5} \log \log \gamma>\log 2 \gamma
$$

Let

$$
\begin{equation*}
\epsilon=\epsilon_{\gamma}=\frac{1000 \log \log \gamma}{\log \gamma}<\frac{1}{100}, \quad t=t_{\gamma}=\left\lceil\epsilon^{-10}\right\rceil, \quad s=s_{\gamma}=\left\lceil\frac{(t-1)^{1 / 4}}{\sqrt{20}}\right\rceil>\frac{40}{\epsilon} \tag{3}
\end{equation*}
$$

Let $c=R_{\gamma_{0}}\left(2 \gamma_{0}\right)$ and define $g(\gamma)=c(\log \gamma)^{1000 \gamma}=c \gamma^{\epsilon \gamma}$.
We will prove Theorem 4 by showing the following:

$$
\begin{equation*}
\text { Suppose that } \chi \text { is a }\left(\gamma_{1}, \ldots, \gamma_{k}\right) \text {-coloring of } K_{N} \text { and } \gamma=\sum_{i} \gamma_{i} \text {. Then } N<g(\gamma) \tag{*}
\end{equation*}
$$

We will prove $(*)$ by induction on γ and k. If $0 \leq \gamma \leq \gamma_{0}$, then certainly $N<c \leq g(\gamma)$, so we may assume that $\gamma>\gamma_{0}$. If some $\gamma_{i}=0$, then color i cannot appear at all, so we apply induction
on k since the bound does not depend on k. Thus, we may assume that each γ_{i} is positive; in particular, $k \leq \gamma$. We will also assume that $N \geq g(\gamma)=c(\log \gamma)^{1000 \gamma}=c \gamma^{\epsilon \gamma}$ and proceed to get a contradiction.

For a vertex x in a colored K_{n} and a color i, let $d_{i}(x)$ denote the number of edges of color i incident to x.

Claim 5 For $\gamma>\gamma_{0}$ and ϵ, t, s defined as above, we have $2 t^{2 s}<\gamma^{0.1 s \epsilon-2}$.
Proof. Since $2<t^{s}$ and $s>400 / \epsilon$, the result follows from $t^{3 s}<\gamma^{s \epsilon / 20}$, which is equivalent to $60 \log t<\epsilon \log \gamma$. Since $t<\epsilon^{-11}$, we have

$$
\frac{60 \log t}{\epsilon}<\frac{660 \log \epsilon^{-1}}{\epsilon}<\frac{660 \log \gamma}{1000 \log \log \gamma} \log \left[\frac{\log \gamma}{1000 \log \log \gamma}\right]<\frac{\log \gamma}{\log \log \gamma} \log \log \gamma=\log \gamma
$$

In the next section we prove the technical statement that every dense bipartite graph $F\left(V_{1}, V_{2} ; E\right)$ contains a 'large' subset M of V_{1} in which every t-element subset has 'many' common neighbors in V_{2}. In Section 4 we prove the main result.

3 A Probabilistic Lemma

One of our main tools is the following lemma, essentially Lemma 1 in [6]. The proof uses ideas of Sudakov [9]. By $N(A)$ we denote the set of common neighbors of all vertices in A.

Lemma 6 Let positive integers m, n, h, d and reals α, β be such that

$$
\begin{equation*}
m^{d / h}<\beta . \tag{4}
\end{equation*}
$$

Let $F=\left(V_{1}, V_{2} ; E\right)$ be a bipartite graph with $\left|V_{1}\right|=m,\left|V_{2}\right|=n$ such that

$$
\operatorname{deg}_{F}(v) \geq n / \alpha \quad \text { for each } v \in V_{1} .
$$

Then there is a subset $V_{1}^{\prime \prime}$ of V_{1} with $\left|V_{1}^{\prime \prime}\right|>m / \alpha^{h}-1$ such that every d-tuple D of vertices in $V_{1}^{\prime \prime}$ has at least n / β common neighbors.

