Constructions of Non-Principal Families in Extremal Hypergraph Theory

Dhruv Mubayi*

Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago, IL 60607

> Oleg Pikhurko Department of Mathematical Sciences Carnegie Mellon University Pittsburgh, PA 15213-3890 Web: http://www.math.cmu.edu/~pikhurko

> > January 11, 2006

For Miklós Simonovits on his 60th birthday

Abstract

A family \mathcal{F} of k-graphs is called *non-principal* if its Turán density is strictly smaller than that of each individual member. For each $k \geq 3$ we find two (explicit) k-graphs F and G such that $\{F, G\}$ is

^{*}This author is partially supported by NSF grant DMS-0400812.

non-principal. Our proofs use stability results for hypergraphs. This completely settles the question posed by the first author and Rödl [18].

Also, we observe that the demonstrated non-principality phenomenon holds also with respect to the Ramsey-Turán density as well.

1 Introduction

In this paper, we prove the non-principality phenomenon for the classical extremal problems for k-uniform hypergraphs. The main motivation is to study the qualitative difference between the cases k = 2, and $k \ge 3$, and our results for the Turán problem exhibit this difference. We also study this question in the context of Ramsey-Turán theory, introduced by Erdős and Sós. Although we prove the non-principality phenomenon for Ramsey-Turán problems when $k \ge 3$, the behavior for k = 2 remains open. This is one of the few cases where an extremal problem for hypergraphs can be solved but not for graphs.

Given a family \mathcal{F} of k-uniform hypergraphs (k-graphs for short), let

$$\exp(n,\mathcal{F}) := \max\{ |G| : v(G) = n, \ \mathcal{F} \not\subset G \}$$

be the maximum size of a k-graph G on n vertices which is \mathcal{F} -free (that is, for every $F \in \mathcal{F}$ we have $F \not\subset G$). It was observed by Katona, Nemetz, and Simonovits [13] that the ratio $\exp(n, \mathcal{F})/\binom{n}{k}$ is non-increasing with n. In particular, the limit

$$\pi(\mathcal{F}) := \lim_{n \to \infty} \frac{\operatorname{ex}(n, F)}{\binom{n}{k}}$$

exists; we call $\pi(\mathcal{F})$ the *Turán density* of \mathcal{F} . When $\mathcal{F} = \{F\}$ consists of a single forbidden k-graph, we write ex(n, F) and $\pi(F)$ for $ex(n, \{F\})$ and $\pi(\{F\})$.

The first author and Rödl [18] conjectured that there is a family \mathcal{F} of 3-graphs such that

$$\pi(\mathcal{F}) < \min\{\pi(F) : F \in \mathcal{F}\},\tag{1}$$

and commented that the result should even hold for a family \mathcal{F} of size two. Balogh [1] proved the conjecture, calling this phenomenon the *nonprincipality* of the Turán function. This is in sharp contrast with the case of graphs (k = 2) where the Erdős-Stone-Simonovits Theorem [7, 4] applies, giving that

$$\pi(\mathcal{F}) = \min\left\{1 - \frac{1}{\chi(F) - 1} : F \in \mathcal{F}\right\} = \min\left\{\pi(F) : F \in \mathcal{F}\right\}.$$

Unfortunately, the family in [1] has many members, many more than two. In Section 2 we present a new approach which shows how the socalled stability results lead to families \mathcal{F} satisfying (1) and consisting of two k-graphs only. Combined with the authors' recent results [16, 19] this approach allows us to prove that for every $k \geq 3$, there is a non-principal k-graph family \mathcal{F} with $|\mathcal{F}| = 2$, thus completely answering the question in [18] (see also Balogh [1, p. 177]).

In Section 3 we show how to extend the ideas of Balogh [1] to arbitrary k-graphs, $k \geq 3$. Although this seems to give non-principal families having many elements (a result weaker than that in Section 2), this method is very simple and self-contained. So we include it too.

