Ramsey numbers of cliques versus monotone paths

Dhruv Mubayi* Andrew Suk ${ }^{\dagger}$

Abstract

One formulation of the Erdős-Szekeres monotone subsequence theorem states that for any red/blue coloring of the edge set of the complete graph on $\{1,2, \ldots, N\}$, there exists a monochromatic red s-clique or a monochromatic blue increasing path P_{n} with n vertices, provided $N>(s-1)(n-1)$. Here, we prove a similar statement as above in the off-diagonal case for triple systems, with the quasipolynomial bound $N>2^{c(\log n)^{s-1}}$. For the th power P_{n}^{t} of the ordered increasing graph path with n vertices, we prove a near linear bound $c n(\log n)^{s-2}$ which improves the previous bound that applied to a more general class of graphs than P_{n}^{t} due to Conlon-Fox-Lee-Sudakov.

1 Introduction

A well-known theorem of Erdős and Szekeres [11] states that any sequence of $(n-1)^{2}+1$ distinct real numbers contains a monotone subsequence of length at least n. This is a classical result in combinatorics and its generalizations and extensions have many important consequences in geometry, probability, and computer science. See Steele [22] for 7 different proofs along with several applications. Here, we study its extension in the ordered hypergraph setting.

An ordered k-uniform hypergraph H on n vertices is a hypergraph whose vertices are ordered $\{1,2, \ldots, n\}$. Given two ordered k-uniform hypergraphs G and H, the Ramsey numbers $r_{k}(G, H)$ is the minimum N such that for every red/blue coloring of the k-tuples of $\{1,2, \ldots, N\}$, there is either a red copy of G or a blue copy of H. When $G=H$, we simply write $r_{k}(H)=r_{k}(H, H)$. We let $r_{k}(H ; q)$ to be the minimum integer N such that for every q-coloring of the k-tuples of $[N]=\{1,2, \ldots, N\}$, there is a monochromatic copy of H. We write $K_{n}^{(k)}$ for the complete k-uniform hypergraph on n vertices. A monotone path of size n, denoted by $P_{n}^{(k)}$, is an ordered k-uniform hypergraph whose vertex set is $\{1,2, \ldots, n\}$, and $n-k+1$ edges of the form $(i, i+1, \ldots, i+k-1)$, for $i=1, \ldots, n-k+1$. In order to avoid the excessive use of superscripts, we remove them when the uniformity is clear. For example, we write $r_{k}\left(K_{s}, P_{n}\right)=r_{k}\left(K_{s}^{(k)}, P_{n}^{(k)}\right)$.

The proof of the Erdős and Szekeres monotone subsequence theorem, and also Dilworth's theorem on partially ordered sets [6], implies that

$$
r_{2}\left(K_{s}, P_{n}\right)=(s-1)(n-1)+1 .
$$

[^0]However for k-uniform hypgeraphs, when $k \geq 3, r_{k}\left(K_{s}, P_{n}\right)$ is much less understood. In [17], the authors showed a surprising connection between $r_{k}\left(K_{s}, P_{n}\right)$ and the classical Ramsey number $r_{k-1}\left(K_{s} ; q\right)$. More precisely, they showed that for $q \geq 2$

$$
\begin{equation*}
r_{k-1}\left(K_{\lfloor s / q\rfloor} ; q\right) \leq r_{k}\left(K_{s}, P_{q+k-1}\right) \leq r_{k-1}\left(K_{s} ; q\right) . \tag{1}
\end{equation*}
$$