Proof. Let x_{1}, \ldots, x_{h} be a sequence of h not necessarily distinct vertices of V_{2}, which we choose uniformly and independently at random and denote $S=\left\{x_{1}, \ldots, x_{h}\right\}$. Denote by V_{1}^{\prime} the set $N(S)$ of common neighbors of vertices in S. Note that the size of V_{1}^{\prime} is a random variable and that $S \subseteq N(v)$ for every $v \in V_{1}^{\prime}$. Then, using (4), we can estimate the expected size of V_{1}^{\prime} as follows

$$
\begin{equation*}
\mathbf{E}\left(\left|V_{1}^{\prime}\right|\right)=\sum_{v \in V_{1}} \operatorname{Pr}\left(v \in V_{1}^{\prime}\right)=\sum_{v \in V_{1}}\left(\frac{|N(v)|}{n}\right)^{h} \geq m \alpha^{-h} . \tag{5}
\end{equation*}
$$

On the other hand, by definition, the probability that a given set of vertices $W \subset V_{1}$ is contained in V_{1}^{\prime} equals $(|N(W)| / n)^{h}$. Denote by Z the number of subsets W of V_{1}^{\prime} of size d with $|N(W)|<n / \beta$. Then by (4) the expected value of Z is at most

$$
\begin{equation*}
\mathbf{E}(Z)=\sum_{W \subseteq V_{1}:|W|=d,|N(W)|<n / \beta} \operatorname{Pr}\left(W \subset V_{1}^{\prime}\right) \leq\binom{ m}{d}\left(\frac{1}{\beta}\right)^{h} \leq m^{d}\left(\frac{1}{\beta}\right)^{h}<1 \tag{6}
\end{equation*}
$$

Hence, the expectation of $\left|V_{1}^{\prime}\right|-Z$ is greater than $m \alpha^{-h}-1$ and thus, there is a choice S_{0} of S such that the corresponding value of $\left|V_{1}^{\prime}\left(S_{0}\right)\right|-Z\left(S_{0}\right)$ is greater than $m \alpha^{-h}-1$. For every d-tuple D of vertices of $V_{1}^{\prime}\left(S_{0}\right)$, delete a vertex $v_{D} \in D$ from $V_{1}^{\prime}\left(S_{0}\right)$. The resulting set $V_{1}^{\prime \prime}$ satisfies the lemma.

4 Proof of the Theorem

Call a t-set of vertices rainbow if its edges are colored with at least $10 t^{3 / 2}$ colors.

Claim 7 Suppose that $n \geq \gamma>\gamma_{0}$, the edges of K_{n} are colored (with any number of colors) and $d_{i}(x) \leq 2 n \gamma^{-\epsilon / 10}$ for each $x \in V\left(K_{n}\right)$ and each color i. Then the number of t-sets that are not rainbow is at most $\binom{n}{t} / \gamma$.

Proof. First, let us estimate $\nu(i, t, n)$ - the number of t-sets in K_{n} in which there is a vertex incident with at least s edges of color i in this t-set. We can first choose the vertex, then choose s incident edges of color i and include the other ends of these edges, and then add $n-s-1$ other vertices. This gives

$$
\nu(i, t, n) \leq \sum_{x \in V\left(K_{n}\right)}\binom{d_{i}(x)}{s}\binom{n-1-s}{t-1-s} \leq n\binom{\frac{2 n}{\gamma^{\epsilon / 10}}}{s}\binom{n-1-s}{t-1-s} \leq\binom{ n}{t} \gamma^{-s \epsilon / 10} t^{2 s}
$$

Similarly, let $\psi(i, t, n)$ be the number of t-sets in K_{n} in which there is a matching of color i of size at least s. Let e_{i} be the number of edges of color i. Since

$$
e_{i} \leq \frac{n}{2} \max _{x \in V\left(K_{n}\right)} d_{i}(x) \leq n^{2} \gamma^{-\epsilon / 10}
$$

we have

$$
\psi(i, t, n) \leq\binom{ e_{i}}{s}\binom{n-2 s}{t-2 s} \leq\binom{\frac{n^{2}}{\gamma^{\epsilon / 10}}}{s}\binom{n-2 s}{t-2 s} \leq\binom{ n}{t} t^{2 s} \gamma^{-s \epsilon / 10}
$$

