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Abstract

A k-path is a hypergraph Pk = {e1, e2, . . . , ek} such that |ei ∩ ej | = 1 if |j − i| = 1 and
ei ∩ ej = ∅ otherwise. A k-cycle is a hypergraph Ck = {e1, e2, . . . , ek} obtained from a (k − 1)-
path {e1, e2, . . . , ek−1} by adding an edge ek that shares one vertex with e1, another vertex with
ek−1 and is disjoint from the other edges.

Let exr(n,G) be the maximum number of edges in an r-graph with n vertices not containing
a given r-graph G. We prove that for fixed r ≥ 3, k ≥ 4 and (k, r) 6= (4, 3), for large enough n:

exr(n, Pk) = exr(n,Ck) =

(
n

r

)
−
(
n− bk−12 c

r

)
+

{
0 if k is odd(
n−b k−1

2 c−2
r−2

)
if k is even

and we characterize all the extremal r-graphs. We also solve the case (k, r) = (4, 3), which needs
a special treatment. The case k = 3 was settled by Frankl and Füredi.

This work is the next step in a long line of research beginning with conjectures of Erdős
and Sós from the early 1970’s. In particular, we extend the work (and settle a conjecture) of
Füredi, Jiang and Seiver who solved this problem for Pk when r ≥ 4 and of Füredi and Jiang
who solved it for Ck when r ≥ 5. They used the delta system method, while we use a novel
approach which involves random sampling from the shadow of an r-graph.

1 Introduction

An r-uniform hypergraph, or simply r-graph, is a family of r-element subsets of a finite set.

Given a set F of r-graphs, an F-free r-graph is an r-graph containing none of the members of F .

Let the Turán number of F , exr(n,F), denote the maximum number of edges in an F-free r-graph

on n vertices. When F = {F} we write exr(n, F ). An n-vertex F-free r-graph H is extremal for F
if |H| = exr(n,F). In this paper we promote the idea of determining exr(n,F) for certain classes F
by randomly sampling from the shadow of an F-free r-graph H and using Hall-type combinatorial

lemmas to determine the structure of the shadow and hence the structure of H. This paper focuses

solely on paths and cycles. Our next paper will consider more general structures.
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1.1 Definitions of paths and cycles. There are several natural generalizations to hypergraphs

of paths and cycles in graphs. A Berge k-cycle is a hypergraph consisting of k distinct edges

e0, . . . , ek−1 such that there exist k distinct vertices v0, v1 . . . , vk−1 with vi ∈ ei−1 ∩ ei for all

i = 0, 1, . . . , k − 1 (indices count modulo k). Let BCk denote the family of all Berge k-cycles. A

minimal k-cycle is a Berge cycle {e0, e1, . . . , ek−1} such that ei ∩ ej 6= ∅ if and only if |j − i| = 1

or {i, j} = {0, k − 1}, and no vertex belongs to three edges. Let Ck denote the family of minimal

k-cycles. Furthermore, a linear k-cycle is the member Ck ∈ Ck such that |ei ∩ ei+1| = 1 for all

i = 0, 1, . . . , k − 1.

Every Berge (respectively, minimal and linear) k-path is obtained from a Berge (respectively,

minimal and linear) (k+1)-cycle by deleting one edge. The family of Berge (respectively, minimal)

k-paths is denoted by BPk (respectively, Pk). The linear k-path is denoted by Pk. The most

restricted structures above are linear k-cycles and k-paths. We will refer to these simply as k-cycles

and k-paths. In this paper, we study the extremal functions for k-paths and k-cycles and minimal

k-paths and k-cycles.

1.2 The extremal function for k-cycles and k-paths. The extremal problem for Pk has been

studied extensively. In the case of graphs, the Erdős-Gallai Theorem [9] shows ex(n, Pk) ≤ k−1
2 n

and this is tight whenever k|n. Frankl [11] solved the simplest case for r-graphs, namely exr(n, P2),

answering a question of Erdős and Sós. As far as exact results are concerned, it appears that

even the next smallest case exr(n, P3) was not determined until very recently. Füredi, Jiang and

Seiver [15] determined exr(n, Pk) precisely for all r ≥ 4, k ≥ 3 and n large while also characterizing

the extremal examples. They conjectured a similar result for r = 3. In this paper, we prove their

conjecture and determine the extremal structures for large n.

