Ramsey numbers of cliques versus monotone paths

Dhruv Mubayi* Andrew Suk[†]

Abstract

One formulation of the Erdős-Szekeres monotone subsequence theorem states that for any red/blue coloring of the edge set of the complete graph on $\{1, 2, ..., N\}$, there exists a monochromatic red s-clique or a monochromatic blue increasing path P_n with n vertices, provided N > (s-1)(n-1). Here, we prove a similar statement as above in the off-diagonal case for triple systems, with the quasipolynomial bound $N > 2^{c(\log n)^{s-1}}$. For the tth power P_n^t of the ordered increasing graph path with n vertices, we prove a near linear bound $c n(\log n)^{s-2}$ which improves the previous bound that applied to a more general class of graphs than P_n^t due to Conlon-Fox-Lee-Sudakov.

1 Introduction

A well-known theorem of Erdős and Szekeres [11] states that any sequence of $(n-1)^2 + 1$ distinct real numbers contains a monotone subsequence of length at least n. This is a classical result in combinatorics and its generalizations and extensions have many important consequences in geometry, probability, and computer science. See Steele [22] for 7 different proofs along with several applications. Here, we study its extension in the ordered hypergraph setting.

An ordered k-uniform hypergraph H on n vertices is a hypergraph whose vertices are ordered $\{1,2,\ldots,n\}$. Given two ordered k-uniform hypergraphs G and H, the Ramsey numbers $r_k(G,H)$ is the minimum N such that for every red/blue coloring of the k-tuples of $\{1,2,\ldots,N\}$, there is either a red copy of G or a blue copy of H. When G=H, we simply write $r_k(H)=r_k(H,H)$. We let $r_k(H;q)$ to be the minimum integer N such that for every q-coloring of the k-tuples of $[N]=\{1,2,\ldots,N\}$, there is a monochromatic copy of H. We write $K_n^{(k)}$ for the complete k-uniform hypergraph on n vertices. A monotone path of size n, denoted by $P_n^{(k)}$, is an ordered k-uniform hypergraph whose vertex set is $\{1,2,\ldots,n\}$, and n-k+1 edges of the form $(i,i+1,\ldots,i+k-1)$, for $i=1,\ldots,n-k+1$. In order to avoid the excessive use of superscripts, we remove them when the uniformity is clear. For example, we write $r_k(K_s,P_n)=r_k(K_s^{(k)},P_n^{(k)})$.

The proof of the Erdős and Szekeres monotone subsequence theorem, and also Dilworth's theorem on partially ordered sets [6], implies that

$$r_2(K_s, P_n) = (s-1)(n-1) + 1.$$

^{*}Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA. Research partially supported by NSF awards DMS-1763317, DMS-1952767, DMS-2153576, a Humboldt Research Award and a Simons Fellowship. Email: mubayi@uic.edu.

[†]Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by NSF CAREER award DMS-1800746 and NSF award DMS-1952786. Email: asuk@ucsd.edu.

However for k-uniform hypgeraphs, when $k \geq 3$, $r_k(K_s, P_n)$ is much less understood. In [17], the authors showed a surprising connection between $r_k(K_s, P_n)$ and the classical Ramsey number $r_{k-1}(K_s;q)$. More precisely, they showed that for $q \geq 2$

$$r_{k-1}(K_{|s/q|};q) \le r_k(K_s, P_{q+k-1}) \le r_{k-1}(K_s;q).$$
 (1)

Hence, for $q=2,\ k=O(1)$, and s tending to infinity, determining the tower growth rate of $r_k(K_s,P_{k+1})$ is equivalent to determining the tower growth rate of the classical Ramsey number $r_{k-1}(K_s)$. Classical results of Erdős [7] and Erdős and Szekeres [11] imply that $r_2(K_s)=2^{\Theta(s)}$ (see also [21, 19, 3]). Unfortunately for k-uniform hypergraphs, when $k \geq 3$, there is an exponential gap between the best known lower and upper bounds for $r_k(K_s)$. More precisely,

$$\operatorname{twr}_{k-1}(\Omega(s^2)) < r_k(K_s) < \operatorname{twr}_k(O(s)),$$

where the tower function $\operatorname{twr}_k(x)$ is defined recursively by $\operatorname{twr}_1(x) = x$ and $\operatorname{twr}_{i+1}(x) = 2^{\operatorname{twr}_i(x)}$ (see [8, 9, 10]). A notoriously difficult conjecture of Erdős, Hajnal, and Rado states that the upper bound is the correct tower growth rate.