Now Claim 5 implies that

$$
\nu(i, t, n)+\psi(i, t, n) \leq 2\binom{n}{t} t^{2 s} \gamma^{-s \epsilon / 10}<\frac{1}{\gamma^{2}}\binom{n}{t}
$$

Suppose that a t-set T contains more than s^{2} edges of color i and let G_{i} be the graph of these edges. Either G_{i} has a vertex incident with at least s edges, or Vizing's Theorem implies that G_{i} has a proper edge-coloring with at most s colors. In the latter case, G_{i} has a matching of size at least $s^{2} / s=s$. We have already shown that the number of t-sets that contain a monochromatic matching of size s or a vertex with s edges of the same color is at most $\binom{n}{t} / \gamma^{2}$. Consequently, the number of t-sets that contain more than s^{2} edges of some color is at most

$$
k\binom{n}{t} / \gamma^{2} \leq\binom{ n}{t} / \gamma
$$

Each t-set not included above has at most s^{2} edges in each color and therefore at least $\binom{t}{2} / s^{2}$ colors. By the choice of s, this is at least $10 t^{3 / 2}$. Hence the number of rainbow t-sets is at least $(1-1 / \gamma)\binom{n}{t}$.

Claim 8 Let $u \in V\left(K_{N}\right)$ and $S=S(u)=\left\{j \in[k]: d_{j}(u) \leq N / \gamma^{1+\epsilon / 2}\right\}$. Then for every $i \in[k]-S$ and $j \in[k]$, the number of vertices $x \in N_{i}(u)$ for which

$$
\begin{equation*}
\left|N_{j}(x) \cap N_{i}(u)\right| \geq 2 d_{i}(u) / \gamma^{\epsilon / 10} \tag{7}
\end{equation*}
$$

is at most $\gamma^{\epsilon \gamma-3}$.

Proof. Suppose the contrary. Then there are colors $i \in[k]-S(u)$ and $j \in[k]$ such that $N_{i}(u)$ contains a set M of $\left\lceil\gamma^{\epsilon \gamma-3}\right\rceil$ vertices x such that (7) holds. Consider the bipartite graph $F\left(V_{1}, V_{2} ; E\right)$ with partite sets $V_{1}=M$ and $V_{2}=N_{i}(u)-M$ whose edges are all edges of color j in our K_{N} connecting V_{1} with V_{2}. By (7) and since $|M|=\left\lceil\gamma^{\epsilon \gamma-3}\right\rceil<\left\lceil N / \gamma^{3}\right\rceil<d_{i}(u) / \gamma^{\epsilon / 10}$, we have for every $v \in V_{1}$,

$$
\operatorname{deg}_{F}(v)>\frac{2 d_{i}(u)}{\gamma^{\epsilon / 10}}-|M|>\frac{d_{i}(u)}{\gamma^{\epsilon / 10}}>\frac{\left|V_{2}\right|}{\gamma^{\epsilon / 10}}
$$

Observe that graph F satisfies the conditions of Lemma 6 with

$$
m=|M|, \quad n=\left|V_{2}\right|, \quad h=\gamma / \sqrt{t}, \quad d=t, \quad \alpha=\gamma^{\epsilon / 10}, \quad \beta=2 m^{t / h}
$$