Hence, for $q=2, k=O(1)$, and s tending to infinity, determining the tower growth rate of $r_{k}\left(K_{s}, P_{k+1}\right)$ is equivalent to determining the tower growth rate of the classical Ramsey number $r_{k-1}\left(K_{s}\right)$. Classical results of Erdős [7] and Erdős and Szekeres [11] imply that $r_{2}\left(K_{s}\right)=2^{\Theta(s)}$ (see also [21, 19, 3]). Unfortunately for k-uniform hypergraphs, when $k \geq 3$, there is an exponential gap between the best known lower and upper bounds for $r_{k}\left(K_{s}\right)$. More precisely,

$$
\operatorname{twr}_{k-1}\left(\Omega\left(s^{2}\right)\right)<r_{k}\left(K_{s}\right)<\operatorname{twr}_{k}(O(s)),
$$

where the tower function $\operatorname{twr}_{k}(x)$ is defined recursivly by $\operatorname{twr}_{1}(x)=x$ and $\operatorname{twr}_{i+1}(x)=2^{\operatorname{twr}_{i}(x)}$ (see $[8,9,10]$). A notoriously difficult conjecture of Erdős, Hajnal, and Rado states that the upper bound is the correct tower growth rate.

Unfortunately, (1) doesn't shed much light on $r_{k}\left(K_{s}, P_{n}\right)$ when s is fixed, and n tends to infinity. In this direction, the first author [16] showed that $r_{3}\left(K_{4}, P_{n}\right)=O\left(n^{21}\right)$ and made the following conjecture.

Conjecture 1.1. We have $r_{3}\left(K_{s}, P_{n}\right)=O\left(n^{c}\right)$, where $c=c(s)$.
Our first result establishes a quasi-polynomial bound for $r_{3}\left(K_{s}, P_{n}\right)$, when s is fixed. Throughout this paper, all logarithms are in base 2.

Theorem 1.2. We have $r_{3}\left(K_{s}, P_{n}\right)<2^{c_{s}(\log n)^{s-1}}$, where $c_{s}=5^{s} s$!.
Together with the well-known neighborhood chasing argument of Erdős and Rado [10], we have the following.

Theorem 1.3. For $k \geq 3$, we have $r_{k}\left(K_{s}, P_{n}\right)=\operatorname{twr}_{k-2}\left(2^{c(\log n)^{s-1}}\right)$, where $c=c(s)$.
In the other direction, we have the trivial inequality $r_{k}\left(K_{s}, P_{n}\right) \geq r_{k}\left(P_{s}, P_{n}\right)$. The famous cupscaps theorem of Erdős and Szekeres [11] states that $r_{3}\left(P_{s}, P_{n}\right)=\binom{s+n-4}{s-2}+1$, and the stepping-up lemma established in [12] (see Theorem 4.3) implies that $r_{k}\left(P_{s}, P_{n}\right) \geq \operatorname{twr}_{k-2}\left(n^{c}\right)$, where $c=c(s)$. Thus, we essentially determine the tower growth rate of $r_{k}\left(K_{s}, P_{n}\right)$ for s fixed and n tending to infinity.

For the diagonal case $r_{3}\left(K_{n}, P_{n}\right)$, these observations and a result of the authors [10] yield

$$
2^{n}<\binom{2 n-4}{n-2}=r_{3}\left(P_{n}, P_{n}\right) \leq r_{3}\left(K_{n}, P_{n}\right)<r_{2}(n ; n)<2^{n^{2} \log n} .
$$

It would be interesting to improve either bound for $r_{3}\left(K_{n}, P_{n}\right)$.

1.1 Cliques versus power paths in graphs

A key lemma in the first author's [16] proof of $r_{3}\left(K_{4}, P_{n}\right)=O\left(n^{21}\right)$ is based on the following generalization of monotone paths in ordered graphs. Given positive integers t, n, the t-th power of the path of P_{n}, denoted by P_{n}^{t}, is an ordered graph with vertex set $\{1,2, \ldots, n\}$, and (i, j) is an edge
if and only if $|j-i| \leq t$. Hence, $P_{n}^{1}=P_{n}$. In [2], Balko et al. showed that $r_{2}\left(P_{n}^{t}\right)=O\left(n^{129 t}\right)$ (see also [16]). Our next result establishes a near linear bound in the off-diagonal setting. Moreover, our proof generalizes to the clique versus power-path setting.