Unfortunately, (1) doesn't shed much light on $r_k(K_s, P_n)$ when s is fixed, and n tends to infinity. In this direction, the first author [16] showed that $r_3(K_4, P_n) = O(n^{21})$ and made the following conjecture.

Conjecture 1.1. We have $r_3(K_s, P_n) = O(n^c)$, where c = c(s).

Our first result establishes a quasi-polynomial bound for $r_3(K_s, P_n)$, when s is fixed. Throughout this paper, all logarithms are in base 2.

Theorem 1.2. We have $r_3(K_s, P_n) < 2^{c_s(\log n)^{s-1}}$, where $c_s = 5^s s!$.

Together with the well-known neighborhood chasing argument of Erdős and Rado [10], we have the following.

Theorem 1.3. For
$$k \ge 3$$
, we have $r_k(K_s, P_n) = \operatorname{twr}_{k-2} \left(2^{c(\log n)^{s-1}} \right)$, where $c = c(s)$.

In the other direction, we have the trivial inequality $r_k(K_s, P_n) \ge r_k(P_s, P_n)$. The famous cupscaps theorem of Erdős and Szekeres [11] states that $r_3(P_s, P_n) = \binom{s+n-4}{s-2} + 1$, and the stepping-up lemma established in [12] (see Theorem 4.3) implies that $r_k(P_s, P_n) \ge \operatorname{twr}_{k-2}(n^c)$, where c = c(s). Thus, we essentially determine the tower growth rate of $r_k(K_s, P_n)$ for s fixed and n tending to infinity.

For the diagonal case $r_3(K_n, P_n)$, these observations and a result of the authors [10] yield

$$2^{n} < {2n-4 \choose n-2} = r_3(P_n, P_n) \le r_3(K_n, P_n) < r_2(n; n) < 2^{n^2 \log n}.$$

It would be interesting to improve either bound for $r_3(K_n, P_n)$.

1.1 Cliques versus power paths in graphs

A key lemma in the first author's [16] proof of $r_3(K_4, P_n) = O(n^{21})$ is based on the following generalization of monotone paths in ordered graphs. Given positive integers t, n, the t-th power of the path of P_n , denoted by P_n^t , is an ordered graph with vertex set $\{1, 2, \ldots, n\}$, and (i, j) is an edge

if and only if $|j-i| \le t$. Hence, $P_n^1 = P_n$. In [2], Balko et al. showed that $r_2(P_n^t) = O(n^{129t})$ (see also [16]). Our next result establishes a near linear bound in the off-diagonal setting. Moreover, our proof generalizes to the clique versus power-path setting.

Theorem 1.4. For positive integers s, t, n such that $t \leq s$, we have

$$r_2(P_s^t, P_n^t) \le r_2(K_s, P_n^t) < t^{4s} n(\log n)^{s-2}.$$

For large s, e.g., s = n, we also have the following bound.

Theorem 1.5. For positive integers s, t, n, we have

$$r_2(K_s, P_n^t) < (2s)^{t(t+1)\log n}$$
.

Hence in the diagonal setting, for fixed t > 0, we have $r_2(K_n, P_n^t) \le 2^{O(\log^2 n)}$. This coincides with a more general result established by Conlon, Fox, Lee, and Sudakov [4] on ordered graphs with bounded degeneracy. In the off-diagonal case, we make the following stronger conjecture.

