Independence number of graphs with a prescribed

number of cliques

Tom Bohman* Dhruv Mubayif

Abstract

We consider the following problem posed by Erdds in 1962. Suppose
that G is an n-vertex graph where the number of s-cliques in G is t.
How small can the independence number of G be? Our main result
suggests that for fixed s, the smallest possible independence number
undergoes a transition at t = n®/2to1),

In the case of triangles (s = 3) our method yields the following
result which is sharp apart from constant factors and generalizes basic
results in Ramsey theory: there exists ¢ > 0 such that every n-vertex

graph with ¢ triangles has independence number at least

) n n \2/3
c~m1n{\/nlogn,tl/3(logt1/g) }

1 Introduction

An old problem in extremal graph theory due to Erdés [6] is to determine
f(n,s,1), the minimum number of s-cliques over all graphs on n vertices
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and independence number less than [. This problem has been extensively
studied and has led to many other interesting questions. However, the range
of parameters that have been investigated are confined to the case of fixed
[ (see, e.g., [5, 11, 10]).

Here we consider the problem when s is fixed but [ can be a power of n. It is
more convenient to phrase the problem in inverse form as follows. Suppose
that s > 2 is fixed and G is an n-vertex graph in which the number of copies
of K is t, where 0 <t < (Z) How small can the independence number of

G be?

When s = 2 this question is answered by Turdn’s theorem. However, when
s > 3, one cannot hope to obtain a precise answer for this minimum for the
full range of ¢, since when ¢ = 0 it is equivalent to determining the Ramsey
numbers (s, 1) for fixed s and large [. Indeed, our motivation for studying
this parameter was to gain a better understanding of the Ramsey number
r(4,1). In trying to speculate about the growth rate of (4,1) a natural prob-
lem that arises is to determine the smallest possible independence number
of a graph where we have a specified number of triangles (the case s = 3 of
our problem).

Our first result below suggests that the behavior of this function changes at
t = ns/2+o(1)'

Theorem 1. Let s > 2 be a fixed constant. If G is a graph on n vertices
with t copies of K then

1
cgns—1 ift < ns/?
a(G) > 1
cs (&) (8) if t >n®/?

Remarks.

1. The s = 2 case of Theorem 1 is (apart from constants) simply the
bound given by Turan’s Theorem.

2. The bound in the case of large t is essentially sharp from random con-
siderations. Indeed, if GG is approximately random and has ¢ copies of
K (where t is sufficiently large) then G is roughly Gy, , with nsp(g) =



©O(t). Then we expect the independence number of G, up to a loga-
rithmic factor, to be 1/p. This is exactly the lower bound that we give
in the large t case.

3. Although our proof gives some additional log factors, we have chosen
to omit those for clarity of presentation. For s = 3 we carry out the
calculations in our method in further detail and provide more precise
results below.

When s = 3 Theorem 1 becomes

1
cnz if t < n3/2
G) > -
a( )_{ n_if ¢ > p3/2

vl
Here the bounds are sharp (apart from logarithmic factors) in the entire
range of ¢t due to the existence of Ramsey graphs with the desired indepen-
dence number [2, 3, 7, 9] for t < n3/2 and approximately random graphs for
t > n3/2. However, our next result sharpens both upper and lower bounds
considerably to obtain sharp results in order of magnitude.

Theorem 2. There exists ¢ > 0 and ng such that if G is a graph on n > ng

vertices with t triangles then

cv/nlogn if t <n3?%/logn
2/3
ctl% (log tl%) if t > n?/2\/logn.

a(G) >

Both bounds are sharp apart from the constant c.

The related question of bounding the chromatic number of a graph with a
fixed number of triangles was recently addressed by Harris [8]. We note in
passing that the two problems have different characters when the number of
triangles is large. The extremal graph for the chromatic number question in
this regime is simply a clique while the extremal graph for the independence
number question is a direct product of a clique and a Ramsey graph. Harris’
proof from [8] uses a difficult theorem of Johansson as its main tool and in
fact his bound on chromatic number together with a simple argument can
be used to give another proof of Theorem 2. Our proof uses only the lower
bounds on independence number of triangle-free graphs; these are much
easier results than the corresponding upper bounds on chromatic number.



2 Proof of Theorem 1

In the proof, we carry the constant cs through the calculation in the interest
of clarity. All conditions that the constants must satisfy are listed as num-
bered equations below. We make no attempt to optimize these constants.

We go by induction on s. Let d be the average degree of G. For an arbitrary
vertex z let d(z) denote the degree of x and let ¢(z) denote the number of
copies of K that contain x.

Case 1. t < n%/2.

Here we show that a(G) > c;nﬁ where ¢ is a constant (which will be
slightly larger than cg itself).