Theorem 1.4. For positive integers s, t, n such that $t \leq s$, we have

$$
r_{2}\left(P_{s}^{t}, P_{n}^{t}\right) \leq r_{2}\left(K_{s}, P_{n}^{t}\right)<t^{4 s} n(\log n)^{s-2} .
$$

For large s, e.g., $s=n$, we also have the following bound.
Theorem 1.5. For positive integers s, t, n, we have

$$
r_{2}\left(K_{s}, P_{n}^{t}\right)<(2 s)^{t(t+1) \log n} .
$$

Hence in the diagonal setting, for fixed $t>0$, we have $r_{2}\left(K_{n}, P_{n}^{t}\right) \leq 2^{O\left(\log ^{2} n\right)}$. This coincides with a more general result established by Conlon, Fox, Lee, and Sudakov [4] on ordered graphs with bounded degeneracy. In the off-diagonal case, we make the following stronger conjecture.

Conjecture 1.6. For all $s, t>1$ there exists $c=c_{s, t}$ such that $r_{2}\left(K_{s}, P_{n}^{t}\right)<c n$.

2 Non-increasing sets: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by establishing a Ramsey-type result for non-increasing sets. Let χ be a q-coloring of the pairs of $[N]$, with colors $\left\{\kappa_{1}, \ldots, \kappa_{q}\right\} \subset \mathbb{Z}$ such that $\kappa_{1}<\cdots<\kappa_{q}$. Then we say that a triple $u, v, w \in[N]$, where $u<v<w$, is non-increasing if

1. $\chi(u, v)=\chi(u, w) \geq \chi(v, w)$, or
2. $\chi(u, v) \geq \chi(u, w)=\chi(v, w)$.

We say that a set $S \subset[N]$ is non-increasing with respect to χ if every triple in S is nonincreasing. Given subsets $S, T \subset[N]$ such that $S=\left\{v_{1}, \ldots, v_{s}\right\}$ and $T=\left\{u_{1}, \ldots, u_{s}\right\}$, we say that S and T have the same color pattern with respect to χ if $\chi\left(v_{i}, v_{j}\right)=\chi\left(u_{i}, u_{j}\right)$ for all i, j.

We will need the following lemma about non-increasing sets.
Lemma 2.1. Let $S=\left\{v_{1}, \ldots, v_{s}\right\}$ be a non-increasing set with respect to χ, where $v_{1}<\cdots<v_{s}$. Fix vertex $v_{j} \in S$. Then for any $v_{i}, v_{\ell} \in S$ such that $v_{i}<v_{j}<v_{\ell}$, we have

1. $\chi\left(v_{i}, v_{j}\right) \geq \chi\left(v_{j}, v_{\ell}\right)$, and
2. $\chi\left(v_{j-1}, v_{j}\right) \leq \chi\left(v_{i}, v_{j}\right)$, and
3. $\chi\left(v_{j}, v_{j+1}\right) \geq \chi\left(v_{j}, v_{\ell}\right)$.

Proof. The first property follows from the fact that S is non-increasing. For the second property, for sake of contradiction, suppose there is a vertex $v_{i}<v_{j-1}$ such that $\chi\left(v_{j-1}, v_{j}\right)>\chi\left(v_{i}, v_{j}\right)$. Then we must have $\chi\left(v_{i}, v_{j-1}\right)=\chi\left(v_{i}, v_{j}\right)$, contradicting the fact that $\left\{v_{i}, v_{j-1}, v_{j}\right\}$ is non-increasing. A similar argument shows that the third property follows.

Let $f(s ; q)$ be the minimum integer N, such that if the pairs of $[N]$ are colored with at most q colors $\kappa_{1}<\cdots<\kappa_{q}$, then there is a set $S \subset[N]$ of size s such that every triple in S is non-increasing.