Hence, there is a subset M^{\prime} of V_{1} with

$$
\begin{equation*}
\left|M^{\prime}\right|>m / \alpha^{h}-1 \geq \gamma^{\epsilon \gamma-3} \alpha^{-h}-1>\gamma^{\epsilon \gamma-3} \gamma^{-(\gamma / \sqrt{t}) \epsilon / 10}-1>\gamma^{0.9 \epsilon \gamma} \tag{8}
\end{equation*}
$$

such that every d-tuple D of vertices in M^{\prime} has at least n / β common neighbors.
We will construct a sequence $M_{0} \subset M_{1} \subset \cdots$ of subsets of M^{\prime} as follows. Let $M_{0}=M^{\prime}$. Suppose that $M_{0}, M_{1}, \ldots, M_{l}$ are constructed. If there is a vertex $x_{l+1} \in M_{l}$ and a color j_{l+1} such that $\left|N_{j_{l+1}}\left(x_{l+1}\right) \cap M_{l}\right| \geq\left|M_{l}\right| \gamma^{-\epsilon / 10}$, then we let $M_{l+1}=N_{j_{l+1}}\left(x_{l+1}\right) \cap M_{l}$, otherwise we stop. Suppose that we stop at Step q. Each color i appears at most $2 \gamma_{i}+1$ times in $\left\{j_{1}, \ldots, j_{q}\right\}$ since otherwise we
have a monochromatic $K_{2 \gamma_{i}+2}$ which is forbidden. Consequently, $q \leq \sum_{i}\left(2 \gamma_{i}+1\right)=2 \gamma+k \leq 3 \gamma$. From this and (8),

$$
\left|M_{q}\right|>\left|M_{0}\right|\left(\gamma^{-\epsilon / 10}\right)^{3 \gamma}=\left|M_{0}\right| \gamma^{-3 \gamma \epsilon / 10}>\gamma^{0.9 \epsilon \gamma} \gamma^{-3 \gamma \epsilon / 10}=\gamma^{0.6 \gamma \epsilon}>\gamma
$$

Hence, by Claim 7, M_{q} contains a rainbow t-tuple D (in fact it contains many). Let $N_{F}(D)=U$. By Lemma $6,|U| \geq n / \beta$. Now suppose ℓ is a color that appears in D. Then the weakness of ℓ within U is strictly smaller than γ_{ℓ}, since if ℓ appears in a $K_{2 p}$ within U that receives at most p colors, then this copy together with an edge of color ℓ from D yields a $K_{2(p+1)}$ with at most $p+1$ colors (the only new color is possibly j). Therefore, the weakness of χ when restricted to U is at most $\gamma^{\prime}=\gamma-10 t^{3 / 2}$. Hence by the induction hypothesis, $|U|<g\left(\gamma^{\prime}\right)=c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}$. Since $|U| \geq n / \beta$,

$$
n \leq \beta c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}
$$

On the other hand, since $|M|<d_{i}(u) / 2$,

$$
n=\left|V_{2}\right|=d_{i}(u)-|M|>\frac{d_{i}(u)}{2}>\frac{N}{2 \gamma^{1+\epsilon / 2}} .
$$

This gives

$$
N<2 \gamma^{1+\epsilon / 2}\left(2 m^{t / h}\right) c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}=4 \gamma^{1+\epsilon / 2} m^{t \sqrt{t} / \gamma} c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}<\gamma^{2+\epsilon t^{3 / 2}} c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}
$$

where the last inequality holds because $m=|M|<\gamma^{\epsilon \gamma}$. As $N \geq g(\gamma)=c(\log \gamma)^{1000 \gamma}$, we get

$$
(\log \gamma)^{1000 \gamma}<\gamma^{2+\epsilon t^{3 / 2}}\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}<\gamma^{2+\epsilon t^{3 / 2}}(\log \gamma)^{1000 \gamma^{\prime}}
$$

Taking logs, this reduces to

$$
1000 \gamma \log \log \gamma<\left(2+\epsilon t^{3 / 2}\right) \log \gamma+1000 \gamma^{\prime} \log \log \gamma
$$

Consequently,

$$
(1000 \log \log \gamma) 10 t^{3 / 2}<\left(2+\epsilon t^{3 / 2}\right) \log \gamma=2 \log \gamma+1000 t^{3 / 2} \log \log \gamma
$$

Simplifying, we obtain $9000 t^{3 / 2} \log \log \gamma<2 \log \gamma$. Finally, this yields

$$
\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{15}=\epsilon^{-15} \leq t^{3 / 2}<\frac{\log \gamma}{4500 \log \log \gamma}
$$

which contradicts our choice of γ.

