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Abstract

One formulation of the Erdős-Szekeres monotone subsequence theorem states that for any
red/blue coloring of the edge set of the complete graph on {1, 2, . . . , N}, there exists a monochro-
matic red s-clique or a monochromatic blue increasing path Pn with n vertices, provided
N > (s − 1)(n − 1). Here, we prove a similar statement as above in the off-diagonal case

for triple systems, with the quasipolynomial bound N > 2c(logn)s−1

. For the tth power P t
n of

the ordered increasing graph path with n vertices, we prove a near linear bound c n(log n)s−2

which improves the previous bound that applied to a more general class of graphs than P t
n due

to Conlon-Fox-Lee-Sudakov.

1 Introduction

A well-known theorem of Erdős and Szekeres [11] states that any sequence of (n− 1)2 + 1 distinct
real numbers contains a monotone subsequence of length at least n. This is a classical result in
combinatorics and its generalizations and extensions have many important consequences in geom-
etry, probability, and computer science. See Steele [22] for 7 different proofs along with several
applications. Here, we study its extension in the ordered hypergraph setting.

An ordered k-uniform hypergraph H on n vertices is a hypergraph whose vertices are ordered
{1, 2, . . . , n}. Given two ordered k-uniform hypergraphs G and H, the Ramsey numbers rk(G,H)
is the minimum N such that for every red/blue coloring of the k-tuples of {1, 2, . . . , N}, there is
either a red copy of G or a blue copy of H. When G = H, we simply write rk(H) = rk(H,H).
We let rk(H; q) to be the minimum integer N such that for every q-coloring of the k-tuples of

[N ] = {1, 2, . . . , N}, there is a monochromatic copy of H. We write K
(k)
n for the complete k-uniform

hypergraph on n vertices. A monotone path of size n, denoted by P
(k)
n , is an ordered k-uniform

hypergraph whose vertex set is {1, 2, . . . , n}, and n−k+ 1 edges of the form (i, i+ 1, . . . , i+k− 1),
for i = 1, . . . , n− k + 1. In order to avoid the excessive use of superscripts, we remove them when

the uniformity is clear. For example, we write rk(Ks, Pn) = rk(K
(k)
s , P

(k)
n ).

The proof of the Erdős and Szekeres monotone subsequence theorem, and also Dilworth’s the-
orem on partially ordered sets [6], implies that

r2(Ks, Pn) = (s− 1)(n− 1) + 1.

∗Department of Mathematics, Statistics, and Computer Science, University of Illinois, Chicago, IL, 60607 USA.
Research partially supported by NSF awards DMS-1763317, DMS-1952767, DMS-2153576, a Humboldt Research
Award and a Simons Fellowship. Email: mubayi@uic.edu.
†Department of Mathematics, University of California at San Diego, La Jolla, CA, 92093 USA. Supported by NSF

CAREER award DMS-1800746 and NSF award DMS-1952786. Email: asuk@ucsd.edu.

1



However for k-uniform hypgeraphs, when k ≥ 3, rk(Ks, Pn) is much less understood. In [17],
the authors showed a surprising connection between rk(Ks, Pn) and the classical Ramsey number
rk−1(Ks; q). More precisely, they showed that for q ≥ 2

rk−1(Kbs/qc; q) ≤ rk(Ks, Pq+k−1) ≤ rk−1(Ks; q). (1)

Hence, for q = 2, k = O(1), and s tending to infinity, determining the tower growth rate of
rk(Ks, Pk+1) is equivalent to determining the tower growth rate of the classical Ramsey number
rk−1(Ks). Classical results of Erdős [7] and Erdős and Szekeres [11] imply that r2(Ks) = 2Θ(s) (see
also [21, 19, 3]). Unfortunately for k-uniform hypergraphs, when k ≥ 3, there is an exponential gap
between the best known lower and upper bounds for rk(Ks). More precisely,

twrk−1(Ω(s2)) < rk(Ks) < twrk(O(s)),

where the tower function twrk(x) is defined recursivly by twr1(x) = x and twri+1(x) = 2twri(x) (see
[8, 9, 10]). A notoriously difficult conjecture of Erdős, Hajnal, and Rado states that the upper
bound is the correct tower growth rate.