Theorem 2.2. We have $r_{3}\left(K_{s}, P_{n}\right) \leq f(s ; n-2)$.
Proof. Let $N=f(s ; n)$ and let ϕ be a red-blue coloring of the triples of $[N]$. If ϕ produces a blue monotone path of size n, then we are done. Otherwise, we define $\chi:\binom{[N]}{2} \rightarrow\{2,3, \ldots, n-1\}$ such that for $u, v \in[N], \chi(u, v)$ is the size of the longest blue monotone path ending at (u, v) with respect to ϕ. Note that if there are no blue edges ending at (u, v), then $\chi(u, v)=2$. By definition of $f(s ; n)$, there is a set $S \subset[N]$ of s vertices such that every triple in S is non-increasing with respect to χ. Notice that if a triple $u, v, w \in S$, where $u<v<w$, is colored blue with respect to ϕ, then the longest monotone path ending at (u, v) could be extended to a longer monotone path ending at (v, w), contradicting the fact that S is non-increasing. Hence, ϕ must color every triple in S red, which yields a red K_{s} with respect ϕ.

We now prove the following upper bound for $f(s ; n)$. Together with Theorem 2.2, Theorem 1.2 quickly follows.
Theorem 2.3. For $s \geq 3$ and $n \geq 2$, we have $f(s ; n) \leq 2^{5^{s} s!(\log n)^{s-2}}$.
Proof. We proceed by double induction on s and n. For the base case $n=2$ and $s \geq 3$, we have

$$
f(s ; 2) \leq r_{2}\left(K_{s}\right)<4^{s}<2^{5^{s} s!}
$$

Therefore, let us assume that the statement holds for $n^{\prime}<n$. For the other base case $s=3$ and $n \geq 2$, let $N=2^{5^{3} \cdot 6 \log n}$ and χ be an n-coloring of the pairs (edges) of $[N]$ with colors $\{1, \ldots, n\}$. We can assume at least half of the edges have color $i \leq n / 2$, since otherwise a symmetric argument would follow. Let $E \subset\binom{[N]}{2}$ be the set of edges with color at most $n / 2$, and for $v \in[N]$, let

$$
N_{E}^{-}(v)=\{u \in[N]: u<v,(u, v) \in E\}
$$

and $d_{E}^{-}(v)=\left|N_{E}^{-}(v)\right|$. Hence, $\sum_{v} d_{E}^{-}(v)=|E| \geq(1 / 2)\binom{N}{2}$.
By averaging, there is a vertex $v \in[N]$ such that $d_{E}^{-}(v) \geq(N-1) / 4$. If there is a pair in $N_{E}^{-}(v)$ with color $j>n / 2$, then we have a non-increasing triple and we are done. On the other hand, if no such pair has color $j>n / 2$, since we have

$$
\left|N_{E}^{-}(v)\right| \geq \frac{N-1}{4}>2^{5^{3} \cdot 6 \log (n / 2)}
$$

we can apply induction to find a non-increasing triple and we are done.
For the inductive step, let us assume that the statement holds for $s^{\prime}<s$ and $n^{\prime}<n$. Let $N=2^{5^{s} s!(\log n)^{s-2}}$. Let χ be an n-coloring of the pairs of $[N]$ with colors $\{1, \ldots, n\}$. By a standard supersaturation argument, we have at least

$$
\frac{\binom{N}{f(s-1 ; n)}}{\binom{N-(s-1)}{f(s-1 ; n)-(s-1)}} \geq \frac{(N-s)^{s-1}}{f(s-1 ; n)^{s-1}} \geq \frac{N^{s-1}}{2 f(s-1 ; n)^{s-1}}
$$

copies of a non-increasing set on $s-1$ vertices. By the pigeonhole principle, there are at least $N^{s-1} /\left(2 n^{s^{2}} f(s-1 ; n)^{s-1}\right)$ non-increasing sets on $s-1$ vertices with the same color pattern. Let us fix one such non-increasing set $S=\left\{v_{1}, \ldots, v_{s-1}\right\}$ for reference, and let $\chi\left(v_{i}, v_{i+1}\right)=\kappa_{i}$. For convenience, set $\kappa_{0}=n$ and $\kappa_{s-1}=1$, which implies

$$
n=\kappa_{0} \geq \kappa_{1} \geq \cdots \geq \kappa_{s-2} \geq \kappa_{s-1}=1
$$