Claim 9 For every $u \in V\left(K_{N}\right)$, the number of rainbow t-sets on $V\left(K_{N}\right)-\{u\}$ all of whose vertices are connected with u by edges of the same color is at least $0.3 \sum_{i=1}^{k}\binom{d_{i}(u)}{t}$.

Proof. Fix some $u \in V\left(K_{N}\right)$. Let $S=\left\{i \in[k]: d_{i}(u) \leq N / \gamma^{1+\epsilon / 2}\right\}$. Then

$$
\sum_{i \in S}\binom{d_{i}(u)}{t} \leq k\binom{\left\lfloor\frac{N}{\gamma^{1+\epsilon / 2}}\right\rfloor}{ t} \leq k\binom{\left\lfloor\frac{N}{k}\right\rfloor}{ t} \gamma^{-\epsilon t / 2} \leq 2 \gamma^{-\epsilon t / 2} \sum_{i=1}^{k}\binom{d_{i}(u)}{t}
$$

We put the factor 2 since $d_{1}(u)+\ldots+d_{k}(u)=N-1$ and not N. Since $t=\left\lceil\epsilon^{-10}\right\rceil$, we have $t \epsilon>20$ and hence

$$
\begin{equation*}
\sum_{i \in S}\binom{d_{i}(u)}{t} \leq \gamma^{-10} \sum_{i=1}^{k}\binom{d_{i}(u)}{t} \tag{9}
\end{equation*}
$$

Now, let $i \notin S$. Let M be the set of vertices $x \in N_{i}(u)$ such that for some color j (7) holds. Let $\bar{M}=N_{i}(u)-M$. By Claim 8,

$$
|M|<\gamma^{\epsilon \gamma-2}<\frac{N}{\gamma^{2}}<\frac{\left|N_{i}(u)\right|}{t}
$$

Hence for the subgraph F of our K_{N} on \bar{M}, the conditions of Claim 7 are satisfied since $|\bar{M}|>$ $(1-1 / t) d_{i}(u)>0.9 d_{i}(u)>\gamma$. Thus by Claim 7, at least $(1-1 / \gamma)\binom{|\overline{M \mid}|}{t} t$-sets in \bar{M} are rainbow. Now

$$
\frac{\gamma-1}{\gamma}\binom{|\bar{M}|}{t} \geq \frac{\gamma-1}{\gamma}\binom{d_{i}(u)(1-1 / t)}{t}
$$

For large γ, the last expression is at least

$$
0.9\left(\frac{t-1}{t}\right)^{t}\binom{d_{i}(u)}{t} \geq \frac{1}{3}\binom{d_{i}(u)}{t}
$$

Combining this with (9), we finish the proof.

By Claim 9, the total number of $(t+1)$-sets $\left\{u_{0}, u_{1}, \ldots, u_{t}\right\}$ of vertices of $V\left(K_{N}\right)$ such that the t-set $\left\{u_{1}, \ldots, u_{t}\right\}$ is rainbow and all edges from u_{0} to u_{1}, \ldots, u_{t} are of the same color is at least

$$
0.3 \sum_{u \in V\left(K_{N}\right)} \sum_{i=1}^{k}\binom{d_{i}(u)}{t} \geq 0.3 N \cdot k\binom{(N-1) / k}{t} \geq N \cdot(2 k)^{1-t}\binom{N}{t}
$$