Unfortunately, (1) doesn’t shed much light on rk(Ks, Pn) when s is fixed, and n tends to infinity.
In this direction, the first author [16] showed that r3(K4, Pn) = O(n21) and made the following
conjecture.

Conjecture 1.1. We have r3(Ks, Pn) = O(nc), where c = c(s).

Our first result establishes a quasi-polynomial bound for r3(Ks, Pn), when s is fixed. Throughout
this paper, all logarithms are in base 2.

Theorem 1.2. We have r3(Ks, Pn) < 2cs(logn)s−1
, where cs = 5ss!.

Together with the well-known neighborhood chasing argument of Erdős and Rado [10], we have the
following.

Theorem 1.3. For k ≥ 3, we have rk(Ks, Pn) = twrk−2

(
2c(logn)s−1

)
, where c = c(s).

In the other direction, we have the trivial inequality rk(Ks, Pn) ≥ rk(Ps, Pn). The famous cups-
caps theorem of Erdős and Szekeres [11] states that r3(Ps, Pn) =

(
s+n−4
s−2

)
+ 1, and the stepping-up

lemma established in [12] (see Theorem 4.3) implies that rk(Ps, Pn) ≥ twrk−2(nc), where c = c(s).
Thus, we essentially determine the tower growth rate of rk(Ks, Pn) for s fixed and n tending to
infinity.

For the diagonal case r3(Kn, Pn), these observations and a result of the authors [10] yield

2n <

(
2n− 4

n− 2

)
= r3(Pn, Pn) ≤ r3(Kn, Pn) < r2(n;n) < 2n

2 logn.

It would be interesting to improve either bound for r3(Kn, Pn).

1.1 Cliques versus power paths in graphs

A key lemma in the first author’s [16] proof of r3(K4, Pn) = O(n21) is based on the following
generalization of monotone paths in ordered graphs. Given positive integers t, n, the t-th power of
the path of Pn, denoted by P t

n, is an ordered graph with vertex set {1, 2, . . . , n}, and (i, j) is an edge
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if and only if |j − i| ≤ t. Hence, P 1
n = Pn. In [2], Balko et al. showed that r2(P t

n) = O(n129t) (see
also [16]). Our next result establishes a near linear bound in the off-diagonal setting. Moreover,
our proof generalizes to the clique versus power-path setting.

Theorem 1.4. For positive integers s, t, n such that t ≤ s, we have

r2(P t
s , P

t
n) ≤ r2(Ks, P

t
n) < t4sn(log n)s−2.

For large s, e.g., s = n, we also have the following bound.

Theorem 1.5. For positive integers s, t, n, we have

r2(Ks, P
t
n) < (2s)t(t+1) logn.

Hence in the diagonal setting, for fixed t > 0, we have r2(Kn, P
t
n) ≤ 2O(log2 n). This coincides with

a more general result established by Conlon, Fox, Lee, and Sudakov [4] on ordered graphs with
bounded degeneracy. In the off-diagonal case, we make the following stronger conjecture.

Conjecture 1.6. For all s, t > 1 there exists c = cs,t such that r2(Ks, P
t
n) < cn.

2 Non-increasing sets: Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by establishing a Ramsey-type result for non-increasing sets.
Let χ be a q-coloring of the pairs of [N ], with colors {κ1, . . . , κq} ⊂ Z such that κ1 < · · · < κq.
Then we say that a triple u, v, w ∈ [N ], where u < v < w, is non-increasing if

1. χ(u, v) = χ(u,w) ≥ χ(v, w), or

2. χ(u, v) ≥ χ(u,w) = χ(v, w).

We say that a set S ⊂ [N ] is non-increasing with respect to χ if every triple in S is non-
increasing. Given subsets S, T ⊂ [N ] such that S = {v1, . . . , vs} and T = {u1, . . . , us}, we say that
S and T have the same color pattern with respect to χ if χ(vi, vj) = χ(ui, uj) for all i, j.

We will need the following lemma about non-increasing sets.