By the pigeonhole principle, there is an i such that $1 \leq i \leq s-1$ such that $\kappa_{i-1}-\kappa_{i} \geq n / s$. Since we have $N^{s-1} /\left(2 n^{s^{2}} f(s-1 ; n)^{s-1}\right)$ non-increasing sets on $s-1$ vertices with the same color pattern as S, there is a subset $B \subset[N]$ and $s-2$ vertices $u_{1}, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{s-1} \in[N]$ such that for each $b \in B$, we have

1. $u_{1}<\cdots<u_{i-1}<b<u_{i+1}<\cdots<u_{s-1}$,
2. $|B| \geq N /\left(2 n^{s^{2}} f(s-1 ; n)^{s-1}\right)$, and
3. $S^{\prime}=\left\{u_{1}, \ldots, u_{i-1}, b, u_{i+1}, \ldots, u_{s-1}\right\}$ is non-increasing with the same color pattern as S.

Let us remark that if $i=1$, then we have $b<u_{2}<\cdots<u_{s-1}$ for all $b \in B$, and $S^{\prime}=$ $\left\{b, u_{2}, \ldots, u_{s-1}\right\}$. Likewise, if $i=s-1$, then we have $u_{1}<\cdots<u_{s-2}<b$ for all $b \in B$, and $S^{\prime}=\left\{u_{1}, \ldots, u_{s-2}, b\right\}$.

If there is a pair $b, b^{\prime} \in B$ such that $\kappa_{i-1} \geq \chi\left(b, b^{\prime}\right) \geq \kappa_{i}$, then the set

$$
T=\left\{u_{1}, \ldots, u_{i-1}, b, b^{\prime}, u_{i+1}, \ldots, u_{s-1}\right\}
$$

is a nonincreasing set of size s. Indeed, it suffices to check that triples of the form $\left\{u_{j}, b, b^{\prime}\right\}$ for $j \leq i-1$, and $\left\{b, b^{\prime}, u_{j}\right\}$ where $j \geq i+1$, are non-increasing. Assume $j \leq i-1$. By construction, we have $\chi\left(u_{j}, b\right)=\chi\left(u_{j}, b^{\prime}\right)$. By Lemma 2.1 and the assumption above, we have

$$
\chi\left(u_{j}, b\right)=\chi\left(u_{j}, b^{\prime}\right) \geq \kappa_{i-1} \geq \chi\left(b, b^{\prime}\right) .
$$

Hence, $\left\{u_{j}, b, b^{\prime}\right\}$ is non-increasing. For $j \geq i+1$, a similar argument shows that $\left\{b, b^{\prime}, u_{j}\right\}$ is non-increasing.

Therefore, we can assume that χ uses at most $n-n / s=n(s-1) / s$ distinct colors on B. However, this implies

$$
\begin{aligned}
|B| & \geq \frac{N}{2 n^{s^{2}} f(s-1 ; n)^{s-1}} \\
& \geq \frac{2^{5^{s} s!(\log n)^{s-2}}}{2 n^{s^{2}} 2^{(s-1) 5^{s-1}(s-1)!(\log n)^{s-3}}} \\
& \geq 2^{5^{s} s!(\log n)^{s-2}-2(s-1) 5^{s-1}(s-1)!(\log n)^{s-3}} \\
& \geq 2^{5^{s} s!(\log n-\log (s /(s-1)))^{s-2}} \\
& \geq 2^{5^{s} s!(\log ((s-1) n / s))^{s-2}} \\
& \geq f(s ;(s-1) n / s) .
\end{aligned}
$$

By the induction hypothesis, we can find a non-increasing set inside of B.