Many of the (conjectured) extremal examples for (hyper)graph Turán problems have large independent sets. Motivated by this observation, Erdős and Sós [5] restricted the underlying k-graphs in this problem, by requiring that they have no large independent sets. This new class of problems has become known as the Ramsey-Turán problems. More precisely, for $0 < \delta \leq 1$,

$$\exp(n,\mathcal{F},\delta) = \max\left\{|G|: G \subset \binom{[n]}{k} \text{ s.t. } G \text{ is } \mathcal{F}\text{-free and } \alpha(G) < \delta n\right\},\$$

or zero if no such hypergraph exists. The Ramsey-Turán density $\rho(\mathcal{F})$ is defined as

$$\sup_{\delta(n)} \left\{ \limsup_{n \to \infty} \frac{\exp(n, \mathcal{F}, \delta(n))}{\binom{n}{k}} : \delta(n) \to 0 \text{ as } n \to \infty \right\}$$

Very little is known about the parameter ρ for k-graphs. Indeed, computing $\rho(\mathcal{F})$ seems even more difficult than computing $\pi(\mathcal{F})$. For example, it is unknown whether $\rho(K_{2,2,2})$ is 0, where $K_{2,2,2}$ is the complete 3-partite graph with two vertices in each part.

Based on the complexity of determining ρ , one would suspect that ρ is also non-principal in the sense of this paper. Indeed, this is the case. Let \mathcal{F} be any k-graph family satisfying (1). Let $\mathcal{F}' = \{F(2) : F \in \mathcal{F}\}$ be obtained from \mathcal{F} by blowing-up each member with factor 2 (that is, each vertex is cloned once). Erdős and Sós [6] proved that if for any edge $D \in F$ there is another edge $D' \in F$ with $|D \cap D'| \geq 2$, then $\rho(F) = \pi(F)$. This result extends easily to families of k-graphs, yielding that $\rho(\mathcal{F}') = \pi(\mathcal{F}')$ and $\rho(F) = \pi(F)$ for any $F \in \mathcal{F}'$. By the supersaturation result of Erdős and Simonovits [2], blow-ups preserve the Turán density: $\pi(\mathcal{F}) = \pi(\mathcal{F}')$. Hence, \mathcal{F}' is non-principal with respect to both the Turán and Ramsey-Turán densities.

Curiously, the situation with graphs remains open.

Problem 1 Do there exist graphs G_1, G_2 for which

 $\rho(\{G_1, G_2\}) < \min\{\rho(G_1), \rho(G_2)\}?$

What about if we require $\rho(\{G_1, G_2\}) > 0$ as well?

2 Non-Principal Families of Size 2

We need some preliminary definitions before we can start proving the claimed results.

To obtain the *cone* cn(F) of a k-graph F, enlarge each edge of F by a new common vertex x:

$$cn(F) := \{\{x\} \cup D : D \in F\}.$$

Let $\operatorname{cn}^{(i)}(F)$ be obtained from F by iterating the cone-operation i times. Define $\operatorname{cn}(\mathcal{F}) := {\operatorname{cn}(F) : F \in \mathcal{F}}$. Let K_m^k be the complete k-graph on m vertices. We call two order-*n* k-graphs F and $G \varepsilon$ -close if there is a bijection $f: V(F) \to V(G)$ between their vertex sets such that the number of k-subsets $D \subset V(F)$ for which $D \in F \not\Leftrightarrow f(D) \in G$ is at most $\varepsilon {n \choose k}$. In other words, we can make F isomorphic to G by adding and removing at most $\varepsilon {n \choose k}$ edges.

A k-graph G is F-extremal if it is a maximum F-free k-graph of order v(G) (that is, $|G| = \exp(v(G), F)$). Let us call a k-graph F stable if for any $\delta > 0$ there are $\varepsilon > 0$ and n_0 such that for $n \ge n_0$ any F-free k-graph G of order n with at least $(\pi(F) - \varepsilon) \binom{n}{k}$ edges is δ -close to an F-extremal k-graph. Erdős [3] and Simonovits [20] independently proved that every 2-graph is stable.

The following lemma gives us a new approach to generating non-principal families.

Lemma 2 Let F be a stable k-graph. Suppose that we can find a k-graph H of order h and a constant c = c(H) such that:

- 1. $\pi(H) \ge \pi(F);$
- 2. Any F-extremal k-graph of order $n \ge n_0$ contains at least cn^h copies of H.

Then

$$\pi(\{F, H\}) < \min(\pi(F), \pi(H)).$$
 (2)

Proof. Let $\varepsilon > 0$ and n_0 be the constants satisfying the stability assumption for F with $\delta = c$.

Suppose on the contrary that $\pi(\{F, H\}) \ge \pi(F)$. Then there is a k-graph G_n on $n \ge n_0$ vertices such that

- 1. G_n is $\{F, H\}$ -free;
- 2. $|G_n| > (\pi(F) \varepsilon) \binom{n}{k}$.

