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Abstract

One formulation of the Erdds-Szekeres monotone subsequence theorem states that for any
red/blue coloring of the edge set of the complete graph on {1,2, ..., N}, there exists a monochro-
matic red s-clique or a monochromatic blue increasing path P, with n vertices, provided
N > (s = 1)(n —1). Here, we prove a similar statement as above in the off-diagonal case
for triple systems, with the quasipolynomial bound N > 2¢0°em)™ ™" " For the #th power P! of
the ordered increasing graph path with n vertices, we prove a near linear bound cn(logn)*—2
which improves the previous bound that applied to a more general class of graphs than P! due
to Conlon-Fox-Lee-Sudakov.

1 Introduction

A well-known theorem of Erdés and Szekeres [11] states that any sequence of (n — 1)? + 1 distinct
real numbers contains a monotone subsequence of length at least n. This is a classical result in
combinatorics and its generalizations and extensions have many important consequences in geom-
etry, probability, and computer science. See Steele [22] for 7 different proofs along with several
applications. Here, we study its extension in the ordered hypergraph setting.

An ordered k-uniform hypergraph H on n vertices is a hypergraph whose vertices are ordered
{1,2,...,n}. Given two ordered k-uniform hypergraphs G and H, the Ramsey numbers r(G, H)
is the minimum N such that for every red/blue coloring of the k-tuples of {1,2,..., N}, there is
either a red copy of G or a blue copy of H. When G = H, we simply write r(H) = r.(H, H).
We let ri(H;q) to be the minimum integer N such that for every g-coloring of the k-tuples of
[N] ={1,2,..., N}, there is a monochromatic copy of H. We write KT(Lk) for the complete k-uniform
hypergraph on n vertices. A monotone path of size n, denoted by Pék), is an ordered k-uniform
hypergraph whose vertex set is {1,2,...,n}, and n —k+ 1 edges of the form (i,i+1,...,i+k—1),
fori=1,...,n—k+ 1. In order to avoid the excessive use of superscripts, we remove them when
the uniformity is clear. For example, we write (K, P,,) = rk(ng), Pék)).

The proof of the Erdés and Szekeres monotone subsequence theorem, and also Dilworth’s the-
orem on partially ordered sets [6], implies that

ro(Ks, Pp) =(s—1)(n—1)+ 1.
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However for k-uniform hypgeraphs, when k > 3, r(Ks, P,) is much less understood. In [17],
the authors showed a surprising connection between r; (K, P,) and the classical Ramsey number
rr—1(Ks; q). More precisely, they showed that for ¢ > 2

Tr-1(K|s/q130) < 1r(Ks, Pyyr—1) < 1r-1(Ks5q). (1)

Hence, for ¢ = 2, k = O(1), and s tending to infinity, determining the tower growth rate of
ri(Ks, Ppy1) is equivalent to determining the tower growth rate of the classical Ramsey number
re—1(Ks). Classical results of Erdés [7] and Erdés and Szekeres [11] imply that 7 (K) = 290) (see
also [21, 19, 3]). Unfortunately for k-uniform hypergraphs, when k& > 3, there is an exponential gap
between the best known lower and upper bounds for 74 (K). More precisely,

th“k_l(Q(SQ)) < ri(Ks) < twrg(O(s)),

where the tower function twry(z) is defined recursivly by twri(z) = z and twry, 1 (z) = 2V (see
[8, 9, 10]). A notoriously difficult conjecture of Erdés, Hajnal, and Rado states that the upper
bound is the correct tower growth rate.

Unfortunately, (1) doesn’t shed much light on r; (K, P,,) when s is fixed, and n tends to infinity.
In this direction, the first author [16] showed that r3(K4, P,) = O(n?') and made the following
conjecture.

Conjecture 1.1. We have r3(Ks, P,) = O(n®), where ¢ = c(s).

Our first result establishes a quasi-polynomial bound for r3(Ks, P,), when s is fixed. Throughout
this paper, all logarithms are in base 2.

Theorem 1.2. We have r3(Ks, P,) < 2Cs(log”)571, where cs = 5°s).

Together with the well-known neighborhood chasing argument of Erdés and Rado [10], we have the
following.

Theorem 1.3. For k > 3, we have r(Ks, P,) = twrg_o (20(102‘5")571) , where ¢ = c(s).