3 Ordered graphs

Proof of Theorem 1.4. We proceed by double induction on s and n. The base cases when $s=2$ or when $n=2$ is trivial. For the inductive step, assume that the statement holds for $s^{\prime}<s$ or $n^{\prime}<n$. Let $N=t^{4 s} n(\log n)^{s-2}$, and $V=[N]$. For sake of contradiction, suppose there is $\chi:\binom{[N]}{2} \rightarrow\{$ red,blue $\}$, such that χ does not produce a red K_{s} nor a blue P_{n}^{t}. Then we define

- $U=\left\{\lfloor N / 2\rfloor+1,\lfloor N / 2\rfloor+2, \ldots,\lfloor N / 2\rfloor+\binom{s+t}{t}\right\}$,
- $V_{1}=\{1,2, \ldots,\lfloor N / 2\rfloor\}$,
- $V_{2}=\left\{\lfloor N / 2\rfloor+\binom{s+t}{t}+1,\lfloor N / 2\rfloor+\binom{s+t}{t}+2, \ldots, N\right\}$

By Ramsey's theorem, we know that $r_{2}\left(K_{s}, K_{t}\right)<\binom{s+t}{t}$. Hence, since $|U|=\binom{s+t}{t}$, we can conclude that U contains a blue K_{t} on vertices $u_{1}, \ldots, u_{t} \in U$. For $u_{i} \in U$, let

$$
N_{r}\left(u_{i}\right)=\left\{v \in V: \chi\left(u_{i}, v\right)=\text { red }\right\} .
$$

Then we have $\left|N_{r}\left(u_{i}\right)\right|<r_{2}\left(K_{s-1}, P_{n}^{t}\right)$. Let

$$
\begin{aligned}
& V_{1}^{\prime}=V_{1} \backslash\left(N_{r}\left(u_{1}\right) \cup \cdots \cup N_{r}\left(u_{t}\right)\right), \\
& V_{2}^{\prime}=V_{2} \backslash\left(N_{r}\left(u_{1}\right) \cup \cdots \cup N_{r}\left(u_{t}\right)\right) .
\end{aligned}
$$

Then notice that we must have either $\left|V_{1}^{\prime}\right|<r_{2}\left(K_{s}, P_{\lfloor n / 2\rfloor}^{t}\right)$ or $\left|V_{2}^{\prime}\right|<r\left(K_{s}, P_{\lfloor n / 2\rfloor}^{t}\right)$. Indeed, otherwise both V_{1}^{\prime} and V_{2}^{\prime} contain a blue $P_{\lfloor n / 2\rfloor}^{t}$. Since χ colors all edges between u_{i} and $V_{1}^{\prime} \cup V_{2}^{\prime}$ blue, we can combine both blue copies of $P_{\lfloor n / 2\rfloor}^{t}$ with vertices u_{1}, \ldots, u_{t} and obtain a blue $P_{2\lfloor n / 2\rfloor+t}$, which contains a copy of a blue P_{n}^{t} since $2\lfloor n / 2\rfloor+t>n$.

Therefore, without loss of generality, we can assume that $\left|V_{1}^{\prime}\right|<r_{2}\left(K_{s}, P_{\lfloor n / 2\rfloor}^{t}\right)$. On the other hand, we have

$$
\left|V_{1}^{\prime}\right| \geq\lfloor N / 2\rfloor-\binom{s+t}{t}-t \cdot r_{2}\left(K_{s-1}, P_{n}^{t}\right)
$$

Hence

$$
N \leq 2 r_{2}\left(K_{s}, P_{\lfloor n / 2\rfloor}^{t}\right)+2\binom{s+t}{t}+2 t \cdot r_{2}\left(K_{s-1}, P_{n}^{t}\right) .
$$

