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Abstract

A family F of k-graphs is called non-principal if its Turán density

is strictly smaller than that of each individual member. For each

k ≥ 3 we find two (explicit) k-graphs F and G such that {F,G} is
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non-principal. Our proofs use stability results for hypergraphs. This

completely settles the question posed by the first author and Rödl [18].

Also, we observe that the demonstrated non-principality phenome-

non holds also with respect to the Ramsey-Turán density as well.

1 Introduction

In this paper, we prove the non-principality phenomenon for the classical

extremal problems for k-uniform hypergraphs. The main motivation is to

study the qualitative difference between the cases k = 2, and k ≥ 3, and

our results for the Turán problem exhibit this difference. We also study this

question in the context of Ramsey-Turán theory, introduced by Erdős and

Sós. Although we prove the non-principality phenomenon for Ramsey-Turán

problems when k ≥ 3, the behavior for k = 2 remains open. This is one of

the few cases where an extremal problem for hypergraphs can be solved but

not for graphs.

Given a family F of k-uniform hypergraphs (k-graphs for short), let

ex(n,F) := max{ |G| : v(G) = n, F 6⊂ G }

be the maximum size of a k-graph G on n vertices which is F-free (that is,

for every F ∈ F we have F 6⊂ G). It was observed by Katona, Nemetz,

and Simonovits [13] that the ratio ex(n,F)/
(

n
k

)
is non-increasing with n. In

particular, the limit

π(F) := lim
n→∞

ex(n, F )(
n
k

)
exists; we call π(F) the Turán density of F . When F = {F} consists of

a single forbidden k-graph, we write ex(n, F ) and π(F ) for ex(n, {F}) and

π({F}).
The first author and Rödl [18] conjectured that there is a family F of

3-graphs such that

π(F) < min{π(F ) : F ∈ F}, (1)
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and commented that the result should even hold for a family F of size

two. Balogh [1] proved the conjecture, calling this phenomenon the non-

principality of the Turán function. This is in sharp contrast with the case

of graphs (k = 2) where the Erdős-Stone-Simonovits Theorem [7, 4] applies,

giving that

π(F) = min
{

1− 1

χ(F )− 1
: F ∈ F

}
= min

{
π(F ) : F ∈ F

}
.

Unfortunately, the family in [1] has many members, many more than

two. In Section 2 we present a new approach which shows how the so-

called stability results lead to families F satisfying (1) and consisting of

two k-graphs only. Combined with the authors’ recent results [16, 19] this

approach allows us to prove that for every k ≥ 3, there is a non-principal

k-graph family F with |F| = 2, thus completely answering the question in

[18] (see also Balogh [1, p. 177]).

In Section 3 we show how to extend the ideas of Balogh [1] to arbitrary

k-graphs, k ≥ 3. Although this seems to give non-principal families having

many elements (a result weaker than that in Section 2), this method is very

simple and self-contained. So we include it too.

Many of the (conjectured) extremal examples for (hyper)graph Turán

problems have large independent sets. Motivated by this observation, Erdős

and Sós [5] restricted the underlying k-graphs in this problem, by requiring

that they have no large independent sets. This new class of problems has

become known as the Ramsey-Turán problems. More precisely, for 0 < δ ≤ 1,

ex(n,F , δ) = max

{
|G| : G ⊂

(
[n]

k

)
s.t. G is F -free and α(G) < δn

}
,

or zero if no such hypergraph exists. The Ramsey-Turán density ρ(F) is

defined as

sup
δ(n)

{
lim sup

n→∞

ex(n,F , δ(n))(
n
k

) : δ(n) → 0 as n →∞

}
.
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Very little is known about the parameter ρ for k-graphs. Indeed, com-

puting ρ(F) seems even more difficult than computing π(F). For example,

it is unknown whether ρ(K2,2,2) is 0, where K2,2,2 is the complete 3-partite

graph with two vertices in each part.