Conjecture 1.6. For all s, t > 1 there exists $c = c_{s,t}$ such that $r_2(K_s, P_n^t) < c n$.

2 Non-increasing sets: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by establishing a Ramsey-type result for non-increasing sets. Let χ be a q-coloring of the pairs of [N], with colors $\{\kappa_1, \ldots, \kappa_q\} \subset \mathbb{Z}$ such that $\kappa_1 < \cdots < \kappa_q$. Then we say that a triple $u, v, w \in [N]$, where u < v < w, is non-increasing if

- 1. $\chi(u,v) = \chi(u,w) \ge \chi(v,w)$, or
- 2. $\chi(u,v) \geq \chi(u,w) = \chi(v,w)$.

We say that a set $S \subset [N]$ is non-increasing with respect to χ if every triple in S is non-increasing. Given subsets $S, T \subset [N]$ such that $S = \{v_1, \ldots, v_s\}$ and $T = \{u_1, \ldots, u_s\}$, we say that S and T have the same color pattern with respect to χ if $\chi(v_i, v_j) = \chi(u_i, u_j)$ for all i, j.

We will need the following lemma about non-increasing sets.

Lemma 2.1. Let $S = \{v_1, \ldots, v_s\}$ be a non-increasing set with respect to χ , where $v_1 < \cdots < v_s$. Fix vertex $v_j \in S$. Then for any $v_i, v_\ell \in S$ such that $v_i < v_j < v_\ell$, we have

- 1. $\chi(v_i, v_j) \ge \chi(v_j, v_\ell)$, and
- 2. $\chi(v_{j-1}, v_j) \leq \chi(v_i, v_j)$, and
- 3. $\chi(v_j, v_{j+1}) \ge \chi(v_j, v_\ell)$.

Proof. The first property follows from the fact that S is non-increasing. For the second property, for sake of contradiction, suppose there is a vertex $v_i < v_{j-1}$ such that $\chi(v_{j-1}, v_j) > \chi(v_i, v_j)$. Then we must have $\chi(v_i, v_{j-1}) = \chi(v_i, v_j)$, contradicting the fact that $\{v_i, v_{j-1}, v_j\}$ is non-increasing. A similar argument shows that the third property follows.

Let f(s;q) be the minimum integer N, such that if the pairs of [N] are colored with at most q colors $\kappa_1 < \cdots < \kappa_q$, then there is a set $S \subset [N]$ of size s such that every triple in S is non-increasing.

Theorem 2.2. We have $r_3(K_s, P_n) \le f(s; n-2)$.

Proof. Let N = f(s; n) and let ϕ be a red-blue coloring of the triples of [N]. If ϕ produces a blue monotone path of size n, then we are done. Otherwise, we define $\chi: \binom{[N]}{2} \to \{2,3,\ldots,n-1\}$ such that for $u, v \in [N]$, $\chi(u, v)$ is the size of the longest blue monotone path ending at (u, v) with respect to ϕ . Note that if there are no blue edges ending at (u, v), then $\chi(u, v) = 2$. By definition of f(s;n), there is a set $S \subset [N]$ of s vertices such that every triple in S is non-increasing with respect to χ . Notice that if a triple $u, v, w \in S$, where u < v < w, is colored blue with respect to ϕ , then the longest monotone path ending at (u,v) could be extended to a longer monotone path ending at (v, w), contradicting the fact that S is non-increasing. Hence, ϕ must color every triple in S red, which yields a red K_s with respect ϕ .

We now prove the following upper bound for f(s;n). Together with Theorem 2.2, Theorem 1.2 quickly follows.

Theorem 2.3. For $s \ge 3$ and $n \ge 2$, we have $f(s; n) \le 2^{5^s s! (\log n)^{s-2}}$.

Proof. We proceed by double induction on s and n. For the base case n=2 and $s\geq 3$, we have

$$f(s;2) \le r_2(K_s) < 4^s < 2^{5^s s!}$$
.