By the induction hypothesis, we have

$$
\begin{gathered}
N \leq t^{4 s} n(\log n-1)^{s-2}+2 \cdot 4^{s}+2 t \cdot t^{4 s-4} n(\log n)^{s-3} \\
\leq t^{4 s} n(\log n)^{s-2}-(s-2) t^{4 s} n(\log n)^{s-3}+(s-2)^{2} t^{4 s} n(\log n)^{s-4}+2 \cdot 4^{s}+2 t^{4 s-3} n(\log n)^{s-3} \\
\leq t^{4 s} n(\log n)^{s-2} .
\end{gathered}
$$

The proof of Theorem 1.5 is very similar to the argument above.
Proof of Theorem 1.5. We proceed by induction on n. The base case $n=2$ is trivial. Now assume that the statement holds for all $n^{\prime}<n$. Set $N=(2 s)^{t(t+1) \log n}$. We start with a standard supersaturation argument. For sake of contradiction, suppose there is a red/blue coloring χ : $\binom{[N]}{2} \rightarrow\{$ red,blue $\}$ of the pairs of $[N]$ such that χ does not produce a red K_{s} nor a blue P_{n}^{t}. Let $r=r\left(K_{s}, K_{t+1}\right)$. Then we must have at least

$$
\frac{\binom{N}{r}}{\binom{N-(t+1)}{r-(t+1)}}=\frac{N!}{r!} \frac{(r-(t+1))!}{(N-(t+1))!} \geq \frac{(N-t)^{t+1}}{r^{t+1}} \geq \frac{N^{t+1}}{(2 r)^{t+1}}
$$

copies of K_{t+1}. For each blue copy of K_{t+1} with vertex set $x_{0}<x_{1}<\cdots<x_{t}$, we associate the middle $t-1$ vertices $\left\{x_{1}, \ldots, x_{t-1}\right\}$. By the pigeonhole principle, there is a set $Y=\left\{x_{1}, x_{2}, \ldots, x_{t-1}\right\}$ with $x_{1}<x_{2}<\cdots<x_{t-1}$, such that Y is the middle set for at least

$$
\frac{N^{t+1}}{(2 r)^{t+1}} \frac{1}{N^{t-1}} \geq \frac{N^{2}}{(2 r)^{t+1}}
$$

blue copies of K_{t+1}. Let $V_{1} \subset\left\{1,2, \ldots, x_{1}-1\right\}$ such that $x \in V_{1}$ if there is a blue K_{t+1} whose middle set is Y and x is the first vertex of the blue K_{t+1}. Likewise, let $V_{2} \subset\left\{x_{t-1}+1, \ldots, N\right\}$ such that $x \in V_{1}$ if there is a blue K_{t+1} whose middle set is Y and x is the last vertex of the blue K_{t+1}. Hence, we have

$$
\left|V_{1}\right|\left|V_{2}\right| \geq \frac{N^{2}}{(2 r)^{t+1}}
$$

Moreover, χ colors all edges between V_{1} and Y blue, and all edges between V_{2} and Y blue. Since $\left|V_{1}\right|,\left|V_{2}\right|<N$, we must have $\left|V_{1}\right|,\left|V_{2}\right| \geq \frac{N}{(2 r)^{t+1}}$. Since the Erdős-Szekeres theorem implies that $r_{2}\left(K_{s}, K_{t+1}\right) \leq\binom{ s+t-1}{t} \leq s^{t}$, we have

$$
\min \left\{\left|V_{1}\right|,\left|V_{2}\right|\right\} \geq \frac{N}{(2 s)^{t(t+1)}}=\frac{(2 s)^{t(t+1) \log n}}{(2 s)^{t(t+1)}} \geq(2 s)^{t(t+1) \log \lfloor n / 2\rfloor} .
$$

By the inductive hypothesis, both V_{1} and V_{2} contain a blue $P_{\lfloor n / 2\rfloor}^{t}$. Together with the vertices in Y, we obtain a blue copy of $P_{2\lfloor n / 2\rfloor+t-1}^{t}$. Since $2\lfloor n / 2\rfloor+t-1 \geq n$, this completes the proof.