The extremal problem for r-graphs for C3 is also well-researched [6, 13], indeed, the case r = 2

is precisely Mantel’s theorem from 1907. Frankl and Füredi [13] showed that the unique extremal

r-graph on [n] not containing C3 consists of all edges containing some x ∈ [n], for large enough n.

For r = k = 3 the exact result was proved for all n ≥ 6 by Csákány and Kahn [6]. More recently,

Füredi and Jiang [14] determined the extremal function for Ck for all k ≥ 3, r ≥ 5 and large n;

their results substantially extend earlier results of Erdős and settled a conjecture of the last two

authors for r ≥ 5. They used the delta system method.

Our main result extends the Füredi-Jiang Theorem to the case of r = 3, 4. To describe the

result, we need some notation. Let [n] := {1, 2, . . . , n}, and for L ⊂ [n] let SrL(n) denote the r-graph

on [n] consisting of all r-element subsets of [n] intersecting L.

Theorem 1.1. Let r ≥ 3, k ≥ 4, and ` = bk−12 c. For sufficiently large n,

exr(n, Pk) =

(
n

r

)
−
(
n− `
r

)
+

{
0 if k is odd(
n−`−2
r−2

)
if k is even

with equality only for SrL(n) if k is odd and SrL(n) ∪ F where F is extremal for {P2, 2P1} on n− `
vertices. The same result holds for k-cycles except the case (k, r) = (4, 3), in which case

ex3(n,C4) =

(
n

r

)
−
(
n− 1

r

)
+ max{n− 3, 4bn−14 c}

with equality only for 3-graphs of the form S3
L(n)∪F where F is extremal for P2 on n− 1 vertices.
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Remarks.

(1) By the Erdős-Ko-Rado Theorem [10], exr(n − `, {P2, 2P1}) =
(
n−`−2
r−2

)
for sufficiently large

n, and a result of Erdős and Sós (see [11]) gives ex3(n−1, P2) = max{n−3, 4bn−14 c}. These results

account for the lower order terms in the expressions for exr(n, Pk) and exr(n,Ck) in Theorem 1.1.

(2) The proof of Theorem 1.1 restricted to the case of k-paths is substantially simpler than the

proof for k-cycles.

(3) It was recently shown by Bushaw and Kettle [3] that the Turán problem for disjoint k-paths

can be easily solved once we know the extremal function for a single k-path. As we have now solved

the k-paths problem for all r ≥ 3, the corresponding extremal questions for disjoint k-paths are

also completely solved (for large n). A similar situation likely holds for disjoint k-cycles, as recently

observed by Gu, Li and Shi [16].

1.3 The extremal function for minimal k-cycles and minimal k-paths. The related prob-

lems of determining ex(n,Pk) and exr(n, Ck) have also received considerable attention, indeed the

case of P2 is the celebrated Erdős-Ko-Rado theorem. The last two authors [22] proved that

ex(n,P3) =
(
n−1
r−1
)

for all r ≥ 3 and n ≥ 2r. The case of C3 goes back to Chvátal [5] in 1973,

and in [21] the last two authors proved that exr(n, C3) =
(
n−1
r−1
)

for all r ≥ 3 and n ≥ 3r/2 thereby

settling an old conjecture of Erdős [7]. They also proved some bounds for all k, r and conjectured

that both of these extremal functions are asymptotic to `
(
n
r−1
)
. Füredi, Jiang and Seiver [15] proved

the conjecture in strong form and determined ex(n,Pk) for all k, r ≥ 3 and n large. Füredi and

Jiang [14] later determined ex(n, Ck) exactly for all k ≥ 3, r ≥ 4 and n large. Our second theorem

determines exr(n, Ck) as well as the extremal Ck-free r-graphs for all r ≥ 3 and n large.