Therefore, let us assume that the statement holds for n' < n. For the other base case s = 3 and $n \ge 2$, let $N = 2^{5^3 \cdot 6 \log n}$ and χ be an *n*-coloring of the pairs (edges) of [N] with colors $\{1, \ldots, n\}$. We can assume at least half of the edges have color $i \leq n/2$, since otherwise a symmetric argument would follow. Let $E \subset {[N] \choose 2}$ be the set of edges with color at most n/2, and for $v \in [N]$, let

$$N_E^-(v) = \{ u \in [N] : u < v, (u, v) \in E \},$$

and $d_E^-(v) = |N_E^-(v)|$. Hence, $\sum_v d_E^-(v) = |E| \ge (1/2) {N \choose 2}$. By averaging, there is a vertex $v \in [N]$ such that $d_E^-(v) \ge (N-1)/4$. If there is a pair in $N_E^-(v)$ with color j > n/2, then we have a non-increasing triple and we are done. On the other hand, if no such pair has color j > n/2, since we have

$$|N_E^-(v)| \ge \frac{N-1}{4} > 2^{5^3 \cdot 6\log(n/2)},$$

we can apply induction to find a non-increasing triple and we are done.

For the inductive step, let us assume that the statement holds for s' < s and n' < n. Let $N=2^{5^s s! (\log n)^{s-2}}$. Let χ be an *n*-coloring of the pairs of [N] with colors $\{1,\ldots,n\}$. By a standard supersaturation argument, we have at least

$$\frac{\binom{N}{f(s-1;n)}}{\binom{N-(s-1)}{f(s-1;n)-(s-1)}} \ge \frac{(N-s)^{s-1}}{f(s-1;n)^{s-1}} \ge \frac{N^{s-1}}{2f(s-1;n)^{s-1}},$$

copies of a non-increasing set on s-1 vertices. By the pigeonhole principle, there are at least $N^{s-1}/(2n^{s^2}f(s-1;n)^{s-1})$ non-increasing sets on s-1 vertices with the same color pattern. Let us fix one such non-increasing set $S = \{v_1, \ldots, v_{s-1}\}$ for reference, and let $\chi(v_i, v_{i+1}) = \kappa_i$. For convenience, set $\kappa_0 = n$ and $\kappa_{s-1} = 1$, which implies

$$n = \kappa_0 \ge \kappa_1 \ge \cdots \ge \kappa_{s-2} \ge \kappa_{s-1} = 1.$$

By the pigeonhole principle, there is an i such that $1 \le i \le s-1$ such that $\kappa_{i-1} - \kappa_i \ge n/s$. Since we have $N^{s-1}/(2n^{s^2}f(s-1;n)^{s-1})$ non-increasing sets on s-1 vertices with the same color pattern as S, there is a subset $B \subset [N]$ and s-2 vertices $u_1, \ldots, u_{i-1}, u_{i+1}, \ldots, u_{s-1} \in [N]$ such that for each $b \in B$, we have

- 1. $u_1 < \cdots < u_{i-1} < b < u_{i+1} < \cdots < u_{s-1}$,
- 2. $|B| \ge N/(2n^{s^2}f(s-1;n)^{s-1})$, and
- 3. $S' = \{u_1, \dots, u_{i-1}, b, u_{i+1}, \dots, u_{s-1}\}$ is non-increasing with the same color pattern as S.

Let us remark that if i = 1, then we have $b < u_2 < \cdots < u_{s-1}$ for all $b \in B$, and $S' = \{b, u_2, \ldots, u_{s-1}\}$. Likewise, if i = s - 1, then we have $u_1 < \cdots < u_{s-2} < b$ for all $b \in B$, and $S' = \{u_1, \ldots, u_{s-2}, b\}$.