In the other direction, we have the trivial inequality r(Ks, P,) > 7, (Ps, P,). The famous cups-
caps theorem of Erdés and Szekeres [11] states that r3(Ps, Pp,) = (ngf;l) + 1, and the stepping-up
lemma established in [12] (see Theorem 4.3) implies that ri(Ps, P,) > twrg_o(n®), where ¢ = ¢(s).
Thus, we essentially determine the tower growth rate of ri(Ks, P,) for s fixed and n tending to
infinity.

For the diagonal case r3(Ky, P,), these observations and a result of the authors [10] yield

om <2n 24> =13(Pp, Py) < r3(Ky, Pp) < ra(n;n) < gn?logn
n —

It would be interesting to improve either bound for r3(K,, P,).

1.1 Cliques versus power paths in graphs

A key lemma in the first author’s [16] proof of r3(Ky, P,) = O(n?!') is based on the following
generalization of monotone paths in ordered graphs. Given positive integers t, n, the t-th power of
the path of P, denoted by P!, is an ordered graph with vertex set {1,2,...,n}, and (i, j) is an edge



if and only if |j —i| < t. Hence, P! = P,. In [2], Balko et al. showed that r3(P!) = O(n'??) (see
also [16]). Our next result establishes a near linear bound in the off-diagonal setting. Moreover,
our proof generalizes to the clique versus power-path setting.

Theorem 1.4. For positive integers s,t,n such that t < s, we have

ro(PL PY) < ro(Ky, Pt) < t**n(logn)*~2
For large s, e.g., s = n, we also have the following bound.
Theorem 1.5. For positive integers s,t,n, we have
ro(Ky, PL) < (2s)tt+1)logn,

Hence in the diagonal setting, for fixed ¢t > 0, we have ro(K,, P!) < 90(og* 1) Thig coincides with
a more general result established by Conlon, Fox, Lee, and Sudakov [4] on ordered graphs with
bounded degeneracy. In the off-diagonal case, we make the following stronger conjecture.

Conjecture 1.6. For all s,t > 1 there exists ¢ = cg3 such that ro(Ks, Py < en.

2 Non-increasing sets: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by establishing a Ramsey-type result for non-increasing sets.
Let x be a g-coloring of the pairs of [N], with colors {k1,...,kq} C Z such that k1 < -+ < Kq.
Then we say that a triple u, v, w € [N], where u < v < w, is non-increasing if

L x(u,v) = x(u,w) > x(v,w), or
2. x(u,v) > x(u,w) = x(v,w).

We say that a set S C [N] is non-increasing with respect to x if every triple in S is non-
increasing. Given subsets S,T C [N] such that S = {v,...,vs} and T' = {uy,...,us}, we say that
S and T have the same color pattern with respect to x if x(vs,v;) = x(us, uj) for all 4, 5.

We will need the following lemma about non-increasing sets.

Lemma 2.1. Let S = {v1,...,vs} be a non-increasing set with respect to x, where vy < --+ < vs.
Fiz vertex vj € S. Then for any v;, v, € S such that v; < v; < vg, we have

1. X(vivvj) > X(,Uja’uf)y and

2. x(vj—1,v5) < x(vi,v5), and
X

)
3. x(vj,v541) = x(v5,v0).

Proof. The first property follows from the fact that S is non-increasing. For the second property,
for sake of contradiction, suppose there is a vertex v; < vj_1 such that x(vj_1,v;) > x(v;,v;). Then
we must have x(v;,vj—1) = x(vs, v;), contradicting the fact that {v;,v;_1,v;} is non-increasing. A
similar argument shows that the third property follows. O

Let f(s;q) be the minimum integer N, such that if the pairs of [N] are colored with at most ¢ colors
k1 < -+ < Kq, then there is a set S C [N] of size s such that every triple in S is non-increasing.



Theorem 2.2. We have r3(Ks, P,,) < f(s;n — 2).

Proof. Let N = f(s;n) and let ¢ be a red-blue coloring of the triples of [N]. If ¢ produces a blue
monotone path of size n, then we are done. Otherwise, we define x : ([g]) —4{2,3,...,n—1}
such that for u,v € [N], x(u,v) is the size of the longest blue monotone path ending at (u,v) with
respect to ¢. Note that if there are no blue edges ending at (u,v), then x(u,v) = 2. By definition
of f(s;n), there is a set S C [N] of s vertices such that every triple in S is non-increasing with
respect to x. Notice that if a triple u,v,w € S, where u < v < w, is colored blue with respect to
¢, then the longest monotone path ending at (u,v) could be extended to a longer monotone path
ending at (v, w), contradicting the fact that S is non-increasing. Hence, ¢ must color every triple
in S red, which yields a red K with respect ¢. ]

We now prove the following upper bound for f(s;n). Together with Theorem 2.2, Theorem 1.2
quickly follows.