If d < (c’s)_ln% then we have the desired bound by Turan’s Theorem:

n ’ 11
5o — Cgns—+.

ns—1

a(G) > = >,

al3

s—2
So, we may assume d > (c,)"'ns=1. Now consider the random variable
2
Xy =d(v) —t(v)sT

where v is a vertex chosen uniformly at random. We have

E LX) = B [do) = 0) 71| 2 (&)= — B o))

Note that we assume )

d < s, (1)

Now we apply the inductive hypothesis in G[N(v)] where v is a vertex that
achieves the above bound on X,. This graph has

d(v) > ((c;)*l _ S%> =

vertices and at most



copies of K,_1. Therefore

(@) > A(GIN®)]) > cs1d(v) 72 > ¢y1 ((c')—l - sﬁ)E NI

— S

This gives the desired bound so long as

¢ <o ()M =sT) (2)

Case 2. t > n%/2.

Here we randomly sparsify our graph and apply Case 1. We may assume
t < én® where § > 0 is a function of the constant c¢g in the statement of the
Theorem.

Set
n

p= $2/591+2/s
and consider a set S of vertices chosen at random so that each vertex appears
independently with probability p. By standard concentration results (using
the upper t < dn® ) we have

n2

np .
‘S‘ > ? T 9242/s42/s

with high probability. Let T be the number of copies of K in G[S]. By
Markov’s inequality, we have

with probability at least 1/2. Thus, there exists a vertex set S that satisfies
both of these inequalities. So we can apply Case 1 to conclude

2
1 s—1
a(G) > a(G[S]) = C;‘S‘kl > C; 241) 2 -
2s(s—1) ts(s—1)

This gives the desired bound so long as

, _2(s+1)
Cs < €2 61, (3)




3 Proof of Theorem 2

We begin with the lower bounds. The following result will be used. It follows
from the original proof of Ajtai-Komlds-Szemerédi [1] (see also Lemma 12.16
in [4]).

Theorem 3. There exists an absolute constant ¢ such that the following

holds. Let G be an n-vertexr graph with average degree d and t triangles.

Then . ;
cn
a(G) > v <10gd Elog (n)) .

Now we continue with the lower bound proof of Theorem 2.
Case 1. t < n??(logn)'/2.

Let € = 1/10. If d < nl/4t€ then using Turéns theorem we immediately
obtain a(G) > n/(d+1) > c¢y/nlogn with plenty of room to spare, so assume
that d > nl/4+e.

Next suppose that d > 7v/nlogn. Let v be a vertex chosen uniformly
at random. Let d(v) be the degree of v and let ¢(v) be the number of
triangles containing v. Then the expected value of d(v) — 2t(v) is at least
d—6t/n > v/nlogn and since a(G) > d(v) — 2t(v) we are done. Henceforth
we may assume that n'/4t¢ < d < 7\/nlogn. Now we apply Theorem 3 to

obtain p
a(G) > %log <\/ﬁ) > \/nlogn
d Vi
where ¢ > 0.

Case 2. t > n?/?(logn)'/2.

Note that we can assume ¢t < dn® where § > 0 is a function of the constant
c in the statement of the Theorem. To be precise, § can be taken to be

solution of the equation
c 1 \?3

() (s ) <

6

Set



Choose a vertex subset S of V(G) by picking each vertex independently
with probability p. Then, by standard large deviation estimates for np large
and standard Poisson approximation estimates for np constant, with high
probability

S| = pn/2:= N

And by Markov’s inequality, with probability at least 1/2, the number of
triangles T" in S satisfies

1 (n? n \1/3
T<2pt= < > (1og W> < N3/2,/log N.

Thus, we can choose a set S that satisfies both of these inequalities and
apply the result we have already proved in Case 1 to obtain the lower bound

a(G) > a(G[S)) > ¢/NlogN > ¢ \/ n?(log(n/t1/%))!/%(2log(n/t1/?))

- 8¢2/3
/

=5 () (oe5)

Note that the last inequality holds for §, and hence ¢ sufficiently small.

Now we will exhibit constructions showing that these bounds are sharp. In
the range t < n®/?(logn)/? we proceed as follows. Choose a so that (g) =1
and let G’ be a triangle-free graph on n — a vertices with independence
number at most ¢y/(n — a)log(n — a) (this exists due to [9]). Note that the
upper bound on ¢ implies that a < 2y/nlogn = o(n). Let G be the graph
that is a disjoint union of G’ and K,. Then G has n vertices, ¢ triangles,
and o(G) = a(G') + 1.

Next we consider the range ¢ > n3/2 (log n)l/ 2. We may assume t < én? for
some 9 > 0. Define A > 0 by the equation

n3/2)\3/2 /log e

and assume for simplicity of notation that A is an integer. Let N = n/\
and again assume that N is an integer. Let G’ be a triangle-free graph on
N vertices and independence number at most ¢y/N log N. Note that G’ has
O(N3/2\/log N) edges. Let G be the lexicographic product of G’ with Kj.
In other words, replace each vertex v of G’ with a clique S,, of size A and for
z € Sy, we have Ng(z) = (Sv \ {v}) UUypen,, (v)Sw- Then G has AN =n

7



vertices and the number of triangles in G is ' = O(\3|E(G")|) = O(¢).
Finally,
n
a(G) = a(G') < ey/NlogN < c'm(log(n/tl/‘g))w?’.
We have produced a construction where the number of triangles is ¢ = O(¢)

and it is an easy matter to produce one where the number of triangles is
exactly t and the independence number has the same order of magnitude. [J
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