If there is a pair $b, b' \in B$ such that $\kappa_{i-1} \geq \chi(b, b') \geq \kappa_i$, then the set

$$T = \{u_1, \dots, u_{i-1}, b, b', u_{i+1}, \dots, u_{s-1}\}$$

is a nonincreasing set of size s. Indeed, it suffices to check that triples of the form $\{u_j, b, b'\}$ for $j \leq i-1$, and $\{b, b', u_j\}$ where $j \geq i+1$, are non-increasing. Assume $j \leq i-1$. By construction, we have $\chi(u_j, b) = \chi(u_j, b')$. By Lemma 2.1 and the assumption above, we have

$$\chi(u_i, b) = \chi(u_i, b') \ge \kappa_{i-1} \ge \chi(b, b').$$

Hence, $\{u_j, b, b'\}$ is non-increasing. For $j \geq i+1$, a similar argument shows that $\{b, b', u_j\}$ is non-increasing.

Therefore, we can assume that χ uses at most n-n/s=n(s-1)/s distinct colors on B. However, this implies

$$|B| \geq \frac{N}{2n^{s^2}f(s-1;n)^{s-1}}$$

$$\geq \frac{2^{5^s s!(\log n)^{s-2}}}{2n^{s^2}2^{(s-1)5^{s-1}(s-1)!(\log n)^{s-3}}}$$

$$\geq 2^{5^s s!(\log n)^{s-2}-2(s-1)5^{s-1}(s-1)!(\log n)^{s-3}}$$

$$\geq 2^{5^s s!(\log n-\log(s/(s-1)))^{s-2}}$$

$$\geq 2^{5^s s!(\log((s-1)n/s))^{s-2}}$$

$$\geq f(s;(s-1)n/s).$$

By the induction hypothesis, we can find a non-increasing set inside of B.

3 Ordered graphs

Proof of Theorem 1.4. We proceed by double induction on s and n. The base cases when s=2 or when n=2 is trivial. For the inductive step, assume that the statement holds for s' < s or n' < n. Let $N = t^{4s} n(\log n)^{s-2}$, and V = [N]. For sake of contradiction, suppose there is $\chi: \binom{[N]}{2} \to \{\text{red,blue}\}$, such that χ does not produce a red K_s nor a blue P_n^t . Then we define

- $U = \{ \lfloor N/2 \rfloor + 1, \lfloor N/2 \rfloor + 2, \dots, \lfloor N/2 \rfloor + {s+t \choose t} \},$
- $V_1 = \{1, 2, \dots, \lfloor N/2 \rfloor \},$
- $V_2 = \{ |N/2| + {s+t \choose t} + 1, |N/2| + {s+t \choose t} + 2, \dots, N \}$

By Ramsey's theorem, we know that $r_2(K_s, K_t) < {s+t \choose t}$. Hence, since $|U| = {s+t \choose t}$, we can conclude that U contains a blue K_t on vertices $u_1, \ldots, u_t \in U$. For $u_i \in U$, let

$$N_r(u_i) = \{ v \in V : \chi(u_i, v) = \text{red} \}.$$

Then we have $|N_r(u_i)| < r_2(K_{s-1}, P_n^t)$. Let

$$V_1' = V_1 \setminus (N_r(u_1) \cup \cdots \cup N_r(u_t)),$$

$$V_2' = V_2 \setminus (N_r(u_1) \cup \cdots \cup N_r(u_t)).$$

Then notice that we must have either $|V_1'| < r_2(K_s, P_{\lfloor n/2 \rfloor}^t)$ or $|V_2'| < r(K_s, P_{\lfloor n/2 \rfloor}^t)$. Indeed, otherwise both V_1' and V_2' contain a blue $P_{\lfloor n/2 \rfloor}^t$. Since χ colors all edges between u_i and $V_1' \cup V_2'$ blue, we can combine both blue copies of $P_{\lfloor n/2 \rfloor}^t$ with vertices u_1, \ldots, u_t and obtain a blue $P_{2\lfloor n/2 \rfloor + t}$, which contains a copy of a blue P_n^t since $2\lfloor n/2 \rfloor + t > n$.