Theorem 2.3. For s > 3 and n > 2, we have f(s;n) < 95°s!(logn)*~2

Proof. We proceed by double induction on s and n. For the base case n = 2 and s > 3, we have

f(s52) <ry(Ky) < 4° < 25%s!

Therefore, let us assume that the statement holds for n’ < n. For the other base case s = 3 and
n>2, let N = 2566 and y be an n-coloring of the pairs (edges) of [N] with colors {1,...,n}.
We can assume at least half of the edges have color i < n/2, since otherwise a symmetric argument
would follow. Let E C (U;f ]) be the set of edges with color at most n/2, and for v € [N], let

Ng(v) ={u € [N]:u<wv,(u,v) € E},

_ _ - N
and dz(v) = [N (v)]. Hence, >, dp(v) = |E| > (1/2)(5)-

By averaging, there is a vertex v € [N] such that dj;(v) > (N —1)/4. If there is a pair in N (v)
with color j > n/2, then we have a non-increasing triple and we are done. On the other hand, if
no such pair has color j > n/2, since we have

‘NE(UN > % > 253-6log(n/2)’
we can apply induction to find a non-increasing triple and we are done.

For the inductive step, let us assume that the statement holds for s’ < s and n’ < n. Let
N = 25"s!(logm)*™* [ ot v be an n-coloring of the pairs of [N] with colors {1,...,n}. By a standard
supersaturation argument, we have at least

(s 21m) S _(N—s Net

>
N—(s—1 - —1:p)s—1 — 1. \s—1°
(f(s,l;,f),(s),l)) f(s=1n) 2f(s—1;n)

copies of a non-increasing set on s — 1 vertices. By the pigeonhole principle, there are at least
stl/(2n52f(s — 1;7)*"1) non-increasing sets on s — 1 vertices with the same color pattern. Let
us fix one such non-increasing set S = {vi,...,vs_1} for reference, and let x(v;,viy1) = ;. For
convenience, set kg = n and ks_1 = 1, which implies

nN=rKy> Kl > > Kg_2 > Kg—1= L.



By the pigeonhole principle, there is an ¢ such that 1 <7 < s — 1 such that x;_; — k; > n/s. Since
we have N*1/(2n" f(s — 1;n)"1) non-increasing sets on s — 1 vertices with the same color pattern
as S, there is a subset B C [N] and s — 2 vertices u1,...,Uj—1,Ujt+1,-..,us—1 € [N] such that for
each b € B, we have

1w < - <ujmg <b< iy < <ug—q,

2. |B| > N/(2n*" f(s — 1;n)*"1), and

3.8 ={u1,...,ui—1,b,Ujt1,...,us—1} is non-increasing with the same color pattern as S.
Let us remark that if 4 = 1, then we have b < uy < --- < us_q1 for all b € B, and S’ =
{b,ug,...,us_1}. Likewise, if i = s — 1, then we have u; < --- < us_2 < b for all b € B, and

S = {ul, ey Ug—2, b}
If there is a pair b,b' € B such that x;—1 > x(b,b') > k;, then the set

/
T= {ula" . ,Ui_l,b,b >ui+17~~7us—1}

is a nonincreasing set of size s. Indeed, it suffices to check that triples of the form {u;,b,b'} for
Jj <t—1,and {b,0/,u;} where j > i + 1, are non-increasing. Assume j < i — 1. By construction,
we have x(u;,b) = x(uj,b’). By Lemma 2.1 and the assumption above, we have

X(u]7b) = X(ujub/) 2 Ri—1 2 X(ba b,)

Hence, {u;,b,b'} is non-increasing. For j > i + 1, a similar argument shows that {b,b’,u;} is
non-increasing.

Therefore, we can assume that x uses at most n — n/s = n(s — 1)/s distinct colors on B.
However, this implies

N

Bl >
1Bl = 2ns” f(s — 1;n)s—1

95°s!(log n)s—2

=z 2ns?2(s—1)5571(s—1)!(logn)*—3

> 2533!(logn)5_272(371)5‘“_1(sfl)!(logn)3_3
> 2555!(lognflog(s/(sfl)))s_2

> 2555!(log((s—1)n/s))5*2

> flsi(s— n/s).