By the definition of ε and n_0 , this k-graph G_n is c-close to an F-extremal k-graph G'_n on n vertices. By hypothesis, G'_n contains at least cn^h copies of H. Each edge of G'_n lies in at most $k! n^{h-k}$ copies of H. Consequently, in order to delete all copies of H from G'_n , we need to delete at least $\frac{cn^h}{k! n^{h-k}} > c \binom{n}{k}$ edges from G'_n . This contradicts the fact that G_n is H-free and is c-close to G'_n .

Theorem 3 For every $k \ge 3$ there are k-graphs F and H satisfying (2).

Proof. Let the k-graph H_l^k be obtained from the complete 2-graph K_l^2 by enlarging each edge by a set of k-2 new vertices. Let $T_k(n,l)$, $k \leq l$, be the k-graph obtained by partitioning $[n] = V_1 \cup \ldots \cup V_l$ into l almost equal parts and taking those k-sets which intersect every part in at most one vertex.

The first author [16] proved that for arbitrary $l \ge k \ge 3$ we have

$$\pi(H_{l+1}^k) = \frac{l(l-1)\dots(l-k+1)}{l^k}.$$
(3)

The second author [19], building upon the results in [16], proved that H_{l+1}^k is stable with $T_k(n, l)$ being the unique maximum H_{l+1}^k -free graph of order n for $l \ge k \ge 3$ and $n \ge n_0(k, l)$.

Observe that $\pi(K_{k+1}^k) \geq \frac{3}{8} \geq \pi(H_{k+2}^k)$ for all $k \geq 3$. The lower bound on $\pi(K_{k+1}^k)$ follows from the following construction. Partition $[n] = A \cup B$ into two almost equal parts. Split the family of all k-sets X intersecting both A and B into two k-graphs G_0 and G_1 according to the parity of $|X \cap A|$. Both G_0 and G_1 are K_{k+1}^k -free: for any (k+1)-set $Y \subset [n]$ intersecting A in $s \in [1, k]$ elements, the k-sets $Y \setminus \{a\}$ and $Y \setminus \{b\}$, where $a \in Y \cap A$ and $b \in Y \cap B$, have the intersections with A of sizes s-1 and s respectively, that is, of different parities. Now, $|G_0| + |G_1| = (1 - 2^{-k+1} + o(1)) \binom{n}{k}$, so one of these has size at least $\frac{1}{2}(1 - 2^{-k+1} + o(1)) \binom{n}{k} \geq (\frac{3}{8} + o(1)) \binom{n}{k}$. Consequently, $\pi(K_{k+1}^k) \geq \frac{3}{8}$. On the other hand, the Turán density $\pi(H_{k+2}^k) = \frac{(k+1)!}{(k+1)^k}$ is a decreasing function of k which equals $\frac{3}{8}$ for k = 3.

Finally, note that $T_k(n, k + 1)$ contains at least $(\lfloor \frac{n}{k+1} \rfloor)^{k+1}$ copies of K_{k+1}^k . Lemma 2, whose all assumptions are satisfied, implies that the pair $\{H_{k+2}^k, K_{k+1}^k\}$ is non-principal for all $k \geq 3$.

2.1 Using Other Stability Results

Although the paper [19] was accepted by the Journal of Combinatorial Theory, Series B, its publication is suspended because of a disagreement between the author and the publisher over the copyright terms¹. So, it might be useful (and of independent interest) to see for which k we can infer the conclusion of Theorem 3 without referring to [19].

In a recent manuscript [17] we present a self-contained solution of the Turán problem for the generalized fan F_l^k which is a k-graph closely related to H_l^k . More precisely, the edge set of F_l^k comprises [k] together with $E_{ij} \cup \{i, j\}$ over all pairs $\{i, j\} \in {[l] \choose 2} \setminus {[k] \choose 2}$, where E_{ij} are pairwise disjoint (k-2)-sets consisting of vertices outside [l]. It was proved that, for $l \ge k \ge 3$ and all large n, the k-graph F_{l+1}^k is stable and $T_k(n, l)$ is the unique extremal F_{l+1}^k -free graph. Since the same holds if we forbid H_{l+1}^k , the proof of Theorem 3, with obvious modifications, shows that for any $k \ge 3$, we have

$$\pi\left(\left\{F_{k+2}^{k}, K_{k+1}^{k}\right\}\right) < \min\left(\pi(F_{k+2}^{k}), \, \pi(K_{k+1}^{k})\right).$$

The k-graph F_{k+2}^k is in a sense simpler than H_{k+2}^k , having only 2k+2 edges when compared to $|H_{k+2}^k| = \binom{k+2}{2}$.