Therefore, without loss of generality, we can assume that $|V_1'| < r_2(K_s, P_{\lfloor n/2 \rfloor}^t)$. On the other hand, we have

$$|V_1'| \ge \lfloor N/2 \rfloor - {s+t \choose t} - t \cdot r_2(K_{s-1}, P_n^t).$$

Hence

$$N \le 2r_2(K_s, P_{\lfloor n/2 \rfloor}^t) + 2\binom{s+t}{t} + 2t \cdot r_2(K_{s-1}, P_n^t).$$

By the induction hypothesis, we have

$$N \le t^{4s} n(\log n - 1)^{s-2} + 2 \cdot 4^s + 2t \cdot t^{4s-4} n(\log n)^{s-3}.$$

$$\leq t^{4s} n(\log n)^{s-2} - (s-2)t^{4s} n(\log n)^{s-3} + (s-2)^2 t^{4s} n(\log n)^{s-4} + 2 \cdot 4^s + 2t^{4s-3} n(\log n)^{s-3}$$

$$\leq t^{4s} n (\log n)^{s-2}$$

The proof of Theorem 1.5 is very similar to the argument above.

Proof of Theorem 1.5. We proceed by induction on n. The base case n=2 is trivial. Now assume that the statement holds for all n' < n. Set $N = (2s)^{t(t+1)\log n}$. We start with a standard supersaturation argument. For sake of contradiction, suppose there is a red/blue coloring $\chi: \binom{[N]}{2} \to \{\text{red,blue}\}$ of the pairs of [N] such that χ does not produce a red K_s nor a blue P_n^t . Let $r = r(K_s, K_{t+1})$. Then we must have at least

$$\frac{\binom{N}{r}}{\binom{N-(t+1)}{r-(t+1)}} = \frac{N!}{r!} \frac{(r-(t+1))!}{(N-(t+1))!} \ge \frac{(N-t)^{t+1}}{r^{t+1}} \ge \frac{N^{t+1}}{(2r)^{t+1}}$$

copies of K_{t+1} . For each blue copy of K_{t+1} with vertex set $x_0 < x_1 < \cdots < x_t$, we associate the middle t-1 vertices $\{x_1, \ldots, x_{t-1}\}$. By the pigeonhole principle, there is a set $Y = \{x_1, x_2, \ldots, x_{t-1}\}$ with $x_1 < x_2 < \cdots < x_{t-1}$, such that Y is the middle set for at least

$$\frac{N^{t+1}}{(2r)^{t+1}} \frac{1}{N^{t-1}} \ge \frac{N^2}{(2r)^{t+1}}$$

blue copies of K_{t+1} . Let $V_1 \subset \{1, 2, ..., x_1 - 1\}$ such that $x \in V_1$ if there is a blue K_{t+1} whose middle set is Y and x is the first vertex of the blue K_{t+1} . Likewise, let $V_2 \subset \{x_{t-1} + 1, ..., N\}$ such that $x \in V_1$ if there is a blue K_{t+1} whose middle set is Y and x is the last vertex of the blue K_{t+1} . Hence, we have

$$|V_1||V_2| \ge \frac{N^2}{(2r)^{t+1}}.$$

Moreover, χ colors all edges between V_1 and Y blue, and all edges between V_2 and Y blue. Since $|V_1|, |V_2| < N$, we must have $|V_1|, |V_2| \ge \frac{N}{(2r)^{t+1}}$. Since the Erdős-Szekeres theorem implies that $r_2(K_s, K_{t+1}) \le {s+t-1 \choose t} \le s^t$, we have

$$\min\{|V_1|, |V_2|\} \ge \frac{N}{(2s)^{t(t+1)}} = \frac{(2s)^{t(t+1)\log n}}{(2s)^{t(t+1)}} \ge (2s)^{t(t+1)\log\lfloor n/2\rfloor}.$$

By the inductive hypothesis, both V_1 and V_2 contain a blue $P_{\lfloor n/2 \rfloor}^t$. Together with the vertices in Y, we obtain a blue copy of $P_{2 \lfloor n/2 \rfloor + t - 1}^t$. Since $2 \lfloor n/2 \rfloor + t - 1 \geq n$, this completes the proof. \square

Acknowledgement. We are grateful to Zach Hunter for carefully reading our manuscript and providing several helpful comments.