By the induction hypothesis, we can find a non-increasing set inside of B.



3 Ordered graphs

Proof of Theorem 1.4. We proceed by double induction on s and n. The base cases when s = 2
or when n = 2 is trivial. For the inductive step, assume that the statement holds for s’ < s
or n’ < n. Let N = t**n(logn)*2, and V = [N]. For sake of contradiction, suppose there is
X : ([gﬂ) — {red,blue}, such that x does not produce a red K nor a blue P!. Then we define

o« U={IN/2]+1,IN/2] +2,....[N/2] + (*T")},

o 11 ={1,2,...,|N/2]},

o Vo={|N/2]+ (T +1,[N/2]+ (*T") +2,...,N}

By Ramsey’s theorem, we know that ro(Ks, K;) < (°7'). Hence, since [U| = (*T"), we can
conclude that U contains a blue K; on vertices uy,...,u; € U. For u; € U, let

Ny(u;) ={v €V : x(u;,v) = red}.

Then we have | N, (u;)| < ro(Ks—1, PY). Let

Vi =Vi\ (Np(ur) U+ U Np(ur)),

V2I =V \ (Nr(ul) U---u NT(ut)).
Then notice that we must have either |V{| < rg(KS,PLtn/QJ) or |VJ] < T’(KS,P@L/QJ). Indeed,

otherwise both V/ and V4 contain a blue an Jo)- Since x colors all edges between u; and Vi U Vy

blue, we can combine both blue copies of an /2] with vertices uy, ..., u; and obtain a blue Py, /2|44,

which contains a copy of a blue P! since 2|n/2| +t > n.
Therefore, without loss of generality, we can assume that |V{| < ro(Kj, an /2 J). On the other
hand, we have

t
Wil = 1vy2) = (7 ) a2,
Hence

s+t

N < 2ry(Ky, Pl o)) + 2( )

) + 2t - TQ(KS_l, PTL;)
By the induction hypothesis, we have

N < t*n(logn —1)°72 + 245 + 2t - t*¥4n(logn)* 3.

< t*n(logn)s? — (s — 2)t*n(logn) 3 + (s — 2)*%*n(logn)*~* + 2 - 4° + 2t 3n(logn)* 3

< t**n(logn)*2.



The proof of Theorem 1.5 is very similar to the argument above.

Proof of Theorem 1.5. We proceed by induction on n. The base case n = 2 is trivial. Now assume
that the statement holds for all n’ < n. Set N = (2s)!¢+Dlen  We start with a standard
supersaturation argument. For sake of contradiction, suppose there is a red/blue coloring x :
([g ]) — {red,blue} of the pairs of [N] such that y does not produce a red K nor a blue PL. Let
r =r(Ks, Ki+1). Then we must have at least

™) N -+ LWyt N
N—(t+1)y — oyl _ | = t+1 = t+1
(rf(tJrl)) rl (N—(t+1)) r (2r)
copies of K;.1. For each blue copy of K. with vertex set zo < 1 < --- < x4, we associate the
middle t—1 vertices {x1, ..., z;—1}. By the pigeonhole principle, thereisaset Y = {x1,z2,...,24-1}

with 1 < 29 < -+ < x4_1, such that Y is the middle set for at least

Nt+1 1 N2
>
(2r)HT Nt=T = (2p)tt1
blue copies of Kyi1. Let Vi € {1,2,...,21 — 1} such that € Vj if there is a blue K11 whose
middle set is Y and x is the first vertex of the blue K; ;. Likewise, let Vo C {xy—1+1,..., N} such

that « € V1 if there is a blue K;;1 whose middle set is Y and z is the last vertex of the blue K;,1.
Hence, we have

2
[V1|[Va| >

(2r)i+T”
Moreover, x colors all edges between Vi and Y blue, and all edges between V5 and Y blue. Since
[Vil, [Va| < N, we must have |Vi], V2| > (2r)¢t+1 Since the Erdés-Szekeres theorem implies that
ro(Ks, Kiq1) < (SJF?I) < s', we have
t(t+1)logn
min{[Vi|, [Val} > — = (28) S (28)+D) osln/2)

(QS)t(t+1) (28)t(t+1)

By the inductive hypothesis, both V; and V5 contain a blue an /2" Together with the vertices in

Y, we obtain a blue copy of P! Since 2|n/2| +t — 1 > n, this completes the proof. [

2\n/2)+t—1°
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