Let $k = 2l \ge 4$ be even. Let $F = \{A \cup B, A \cup C, B \cup C\}$, where A, B, C are disjoint *l*-sets. Frankl [8] showed that $\pi(F) = \frac{1}{2}$. Keevash and Sudakov [15, Theorem 3.4] showed that F is stable. Every extremal k-graph G' for F on $n \ge n_0$ vertices has vertex partition $X \cup Y$, $|X| \approx |Y| \approx \frac{n}{2}$, and consists of all edges intersecting X (and also Y) in an odd number of vertices. Let us take $H = \operatorname{cn}(K_m^{k-1})$ where m = m(k) is a sufficiently large integer to satisfy

¹See http://www.math.cmu.edu/~pikhurko/Copyright.html for more details.

 $\frac{k!}{m^k} \binom{m}{k} > \frac{1}{2}$. The latter implies that $\pi(H) > \frac{1}{2}$, because $T_k(n,m)$ does not contain H. As G' contains $(2 + o(1)) \frac{n}{2} \binom{n/2}{m}$ copies of H, Lemma 2 implies that the family $\{F, H\}$ is non-principal.

For k = 3 we can use the stability result either for the Fano plane, established independently by Füredi and Simonovits [12] and by Keevash and Sudakov [14], or for

$$F_{3,2} := \{ \{1, 2, 3\}, \{1, 4, 5\}, \{2, 4, 5\}, \{3, 4, 5\} \}$$

established by Füredi, Simonovits, and the second author [11] (cf. also [10]). In both cases we can take $H = cn(K_m^2)$ for some sufficiently large m.

3 Balogh's Construction for General $k \ge 3$

A partition $V(F) = \bigcup_{i=1}^{m} A_i$ of the vertex set of a k-graph F is called a (k_1, \ldots, k_m) -partition if every edge of F intersects A_i in precisely k_i vertices, $i \in [m]$. Let $\mathcal{N}_{k,l}$ be the (infinite) family consisting of all k-graphs not admitting a (k - l, l)-partition. Let the k-graph $T_k := \operatorname{cn}^{(k-2)}(K_3^2)$, where the operation $\operatorname{cn}(F)$ is defined in Section 2.

Theorem 4 For every $k \ge 3$ there exists a finite family \mathcal{F} of k-graphs which satisfies (1).

Proof. Our construction generalizes that of Balogh [1]. We consider first the following (infinite) family

$$\mathcal{H} = \mathcal{H}_k := \{T_k\} \cup \bigcup_{i=0}^{k-3} \operatorname{cn}^{(i)}(\mathcal{N}_{k-i,1}).$$

We show that \mathcal{H} satisfies (1) (with min replaced by inf) and then explain how to obtain the required finite \mathcal{F} from it. Let G be any \mathcal{H} -free k-graph of order n. We prove by induction on $k \geq 2$ that $|G| \leq p_k(n)$, where $p_k(n) := \prod_{i=1}^k \lfloor \frac{n+i-1}{k} \rfloor$ is the maximum size of a k-partite k-graph on n vertices.

The claim is true for k = 2, since in this case $\mathcal{H} = \{K_3^2\}$ and (a special case of) Turán's theorem applies. Let $k \geq 3$. As $\mathcal{N}_{k,1} \subset \mathcal{H}$, G admits a (1, k - 1)-partition $A \cup B$. For any $x \in A$ the link graph

$$G_x := \{ D \not\ni x : D \cup \{x\} \in G \}$$

is \mathcal{H}_{k-1} -free. Moreover, all edges of G_x lie inside B by the definition of $A \cup B$. By the induction assumption, $|G_x| \leq p_{k-1}(b)$, where b := |B|. As each edge intersects A in precisely one vertex, we have

$$|G| = \sum_{x \in A} |G_x| \le (n-b) \, p_{k-1}(b) \le p_k(n),$$

proving the claim.

Thus $\pi(\mathcal{H}) \leq \frac{k!}{k^k}$. In fact, we have equality here as k-partite k-graphs demonstrate.