Lemma 2.1. Let S = {v1, . . . , vs} be a non-increasing set with respect to χ, where v1 < · · · < vs.
Fix vertex vj ∈ S. Then for any vi, v` ∈ S such that vi < vj < v`, we have

1. χ(vi, vj) ≥ χ(vj , v`), and

2. χ(vj−1, vj) ≤ χ(vi, vj), and

3. χ(vj , vj+1) ≥ χ(vj , v`).

Proof. The first property follows from the fact that S is non-increasing. For the second property,
for sake of contradiction, suppose there is a vertex vi < vj−1 such that χ(vj−1, vj) > χ(vi, vj). Then
we must have χ(vi, vj−1) = χ(vi, vj), contradicting the fact that {vi, vj−1, vj} is non-increasing. A
similar argument shows that the third property follows.

Let f(s; q) be the minimum integer N , such that if the pairs of [N ] are colored with at most q colors
κ1 < · · · < κq, then there is a set S ⊂ [N ] of size s such that every triple in S is non-increasing.
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Theorem 2.2. We have r3(Ks, Pn) ≤ f(s;n− 2).

Proof. Let N = f(s;n) and let φ be a red-blue coloring of the triples of [N ]. If φ produces a blue
monotone path of size n, then we are done. Otherwise, we define χ :

(
[N ]
2

)
→ {2, 3, . . . , n − 1}

such that for u, v ∈ [N ], χ(u, v) is the size of the longest blue monotone path ending at (u, v) with
respect to φ. Note that if there are no blue edges ending at (u, v), then χ(u, v) = 2. By definition
of f(s;n), there is a set S ⊂ [N ] of s vertices such that every triple in S is non-increasing with
respect to χ. Notice that if a triple u, v, w ∈ S, where u < v < w, is colored blue with respect to
φ, then the longest monotone path ending at (u, v) could be extended to a longer monotone path
ending at (v, w), contradicting the fact that S is non-increasing. Hence, φ must color every triple
in S red, which yields a red Ks with respect φ.

We now prove the following upper bound for f(s;n). Together with Theorem 2.2, Theorem 1.2
quickly follows.

Theorem 2.3. For s ≥ 3 and n ≥ 2, we have f(s;n) ≤ 25ss!(logn)s−2
.

Proof. We proceed by double induction on s and n. For the base case n = 2 and s ≥ 3, we have

f(s; 2) ≤ r2(Ks) < 4s < 25ss!.

Therefore, let us assume that the statement holds for n′ < n. For the other base case s = 3 and
n ≥ 2, let N = 253·6 logn and χ be an n-coloring of the pairs (edges) of [N ] with colors {1, . . . , n}.
We can assume at least half of the edges have color i ≤ n/2, since otherwise a symmetric argument
would follow. Let E ⊂

(
[N ]
2

)
be the set of edges with color at most n/2, and for v ∈ [N ], let

N−E (v) = {u ∈ [N ] : u < v, (u, v) ∈ E},

and d−E(v) = |N−E (v)|. Hence,
∑

v d
−
E(v) = |E| ≥ (1/2)

(
N
2

)
.

By averaging, there is a vertex v ∈ [N ] such that d−E(v) ≥ (N − 1)/4. If there is a pair in N−E (v)
with color j > n/2, then we have a non-increasing triple and we are done. On the other hand, if
no such pair has color j > n/2, since we have

|N−E (v)| ≥ N − 1

4
> 253·6 log(n/2),

we can apply induction to find a non-increasing triple and we are done.
For the inductive step, let us assume that the statement holds for s′ < s and n′ < n. Let

N = 25ss!(logn)s−2
. Let χ be an n-coloring of the pairs of [N ] with colors {1, . . . , n}. By a standard

supersaturation argument, we have at least(
N

f(s−1;n)

)( N−(s−1)
f(s−1;n)−(s−1)

) ≥ (N − s)s−1

f(s− 1;n)s−1
≥ N s−1

2f(s− 1;n)s−1
,

copies of a non-increasing set on s − 1 vertices. By the pigeonhole principle, there are at least
N s−1/(2ns