Theorem 1.2. Let r ≥ 3, k ≥ 5, and ` = bk−12 c. Then for sufficiently large n,

exr(n, Ck) =

(
n

r

)
−
(
n− `
r

)
+

{
0 if k is odd,

1 if k is even

with equality only for r-graphs of the form SrL(n) with |L| = ` if k is odd, and SrL(n) plus an edge

when k is even. Also for each r ≥ 3,

exr(n, C4) =

(
n

r

)
−
(
n− 1

r

)
+
⌊n− 1

r

⌋
with equality only for r-graphs of the form SrL(n) ∪ F where F comprises bn−1r c disjoint edges.

The proof is very similar to that of Theorem 1.1 and some steps are easier, so we only indicate

the differences in the proofs. The reader may observe that the approach also yields a proof for

minimal paths that is substantially shorter than that in [15]. Furthermore, we believe our methods

with some additional refinements give polynomial bounds on n relative to r and k above which

Theorem 1.1 and Theorem 1.2 hold.

1.4 The extremal problem for Berge k-paths and k-cycles. Interesting results on the

Turán-type problems for Berge k-paths and Berge k-cycles, were obtained by Bollobás and Györi [1]

and in a series of papers by Györi, Katona and Lemons, in particular, in [17, 18, 19]. The bounds

differ from those in Theorems 1.1 and 1.2. In particular, they are linear in n for exr(n,BPk). We do
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not study exr(n,BCk) in this paper. But if we forbid the family of Berge k-cycles or Berge k-paths

in which no vertex belongs to at least 3 edges, then the answer is the same as in Theorem 1.2,

apart from k = 4: the proof of the upper bound simply applies here, and the construction of SrL(n)

if k is odd and SrL(n) plus one edge if k is even also applies. We remark that Turán-type problems

for Berge cycles with other additional restrictions have been extensively studied in the literature.

Very recently, Jiang and Collier-Cartaino [4] showed that a 2-linear r-graph on n vertices with no

2k-cycle has O(n1+1/k) edges, generalizing the Even Cycle Theorem of Bondy and Simonovits [2].

As another instance, for the minimal 4-cycle C = {e, f, g, h} with e∪f = g∪h and e∩f = g∩h = ∅,
Erdős [8] conjectured exr(n,C) = O(nr−1), and this was proved by Füredi [12] (see also [12, 23, 24]).

It seems likely that in this case the extremal C-free r-graphs for r > 3 are those in Theorem 1.2

for k = 4, and Füredi [12] conjectured exr(n,C) ∼
(
n−1
r−1
)
.

1.5 Organization. We prove Theorem 1.1 in four steps in Section 6; first we give an asymptotic

version, then a stability version followed by the proof of the exact result for cycles and the exact

result for paths. Theorem 1.2 is proved in Section 7. In Sections 3–5 we prepare the background

for passing from cycles and paths in the shadow of an r-graph to cycles and paths in the r-graph

itself.

2 Notation and terminology

2.1 General notation. Edges of an r-graph H sometimes will be written as unordered lists,

for instance, xyz represents {x, y, z}. For X ⊂ V (H), let H − X = {e ∈ H : e ∩ X = ∅}. The

codegree of a set S = x1x2 . . . xs of vertices of H is dH(S) = |{e ∈ H : S ⊂ e}|; when s = r− 1, the

neighborhood in H of S is NH(S) = {x : S ∪ {x} ∈ H}, so that |NH(S)| = dH(S). For vertices x, y

in a hypergraph, an x, y-path is a path P = e0e1 . . . ek where x ∈ e0 − e1 and y ∈ ek − ek−1.

2.2 Shadows in hypergraphs. Now we state the crucial definitions involving shadows in hyper-

graphs. Let ∂H denote the (r − 1)-graph of sets contained in some edge of H – this is the shadow

of H. The edges of ∂H will be called the sub-edges of H. If G ⊂ ∂H and F ⊂ H is obtained from

G by adding distinct vertices of V (H)−V (G) to each edge of G, then we say that G expands to F .