Acknowledgement. We are grateful to Zach Hunter for carefully reading our manuscript and providing several helpful comments.

References

[1] H. L. Abbott and L. Moser, Sum-free sets of integers, Acta Arithmetica 11 (1966), 393-396.
[2] M. Balko, J. Cibulka, K. Král, J. Kynčl, Ramsey numbers of ordered graphs, Electon. J. Combin. 27 (2020), \#P1.16.
[3] M. Campos, S. Griffiths, R. Morris, J. Sahasrabudhe, An exponential improvement for diagonal Ramsey, arxiv:2303.09521.
[4] D. Conlon, J. Fox, C. Lee, B. Sudakov, Ordered Ramsey numbers, J. Combin. Theory Ser. B, 122 (2017), 353-383.
[5] D. Conlon, J. Fox, and B. Sudakov, Hypergraph Ramsey numbers, J. Amer. Math. Soc. 23 (2010), 247-266.
[6] R. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161-166.
[7] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292-294.
[8] P. Erdős and A. Hajnal, On Ramsey like theorems, Problems and results, Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst., Oxford, 1972), pp. 123-140, Inst. Math. Appl., Southhend-on-Sea, 1972.
[9] P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, Acta Math. Acad. Sci. Hungar. 16 (1965), 93-196.
[10] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 3 (1952), 417-439.
[11] P. Erdős and G. Szekeres, A combinatorial problem in geometry, Compos. Math. 2 (1935), 463-470.
[12] J. Fox, J. Pach, B. Sudakov, and A. Suk, Erdős-Szekeres-type theorems for monotone paths and convex bodies, Proc. Lond. Math. Soc. 105 (2012), 953-982.
[13] H. Fredricksen, M. M. Sweet, Symmetric sum-free partitions and lower bounds for Schur numbers, Electron. J. Comb. \#R32 (2000), 9 pages,
[14] K.G. Milans, D. Stolee, D. West, Ordered Ramsey theory and track representations of graphs, J. Combinatorics 6 (2015), 445-456.
[15] G. Moshkovitz and A. Shapira, Ramsey-theory, integer partitions and a new proof of the Erdős-Szekeres theorem, Adv. Math. 262 (2014), 1107-1129.
[16] D. Mubayi, Variants of the Erdos-Szekeres and Erdos-Hajnal Ramsey problems, European J. Combin. 62 (2017), 197-205.
[17] D. Mubayi, A. Suk, Off-diagonal hypergraph Ramsey numbers, J. Combin. Theory Ser. B 125 (2017), 168-177.
[18] J. Pach, J. Solymosi, G. Toth, Unavoidable configurations in topological graphs, Discrete Comput. Geom. 30 (2003), 311-320.
[19] A. Sah, Diagonal Ramsey via effective quasirandomness, Duke Math. J., accepted.
[20] I. Schur, Über die Kongruenz $x^{m}+y^{m}=z^{m}(\bmod p)$, Jber. Deutsch. Math. Verein. 25 (1916), 114-116.
[21] J. Spencer, Turán's theorem for k-graphs, Disc. Math. 2 (1972), 183-186.
[22] J. M. Steele, Variations on the monotone subsequence theme of Erdős and Szekeres, In Discrete Probability and Algorithms, pages 111-131, New York, NY, 1995. Springer New York.
[23] A. Suk, J. Zeng, A Positive Fraction Erdős-Szekeres Theorem and Its Applications. SoCG 2022, 62:1-62:15.

[^0]: *Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF awards DMS-1763317, DMS-1952767, DMS-2153576, a Humboldt Research Award and a Simons Fellowship. Email: mubayi@uic.edu.
 ${ }^{\dagger}$ Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by NSF CAREER award DMS-1800746 and NSF award DMS-1952786. Email: asuk@ucsd.edu.