2
f(s − 1;n)s−1) non-increasing sets on s − 1 vertices with the same color pattern. Let

us fix one such non-increasing set S = {v1, . . . , vs−1} for reference, and let χ(vi, vi+1) = κi. For
convenience, set κ0 = n and κs−1 = 1, which implies

n = κ0 ≥ κ1 ≥ · · · ≥ κs−2 ≥ κs−1 = 1.
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By the pigeonhole principle, there is an i such that 1 ≤ i ≤ s− 1 such that κi−1 − κi ≥ n/s. Since
we have N s−1/(2ns

2
f(s−1;n)s−1) non-increasing sets on s−1 vertices with the same color pattern

as S, there is a subset B ⊂ [N ] and s − 2 vertices u1, . . . , ui−1, ui+1, . . . , us−1 ∈ [N ] such that for
each b ∈ B, we have

1. u1 < · · · < ui−1 < b < ui+1 < · · · < us−1,

2. |B| ≥ N/(2ns2f(s− 1;n)s−1), and

3. S′ = {u1, . . . , ui−1, b, ui+1, . . . , us−1} is non-increasing with the same color pattern as S.

Let us remark that if i = 1, then we have b < u2 < · · · < us−1 for all b ∈ B, and S′ =
{b, u2, . . . , us−1}. Likewise, if i = s − 1, then we have u1 < · · · < us−2 < b for all b ∈ B, and
S′ = {u1, . . . , us−2, b}.

If there is a pair b, b′ ∈ B such that κi−1 ≥ χ(b, b′) ≥ κi, then the set

T = {u1, . . . , ui−1, b, b
′, ui+1, . . . , us−1}

is a nonincreasing set of size s. Indeed, it suffices to check that triples of the form {uj , b, b′} for
j ≤ i − 1, and {b, b′, uj} where j ≥ i + 1, are non-increasing. Assume j ≤ i − 1. By construction,
we have χ(uj , b) = χ(uj , b

′). By Lemma 2.1 and the assumption above, we have

χ(uj , b) = χ(uj , b
′) ≥ κi−1 ≥ χ(b, b′).

Hence, {uj , b, b′} is non-increasing. For j ≥ i + 1, a similar argument shows that {b, b′, uj} is
non-increasing.

Therefore, we can assume that χ uses at most n − n/s = n(s − 1)/s distinct colors on B.
However, this implies

|B| ≥ N

2ns2f(s− 1;n)s−1

≥ 25ss!(logn)s−2

2ns22(s−1)5s−1(s−1)!(logn)s−3

≥ 25ss!(logn)s−2−2(s−1)5s−1(s−1)!(logn)s−3

≥ 25ss!(logn−log(s/(s−1)))s−2

≥ 25ss!(log((s−1)n/s))s−2

≥ f(s; (s− 1)n/s).

By the induction hypothesis, we can find a non-increasing set inside of B.
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3 Ordered graphs

Proof of Theorem 1.4. We proceed by double induction on s and n. The base cases when s = 2
or when n = 2 is trivial. For the inductive step, assume that the statement holds for s′ < s
or n′ < n. Let N = t4sn(log n)s−2, and V = [N ]. For sake of contradiction, suppose there is
χ :
(

[N ]
2

)
→ {red,blue}, such that χ does not produce a red Ks nor a blue P t

n. Then we define

• U = {bN/2c+ 1, bN/2c+ 2, . . . , bN/2c+
(
s+t
t

)
},

• V1 = {1, 2, . . . , bN/2c},

• V2 = {bN/2c+
(
s+t
t

)
+ 1, bN/2c+

(
s+t
t

)
+ 2, . . . , N}

By Ramsey’s theorem, we know that r2(Ks,Kt) <
(
s+t
t

)
. Hence, since |U | =

(
s+t
t

)
, we can

conclude that U contains a blue Kt on vertices u1, . . . , ut ∈ U . For ui ∈ U , let

Nr(ui) = {v ∈ V : χ(ui, v) = red}.