Based on the complexity of determining ρ, one would suspect that ρ is also

non-principal in the sense of this paper. Indeed, this is the case. Let F be any

k-graph family satisfying (1). Let F ′ = {F (2) : F ∈ F} be obtained from

F by blowing-up each member with factor 2 (that is, each vertex is cloned

once). Erdős and Sós [6] proved that if for any edge D ∈ F there is another

edge D′ ∈ F with |D∩D′| ≥ 2, then ρ(F ) = π(F ). This result extends easily

to families of k-graphs, yielding that ρ(F ′) = π(F ′) and ρ(F ) = π(F ) for any

F ∈ F ′. By the supersaturation result of Erdős and Simonovits [2], blow-ups

preserve the Turán density: π(F) = π(F ′). Hence, F ′ is non-principal with

respect to both the Turán and Ramsey-Turán densities.

Curiously, the situation with graphs remains open.

Problem 1 Do there exist graphs G1, G2 for which

ρ({G1, G2}) < min{ρ(G1), ρ(G2)}?

What about if we require ρ({G1, G2}) > 0 as well?

2 Non-Principal Families of Size 2

We need some preliminary definitions before we can start proving the claimed

results.

To obtain the cone cn(F ) of a k-graph F , enlarge each edge of F by a

new common vertex x:

cn(F ) := {{x} ∪D : D ∈ F}.

Let cn(i)(F ) be obtained from F by iterating the cone-operation i times.

Define cn(F) := {cn(F ) : F ∈ F}. Let Kk
m be the complete k-graph on m

vertices.
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We call two order-n k-graphs F and G ε-close if there is a bijection

f : V (F ) → V (G) between their vertex sets such that the number of k-

subsets D ⊂ V (F ) for which D ∈ F 6⇔ f(D) ∈ G is at most ε
(

n
k

)
. In other

words, we can make F isomorphic to G by adding and removing at most ε
(

n
k

)
edges.

A k-graph G is F -extremal if it is a maximum F -free k-graph of order

v(G) (that is, |G| = ex(v(G), F )). Let us call a k-graph F stable if for any

δ > 0 there are ε > 0 and n0 such that for n ≥ n0 any F -free k-graph

G of order n with at least (π(F ) − ε)
(

n
k

)
edges is δ-close to an F -extremal

k-graph. Erdős [3] and Simonovits [20] independently proved that every 2-

graph is stable.

The following lemma gives us a new approach to generating non-principal

families.

Lemma 2 Let F be a stable k-graph. Suppose that we can find a k-graph H

of order h and a constant c = c(H) such that:

1. π(H) ≥ π(F );

2. Any F -extremal k-graph of order n ≥ n0 contains at least cnh copies

of H.

Then

π({F, H}) < min(π(F ), π(H)). (2)

Proof. Let ε > 0 and n0 be the constants satisfying the stability assumption

for F with δ = c.

Suppose on the contrary that π({F, H}) ≥ π(F ). Then there is a k-graph

Gn on n ≥ n0 vertices such that

1. Gn is {F, H}-free;

2. |Gn| > (π(F )− ε)
(

n
k

)
.
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By the definition of ε and n0, this k-graph Gn is c-close to an F -extremal

k-graph G′
n on n vertices. By hypothesis, G′

n contains at least cnh copies of

H. Each edge of G′
n lies in at most k! nh−k copies of H. Consequently, in order

to delete all copies of H from G′
n, we need to delete at least cnh

k! nh−k > c
(

n
k

)
edges from G′

n. This contradicts the fact that Gn is H-free and is c-close to

G′
n.

Theorem 3 For every k ≥ 3 there are k-graphs F and H satisfying (2).

Proof. Let the k-graph Hk
l be obtained from the complete 2-graph K2

l by

enlarging each edge by a set of k− 2 new vertices. Let Tk(n, l), k ≤ l, be the

k-graph obtained by partitioning [n] = V1 ∪ . . .∪ Vl into l almost equal parts

and taking those k-sets which intersect every part in at most one vertex.