It follows that some rainbow t-set $\left\{u_{1}, \ldots, u_{t}\right\}$ is contained in at least $N \cdot(2 k)^{1-t}$ such $(t+1)$-sets. Let U be the set of all vertices u_{0} in these $(t+1)$-sets containing our chosen $\left\{u_{1}, \ldots, u_{t}\right\}$. Then, for some $1 \leq i \leq k$ the size of the subset U_{i} of U that is connected with each of u_{1}, \ldots, u_{t} by an edge of color i is at least $2 N \cdot(2 k)^{-t}$. Since $\left\{u_{1}, \ldots, u_{t}\right\}$ is rainbow, it contains edges of at least $10 t^{3 / 2}$ colors. For every color ℓ that appears within $\left\{u_{1}, \ldots, u_{t}\right\}$, the weakness of ℓ when restricted
to U_{i} is at most $\gamma_{\ell}-1$. Hence by the induction hypothesis, $\left|U_{i}\right| \leq g\left(\gamma^{\prime}\right)=c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}$, where $\gamma^{\prime}=\gamma-10 t^{3 / 2}$. Since $\left|U_{i}\right| \geq 2 N /(2 k)^{t}$ and $N \geq g(\gamma)$, we obtain

$$
c(\log \gamma)^{1000 \gamma} \leq N<(2 k)^{t} c\left(\log \gamma^{\prime}\right)^{1000 \gamma^{\prime}}<(2 k)^{t} c(\log \gamma)^{1000 \gamma^{\prime}}
$$

Dividing by c and taking logs,

$$
1000 \gamma \log \log \gamma<t \log 2 \gamma+1000 \gamma^{\prime} \log \log \gamma .
$$

Consequently,

$$
(1000 \log \log \gamma) 10 t^{3 / 2}<t \log 2 \gamma
$$

Plugging in the values of t and ϵ, we obtain

$$
10^{4}\left(\frac{\log \gamma}{1000 \log \log \gamma}\right)^{5} \log \log \gamma=10^{4} \epsilon^{-5} \log \log \gamma<10^{4} \sqrt{t} \log \log \gamma<\log 2 \gamma
$$

This contradicts our choice of γ and completes the proof.

References

[1] P. Erdős, Solved and unsolved problems in combinatorics and combinatorial number theory, Congressus Numerantium 32 (1981), 49-62.
[2] P. Erdős and A. Gyárfás, A variant of the classical Ramsey problem, Combinatorica 17 (1997), 459-467.
[3] D. Eichhorn, D. Mubayi, Edge-Coloring Cliques with Many Colors on Subcliques, Combinatorica 20 (3) (2000), 441-444.
[4] D. Mubayi, Edge-Coloring Cliques with Three Colors on all 4-Cliques, Combinatorica 18 (2) (1998), 293-296.
[5] D. Mubayi, An explicit construction for a Ramsey problem, Combinatorica 24 (2) (2004), 313324.
[6] A. Kostochka and V. Rödl, On graphs with small Ramsey numbers, J. Graph Theory $\mathbf{3 7}$ (2001), 198-204.
[7] G Sárkőzy and S. Selkow, On edge colorings with at least q colors in every subset of p vertices, Electronic J. Combin 8 (2001) R9.
[8] G. Sárközy and S. Selkow, An application of the regularity lemma in generalized Ramsey theory, J. Graph Theory 44 (2003), no. 1, 39-49
[9] B. Sudakov, Few remarks on Ramsey-Turán-type problems, J. Combin. Theory, Ser. B $8 \mathbf{8}$ (2003), 99-106.

[^0]: *Department of Mathematics, University of Illinois, Urbana, and Institute of Mathematics, Novosibirsk, Russia; research supported in part by the National Science Foundation under grant DMS-0400498; email: kostochk@math.uiuc.edu.
 ${ }^{\dagger}$ Department of Mathematics, Statistics, and Computer Science, University of Illinois, 851 S. Morgan Street, Chicago, IL 60607-7045; research supported in part by the National Science Foundation under grants DMS-0400812, DMS-0653946 and an Alfred P. Sloan Research Fellowship; email: mubayi@math.uic.edu