On the other hand, a maximum k-graph G of order n with a (2, 1, ..., 1)partition has about $(\frac{n}{k})^{k-2} {\binom{2n/k}{2}} \approx 2 \frac{k!}{k^k} {\binom{n}{k}}$ edges and is $\mathcal{H} \setminus \{T_k\}$ -free. Also,
by taking a maximum k-partite k-graph and replacing the last three parts
by the T_3 -free 3-graph of density $\frac{2}{7}$ constructed by Frankl and Füredi [9] we
add $\Omega(n^k)$ edges (note that $p_3(n)/{\binom{n}{3}} \approx \frac{2}{9} < \frac{2}{7}$). A routine analysis shows
that the constructed k-graph is T_k -free.

Hence, $\pi(F) \geq \frac{9}{7}\pi(\mathcal{H})$ for every $F \in \mathcal{H}$. There is an n_0 such that, for example, $\exp(n_0, \mathcal{H})/\binom{n_0}{k} \leq \frac{8}{7}\pi(\mathcal{H})$. As $\exp(n, \mathcal{H})/\binom{n}{k}$ is non-increasing, see [13], $\pi(\mathcal{F}) \leq \frac{8}{7}\pi(\mathcal{H})$, where \mathcal{F} consists of all k-graphs from \mathcal{H} with at most n_0 vertices. The obtained (finite) family \mathcal{F} has clearly all the required properties.

References

- J. Balogh. The Turán density of triple systems is not principal. J. Combin. Theory (A), 100:176–180, 2002.
- [2] P. Erdős and M. Simonovits. Supersaturated graphs and hypergraphs. Combinatorica, 3:181–192, 1983.
- [3] P. Erdős. Some recent results on extremal problems in graph theory. Results. In *Theory of Graphs (Internat. Sympos., Rome, 1966)*, pages 117–123 (English); pp. 124–130 (French). Gordon and Breach, New York, 1967.
- [4] P. Erdős and M. Simonovits. A limit theorem in graph theory. Stud. Sci. Math. Hungar., pages 51–57, 1966.
- [5] P. Erdős and V. T. Sós. Problems and results on Ramsey-Turán type theorems (preliminary report). *Congres. Numer.*, 26:17–23, 1980.
- [6] P. Erdős and V. T. Sós. On Ramsey-Turán type theorems for hypergraphs. *Combinatorica*, 2:289–295, 1982.
- [7] P. Erdős and A. H. Stone. On the structure of linear graphs. Bull. Amer. Math. Soc., 52:1087–1091, 1946.
- [8] P. Frankl. Asymptotic solution of a Turán-type problem. Graphs Combin., 6:223–227, 1990.
- [9] P. Frankl and Z. Füredi. An exact result for 3-graphs. Discrete Math., 50:323–328, 1984.
- [10] Z. Füredi, O. Pikhurko, and M. Simonovits. The Turán density of the hypergraph {abc, ade, bde, cde}. Electronic J. Combin., 10:7pp., 2003.
- [11] Z. Füredi, O. Pikhurko, and M. Simonovits. Triple systems with empty neighbourhoods. *Combin. Prob. Computing*, 14:795–813, 2005.

- [12] Z. Füredi and M. Simonovits. Triple systems not containing a Fano configuration. *Combin. Prob. Computing*, 14:467–488, 2005.
- [13] G. O. H. Katona, T. Nemetz, and M. Simonovits. On a graph problem of Turán (In Hungarian). *Mat. Fiz. Lapok*, 15:228–238, 1964.
- [14] P. Keevash and B. Sudakov. The Turán number of the Fano plane. Combinatorica, 25:561–574, 2005.
- [15] P. Keevash and B. Sudakov. On a hypergraph Turán problem of Frankl. To appear in Combinatorica, 2006.
- [16] D. Mubayi. A hypergraph extension of Turán's theorem. J. Combin. Theory (B), 96:122–134, 2006.
- [17] D. Mubayi and O. Pikhurko. A new generalization of Mantel's theorem to k-graphs. Submitted, 2005.
- [18] D. Mubayi and V. Rödl. On the Turán number of triple systems. J. Combin. Theory (A), 100:135–152, 2002.
- [19] O. Pikhurko. Exact computation of the hypergraph Turán function for expanded complete 2-graphs. E-print arXiv:math.CO/0510227, accepted by J. Comb. Th. (B). The publication is suspended, see http://www.math.cmu.edu/~pikhurko/Copyright.html.
- [20] M. Simonovits. A method for solving extremal problems in graph theory, stability problems. In *Theory of Graphs (Proc. Colloq., Tihany, 1966)*, pages 279–319. Academic Press, 1968.