The first author [16] proved that for arbitrary l ≥ k ≥ 3 we have

π(Hk
l+1) =

l(l − 1) . . . (l − k + 1)

lk
. (3)

The second author [19], building upon the results in [16], proved that Hk
l+1

is stable with Tk(n, l) being the unique maximum Hk
l+1-free graph of order n

for l ≥ k ≥ 3 and n ≥ n0(k, l).

Observe that π(Kk
k+1) ≥ 3

8
≥ π(Hk

k+2) for all k ≥ 3. The lower bound on

π(Kk
k+1) follows from the following construction. Partition [n] = A ∪ B into

two almost equal parts. Split the family of all k-sets X intersecting both

A and B into two k-graphs G0 and G1 according to the parity of |X ∩ A|.
Both G0 and G1 are Kk

k+1-free: for any (k + 1)-set Y ⊂ [n] intersecting A

in s ∈ [1, k] elements, the k-sets Y \ {a} and Y \ {b}, where a ∈ Y ∩ A and

b ∈ Y ∩B, have the intersections with A of sizes s−1 and s respectively, that

is, of different parities. Now, |G0| + |G1| = (1 − 2−k+1 + o(1))
(

n
k

)
, so one of

these has size at least 1
2
(1− 2−k+1 + o(1))

(
n
k

)
≥ (3

8
+ o(1))

(
n
k

)
. Consequently,

π(Kk
k+1) ≥ 3

8
. On the other hand, the Turán density π(Hk

k+2) = (k+1)!
(k+1)k is a

decreasing function of k which equals 3
8

for k = 3.
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Finally, note that Tk(n, k + 1) contains at least (b n
k+1

c)k+1 copies of

Kk
k+1. Lemma 2, whose all assumptions are satisfied, implies that the pair

{Hk
k+2, K

k
k+1} is non-principal for all k ≥ 3.

2.1 Using Other Stability Results

Although the paper [19] was accepted by the Journal of Combinatorial The-

ory, Series B, its publication is suspended because of a disagreement between

the author and the publisher over the copyright terms1. So, it might be useful

(and of independent interest) to see for which k we can infer the conclusion

of Theorem 3 without referring to [19].

In a recent manuscript [17] we present a self-contained solution of the

Turán problem for the generalized fan F k
l which is a k-graph closely related to

Hk
l . More precisely, the edge set of F k

l comprises [k] together with Eij∪{i, j}
over all pairs {i, j} ∈

(
[l]
2

)
\

(
[k]
2

)
, where Eij are pairwise disjoint (k − 2)-sets

consisting of vertices outside [l]. It was proved that, for l ≥ k ≥ 3 and all

large n, the k-graph F k
l+1 is stable and Tk(n, l) is the unique extremal F k

l+1-

free graph. Since the same holds if we forbid Hk
l+1, the proof of Theorem 3,

with obvious modifications, shows that for any k ≥ 3, we have

π
(
{F k

k+2, K
k
k+1}

)
< min

(
π(F k

k+2), π(Kk
k+1)

)
.

The k-graph F k
k+2 is in a sense simpler than Hk

k+2, having only 2k + 2 edges

when compared to |Hk
k+2| =

(
k+2
2

)
.

Let k = 2l ≥ 4 be even. Let F = {A∪B, A∪C, B∪C}, where A, B, C are

disjoint l-sets. Frankl [8] showed that π(F ) = 1
2
. Keevash and Sudakov [15,

Theorem 3.4] showed that F is stable. Every extremal k-graph G′ for F on

n ≥ n0 vertices has vertex partition X ∪ Y , |X| ≈ |Y | ≈ n
2
, and consists of

all edges intersecting X (and also Y ) in an odd number of vertices. Let us

take H = cn(Kk−1
m ) where m = m(k) is a sufficiently large integer to satisfy

1See http://www.math.cmu.edu/~pikhurko/Copyright.html for more details.
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k!
mk

(
m
k

)
> 1

2
. The latter implies that π(H) > 1

2
, because Tk(n,m) does not

contain H. As G′ contains (2 + o(1)) n
2

(
n/2
m

)
copies of H, Lemma 2 implies

that the family {F, H} is non-principal.