References

- [1] H. L. Abbott and L. Moser, Sum-free sets of integers, Acta Arithmetica 11 (1966), 393–396.
- [2] M. Balko, J. Cibulka, K. Král, J. Kynčl, Ramsey numbers of ordered graphs, *Electon. J. Combin.* 27 (2020), #P1.16.
- [3] M. Campos, S. Griffiths, R. Morris, J. Sahasrabudhe, An exponential improvement for diagonal Ramsey, arxiv:2303.09521.

- [4] D. Conlon, J. Fox, C. Lee, B. Sudakov, Ordered Ramsey numbers, J. Combin. Theory Ser. B, 122 (2017), 353–383.
- [5] D. Conlon, J. Fox, and B. Sudakov, Hypergraph Ramsey numbers, J. Amer. Math. Soc. 23 (2010), 247–266.
- [6] R. Dilworth, A decomposition theorem for partially ordered sets, Ann. of Math. 51 (1950), 161–166.
- [7] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.
- [8] P. Erdős and A. Hajnal, On Ramsey like theorems, Problems and results, *Combinatorics (Proc. Conf. Combinatorial Math., Math. Inst.*, Oxford, 1972), pp. 123–140, Inst. Math. Appl., Southhend-on-Sea, 1972.
- [9] P. Erdős, A. Hajnal, and R. Rado, Partition relations for cardinal numbers, *Acta Math. Acad. Sci. Hungar.* **16** (1965), 93–196.
- [10] P. Erdős and R. Rado, Combinatorial theorems on classifications of subsets of a given set, Proc. London Math. Soc. 3 (1952), 417–439.
- [11] P. Erdős and G. Szekeres, A combinatorial problem in geometry, *Compos. Math.* **2** (1935), 463–470.
- [12] J. Fox, J. Pach, B. Sudakov, and A. Suk, Erdős–Szekeres-type theorems for monotone paths and convex bodies, *Proc. Lond. Math. Soc.* **105** (2012), 953–982.
- [13] H. Fredricksen, M. M. Sweet, Symmetric sum-free partitions and lower bounds for Schur numbers, *Electron. J. Comb.* #R32 (2000), 9 pages,
- [14] K.G. Milans, D. Stolee, D. West, Ordered Ramsey theory and track representations of graphs, J. Combinatorics 6 (2015), 445–456.
- [15] G. Moshkovitz and A. Shapira, Ramsey-theory, integer partitions and a new proof of the Erdős-Szekeres theorem, Adv. Math. 262 (2014), 1107–1129.
- [16] D. Mubayi, Variants of the Erdos-Szekeres and Erdos-Hajnal Ramsey problems, European J. Combin. 62 (2017), 197–205.
- [17] D. Mubayi, A. Suk, Off-diagonal hypergraph Ramsey numbers, *J. Combin. Theory Ser. B* **125** (2017), 168–177.
- [18] J. Pach, J. Solymosi, G. Toth, Unavoidable configurations in topological graphs, *Discrete Comput. Geom.* **30** (2003), 311–320.
- [19] A. Sah, Diagonal Ramsey via effective quasirandomness, Duke Math. J., accepted.
- [20] I. Schur, Über die Kongruenz $x^m + y^m = z^m \pmod{p}$, Jber. Deutsch. Math. Verein. **25** (1916), 114–116.
- [21] J. Spencer, Turán's theorem for k-graphs, Disc. Math. 2 (1972), 183–186.

- [22] J. M. Steele, Variations on the monotone subsequence theme of Erdős and Szekeres, *In Discrete Probability and Algorithms*, pages 111–131, New York, NY, 1995. Springer New York.
- [23] A. Suk, J. Zeng, A Positive Fraction Erdős-Szekeres Theorem and Its Applications. SoCG 2022, 62:1-62:15.