For 2 ≤ s < r, let ∂1H := ∂H and ∂sH = ∂s−1∂H. The strategy to prove Theorem 1.1 is to

find a cycle in the shadow of an r-graph that can be expanded to a cycle in the r-graph itself.

Definition 2.1. Let H be an r-graph. For G ⊂ ∂H and e ∈ G, the list of e is

LG(e) = NH(e)− V (G).

The elements of LG(e) are called colors. We let LG =
⋃
e∈G LG(e) and

Ĝ = {e ∪ {x} : e ∈ G, x ∈ LG(e)}.

Note that all these definitions are relative to the fixed host hypergraph H and the fixed subgraph

G of ∂H. A key idea is that if C is a k-cycle or k-path in ∂H and the family {LC(e) : e ∈ C}
has a system of distinct representatives, then Ĉ contains a k-cycle or k-path, and so H contains a

k-cycle or k-path.
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3 Full, superfull and linear hypergraphs

3.1 Full subgraphs. An r-graph H is d-full if every sub-edge of H has codegree at least d. Thus

H is d-full exactly when the minimum non-zero codegree in H is at least d.

The following lemma extends the well-known fact that any graph G has a subgraph of minimum

degree at least d+ 1 with at least |G| − d|V (G)| edges.

Lemma 3.1. For r ≥ 2, d ≥ 1, every n-vertex r-graph H has a (d+ 1)-full subgraph F with

|F | ≥ |H| − d|∂H|.

Proof. A d-sparse sequence S is a maximal sequence e1, e2, . . . , em ∈ ∂H such that dH(e1) ≤ d,

and for all i > 1, ei is contained in at most d edges of H which contain none of e1, e2, . . . , ei−1.

The r-graph F obtained by deleting all edges of H containing at least one member of a d-sparse

sequence S is (d+ 1)-full. Since S has length at most |∂H|, we have |F | ≥ |H| − d|∂H|. 2

Lemma 3.2. Let r ≥ 3, k ≥ 3 and let H be a non-empty rk-full r-graph. Then Ck, Pk−1 ⊂ H.

Proof. Consider the graph F = ∂r−2H. Every edge of H yields a Kr in F , so F contains a 3-cycle

C3. As H is rk-full, each edge of F is in at least rk triangles in F . We claim that F contains a

k-cycle: we start from C3, and for i = 3, . . . , k − 1, obtain an (i+ 1)-cycle Ci+1 from i-cycle Ci by

using one of the at least rk−i+2 triangles containing an edge of Ci and no other vertices of Ci. Let

a k-cycle Ck in F have edges f1, . . . , fk. Choose in H edges e1 = f1∪ g1, . . . , ek = fk ∪ gk so that to

maximize the size of Y =
⋃k
i=1 ei. Suppose C = {e1, . . . , ek} is not a k-cycle in H. Then there are

distinct i, j such that gi∩gj 6= ∅. Pick v ∈ gi∩gj . Let Z = {z ∈ V (H) : (fi∪gi∪{z})−{v} ∈ H}.
Since H is rk-full, |Z| ≥ rk. As C is not a k-cycle, |Y | < rk and so there exists z ∈ Z−Y . Replacing

ei with e = (fi∪gi∪{z})−{v}, we enlarge Y , a contradiction. So H contains Ck and thus Pk−1. 2

3.2 Superfull subgraphs.

Definition 3.3. An `-full r-graph H is `-superfull if for every edge e of H at most one sub-edge

of e has codegree less or equal to rk.

Lemma 3.4. Let k, r ≥ 3, and let H be an `-superfull r-graph such that H contains a minimal

k-cycle (respectively, a minimal k-path). Then H contains a k-cycle (respectively, a k-path).

Proof. The proofs for paths and cycles are similar, so we only do the case of cycles. Let C ⊂ H

be a minimal k-cycle with maximum |V (C)|. If C is not a k-cycle, then we find consecutive edges

f, g ∈ C with |f ∩g| ≥ 2. Let x, y ∈ f ∩g. Since H is `-superfull, we may assume dH(f−{x}) ≥ rk.