For k = 3 we can use the stability result either for the Fano plane, es-

tablished independently by Füredi and Simonovits [12] and by Keevash and

Sudakov [14], or for

F3,2 := { {1, 2, 3}, {1, 4, 5}, {2, 4, 5}, {3, 4, 5} }

established by Füredi, Simonovits, and the second author [11] (cf. also [10]).

In both cases we can take H = cn(K2
m) for some sufficiently large m.

3 Balogh’s Construction for General k ≥ 3

A partition V (F ) = ∪m
i=1Ai of the vertex set of a k-graph F is called a

(k1, . . . , km)-partition if every edge of F intersects Ai in precisely ki vertices,

i ∈ [m]. Let Nk,l be the (infinite) family consisting of all k-graphs not

admitting a (k − l, l)-partition. Let the k-graph Tk := cn(k−2)(K2
3), where

the operation cn(F ) is defined in Section 2.

Theorem 4 For every k ≥ 3 there exists a finite family F of k-graphs which

satisfies (1).

Proof. Our construction generalizes that of Balogh [1]. We consider first the

following (infinite) family

H = Hk := {Tk} ∪
k−3⋃
i=0

cn(i)(Nk−i,1).

We show that H satisfies (1) (with min replaced by inf) and then explain

how to obtain the required finite F from it.
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Let G be any H-free k-graph of order n. We prove by induction on k ≥ 2

that |G| ≤ pk(n), where pk(n) :=
∏k

i=1

⌊
n+i−1

k

⌋
is the maximum size of a

k-partite k-graph on n vertices.

The claim is true for k = 2, since in this case H = {K2
3} and (a special

case of) Turán’s theorem applies. Let k ≥ 3. As Nk,1 ⊂ H, G admits a

(1, k − 1)-partition A ∪B. For any x ∈ A the link graph

Gx := {D 63 x : D ∪ {x} ∈ G}

is Hk−1-free. Moreover, all edges of Gx lie inside B by the definition of A∪B.

By the induction assumption, |Gx| ≤ pk−1(b), where b := |B|. As each edge

intersects A in precisely one vertex, we have

|G| =
∑
x∈A

|Gx| ≤ (n− b) pk−1(b) ≤ pk(n),

proving the claim.

Thus π(H) ≤ k!
kk . In fact, we have equality here as k-partite k-graphs

demonstrate.

On the other hand, a maximum k-graph G of order n with a (2, 1, . . . , 1)-

partition has about (n
k
)k−2

(
2n/k

2

)
≈ 2 k!

kk

(
n
k

)
edges and is H \ {Tk}-free. Also,

by taking a maximum k-partite k-graph and replacing the last three parts

by the T3-free 3-graph of density 2
7

constructed by Frankl and Füredi [9] we

add Ω(nk) edges (note that p3(n)/
(

n
3

)
≈ 2

9
< 2

7
). A routine analysis shows

that the constructed k-graph is Tk-free.

Hence, π(F ) ≥ 9
7
π(H) for every F ∈ H. There is an n0 such that,

for example, ex(n0,H)/
(

n0

k

)
≤ 8

7
π(H). As ex(n,H)/

(
n
k

)
is non-increasing,

see [13], π(F) ≤ 8
7
π(H), where F consists of all k-graphs from H with at

most n0 vertices. The obtained (finite) family F has clearly all the required

properties.
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[10] Z. Füredi, O. Pikhurko, and M. Simonovits. The Turán density of the

hypergraph {abc, ade, bde, cde}. Electronic J. Combin., 10:7pp., 2003.
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