Then we have |Nr(ui)| < r2(Ks−1, P
t
n). Let

V ′1 = V1 \ (Nr(u1) ∪ · · · ∪Nr(ut)),

V ′2 = V2 \ (Nr(u1) ∪ · · · ∪Nr(ut)).

Then notice that we must have either |V ′1 | < r2(Ks, P
t
bn/2c) or |V ′2 | < r(Ks, P

t
bn/2c). Indeed,

otherwise both V ′1 and V ′2 contain a blue P t
bn/2c. Since χ colors all edges between ui and V ′1 ∪ V ′2

blue, we can combine both blue copies of P t
bn/2c with vertices u1, . . . , ut and obtain a blue P2bn/2c+t,

which contains a copy of a blue P t
n since 2bn/2c+ t > n.

Therefore, without loss of generality, we can assume that |V ′1 | < r2(Ks, P
t
bn/2c). On the other

hand, we have

|V ′1 | ≥ bN/2c −
(
s+ t

t

)
− t · r2(Ks−1, P

t
n).

Hence

N ≤ 2r2(Ks, P
t
bn/2c) + 2

(
s+ t

t

)
+ 2t · r2(Ks−1, P

t
n).

By the induction hypothesis, we have

N ≤ t4sn(log n− 1)s−2 + 2 · 4s + 2t · t4s−4n(log n)s−3.

≤ t4sn(log n)s−2 − (s− 2)t4sn(log n)s−3 + (s− 2)2t4sn(log n)s−4 + 2 · 4s + 2t4s−3n(log n)s−3

≤ t4sn(log n)s−2.

6



The proof of Theorem 1.5 is very similar to the argument above.

Proof of Theorem 1.5. We proceed by induction on n. The base case n = 2 is trivial. Now assume
that the statement holds for all n′ < n. Set N = (2s)t(t+1) logn. We start with a standard
supersaturation argument. For sake of contradiction, suppose there is a red/blue coloring χ :(

[N ]
2

)
→ {red,blue} of the pairs of [N ] such that χ does not produce a red Ks nor a blue P t

n. Let
r = r(Ks,Kt+1). Then we must have at least(

N
r

)(N−(t+1)
r−(t+1)

) =
N !

r!

(r − (t+ 1))!

(N − (t+ 1))!
≥ (N − t)t+1

rt+1
≥ N t+1

(2r)t+1

copies of Kt+1. For each blue copy of Kt+1 with vertex set x0 < x1 < · · · < xt, we associate the
middle t−1 vertices {x1, . . . , xt−1}. By the pigeonhole principle, there is a set Y = {x1, x2, . . . , xt−1}
with x1 < x2 < · · · < xt−1, such that Y is the middle set for at least

N t+1

(2r)t+1

1

N t−1
≥ N2

(2r)t+1

blue copies of Kt+1. Let V1 ⊂ {1, 2, . . . , x1 − 1} such that x ∈ V1 if there is a blue Kt+1 whose
middle set is Y and x is the first vertex of the blue Kt+1. Likewise, let V2 ⊂ {xt−1 + 1, . . . , N} such
that x ∈ V1 if there is a blue Kt+1 whose middle set is Y and x is the last vertex of the blue Kt+1.
Hence, we have

|V1||V2| ≥
N2

(2r)t+1
.

Moreover, χ colors all edges between V1 and Y blue, and all edges between V2 and Y blue. Since
|V1|, |V2| < N , we must have |V1|, |V2| ≥ N

(2r)t+1 . Since the Erdős-Szekeres theorem implies that

r2(Ks,Kt+1) ≤
(
s+t−1

t

)
≤ st, we have

min{|V1|, |V2|} ≥
N

(2s)t(t+1)
=

(2s)t(t+1) logn

(2s)t(t+1)
≥ (2s)t(t+1) logbn/2c.

By the inductive hypothesis, both V1 and V2 contain a blue P t
bn/2c. Together with the vertices in

Y , we obtain a blue copy of P t
2bn/2c+t−1. Since 2bn/2c+ t− 1 ≥ n, this completes the proof.
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[7] P. Erdős, Some remarks on the theory of graphs, Bull. Amer. Math. Soc. 53 (1947), 292–294.
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