Since |V (C)| < rk, we find z 6∈ V (C) such that h = f ∪ {z} − {x} ∈ H. Then C ′ = C ∪ {h} − {f}
has more vertices than C, a contradiction. 2

Lemma 3.5. Let r ≥ 3, k ≥ 4 and let H be an `-superfull r-graph containing a set W of at least

rk vertices such that every (r − 1)-subset of W has codegree exactly `. Let G be the set of all

(r−1)-subsets of W . If H has no k-cycle or no k-path, then for some set L of ` vertices of H−W ,

LG(e) = L for every (r − 1)-set e ⊂W .
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Proof. If e ∪ {x} ∈ H for some x ∈W , then all (r − 1)-subsets of e ∪ {x} have codegree exactly `,

contradicting the fact that H is `-superfull. Thus, NH(e) ∩W = ∅ for all e ∈ G.

Suppose that LG(f) 6= LG(e) for some e, f ∈ G. Then there are e1, e2 ∈ G such that |e1∩e2| = 1

and LG(e2) 6= LG(e1), since from |W | ≥ rk ≥ 4r, for every two distinct e, f ∈ G, there is g ∈ G
sharing exactly one vertex with each of e and f . In particular,

|LG(e1) ∪ LG(e2)| ≥ `+ 1. (1)

Case 1: ` ≥ 2 and H has no k-cycle. Let e3, . . . , e`+1 ∈ G be such that C = {e1, e2, . . . , e`+1}
is an (`+1)-cycle. By (1), the family {LG(ei) : 1 ≤ i ≤ `+1} has a system of distinct representatives

{vi ∈ LG(ei) : 1 ≤ i ≤ `+ 1}. As observed above, vi 6∈W for all i.

Let ei ∩ ei+1 = {wi+1} and Xi = ei ∪ {vi} − {wi, wi+1}, with subscripts modulo ` + 1. Then

each of Xi ∪ {wi} and Xi ∪ {wi+1} has codegree at least rk in H, since H is `-superfull and ei has

codegree exactly `. Thus for each 1 ≤ i ≤ `, we can select edges fi, gi ∈ H with Xi ∪{wi} ⊂ fi and

Xi ⊂ {wi+1} ⊂ gi forming a minimal (2`+ 2)-cycle in H if k is even. We let f`+1 = g`+1 = e`+1 to

obtain a minimal (2`+ 1)-cycle if k is odd. In both cases, H contains a minimal k-cycle, and so by

Lemma 3.4, H contains a k-cycle.

Case 2: ` = 1 and H has no 4-cycle. Let e3 be a sub-edge such that {e1, e2, e3} is a 3-cycle.

For i = 1, 2, 3, let LG(ei) = {vi} and ei ∩ ei+1 = {wi}. Note again that vi 6∈ W . By symmetry, we

may assume that v1 /∈ {v2, v3}. Since H is `-superfull and e1 has codegree exactly `, the sub-edges

e′ = e1 − w1 + v1 and e′′ = e1 − w3 + v1 have codegrees at least 3r. So we can select edges g1 ⊃ e′
and g2 ⊃ e′′, so that {e2, e3, g1, g2} is a minimal 4-cycle in H. Applying Lemma 3.4, we conclude

that H contains a 4-cycle.

Case 3: H has no k-path. We repeat Case 1, except we use an (`+1)-path instead of C. 2

3.3 Linear hypergraphs. In the last two sections we showed how to pass from cycles and paths

in the shadow of full and superfull subgraphs of an r-graph H to cycles and paths in H itself. Here

we consider the case that all sub-edges have bounded codegrees. The following fact is due to Erdős

(see Theorem 1 in [7]):

Proposition 3.6 (Erdős [7]). For r, t ≥ 2 there exists n0 = n0(r, t) such that for all n > n0, every

n-vertex r-graph H with |H| > nr−t
1−r

contains the complete r-partite r-graph Kr
t,...,t.

Definition 3.7. An n-vertex r-graph H is (t, c)-sparse if every t-set of vertices lies in at most c

edges of H. If c = 1, then H is t-linear.

The famous Ruzsa-Szemerédi (6, 3)-Theorem [25] shows that any linear 3-graph on n vertices

and Ω(n2) edges contains C3. The following generalization was proved for r = 3 by Sárkőzy and

Selkow [26] using the Regularity Lemma. We avoid the use of regularity for r > 3:

Proposition 3.8. Fix c > 0 and r, k ≥ 3. Let H be an n-vertex (r − 1, c)-sparse r-graph not

containing Pk or not containing Ck. Then |H| = o(nr−1).

Proof. It suffices to prove the result for Ck since Pk ⊂ Ck+1. In view of the Sárkőzy–Selkow

Theorem [26], we consider only r ≥ 4. Consider the graph with vertex set H in which two vertices
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are adjacent if the intersection of the corresponding edges of H has size r− 1. Since H is (r− 1, c)-

sparse, this graph has maximum degree less than rc, so it contains an independent set H0 of size

at least |H|/rc. This means that H0 is an (r − 1)-linear r-graph.

Assume that ε > 0, n is sufficiently large, and |H0| > εnr−1. A standard averaging argument

shows that there is an r-partite subgraph of H0 with at least (r!/rr)|H0| edges. Let X1, . . . , Xr

be the r parts and consider the edge-colored (r − 1)-partite (r − 1)-graph H ′ ⊂ ∂H0 with parts

X1, . . . , Xr−1 where the color of the edge {x1, . . . , xr−1}, with xi ∈ Xi for i ∈ [r − 1] is the unique

xr ∈ Xr such that {x1, . . . , xr} ∈ H0. Such xr is unique as H0 is (r−1)-linear. We will find a rainbow

Ck in H ′ – in other words a k-cycle in H ′ whose lists have a system of distinct representatives.

Since |H ′| > (εr!/rr)nr−1 and n is large, by Proposition 3.6, there is a complete (r − 1)-partite

(r − 1)-graph K = Kk,k,...,k,s ⊂ H ′ where s = k2r−3 + 1 that has the same (r − 1)-partition as H ′.

Since H0 is (r − 1)-linear, every color class Sc in H ′ is (r − 2)-linear. Now construct a hypergraph

H∗ with vertex set Xr (these are the colors of H ′) and s edges, where the ith edge consists of the

set of colors on edges incident to the ith vertex of K in the part of size s. Note that H∗ need not

be uniform, but its edges have size at most kr−2.

Pick a color c (recall that c is a vertex of H∗). The number of edges of H∗ (these correspond to

vertices of K in Xr−1) containing c is at most kr−2 since Sc is (r− 2)-linear. So H∗ has maximum

degree at most kr−2, edges of size at most kr−2, and size s. Therefore H∗ has a matching M of size

s′ = ds/k2r−4e > k (by the greedy algorithm). This means that K contains the complete (r − 1)-

partite (r − 1)-graph K ′ = Kk,k,...,k,s′ with partite sets X ′1, . . . , X
′
r−1, |X ′1| = . . . = |X ′r−2| = k, and

|X ′r−1| = s′ (here X ′r−1 corresponds to M) such that

no two edges e, e′ with the same color are incident to different vertices in X ′r−1. (2)

Let x ∈ X ′r−1. We claim that

there is a pair {e1, e2} of edges in K ′ of different colors such that e1 ∩ e2 = {x}. (3)

Indeed consider two edges e = {x1, . . . , xr−2, x} and e′ = {x1, . . . , xr−3, x′r−2, x} of K ′ that differ

only in (r− 2)th coordinate. Since H0 is an (r− 1)-linear, they have different colors. Then for any

edge e′′ ∈ K ′ that shares only x with e ∪ e′, either {e, e′′} or {e′, e′′} satisfies (3).

Consider a k-cycle C ′ = {e1, . . . , ek} in K ′ such that e1 and e2 satisfy (3) and for every i 6= 1,

the vertex vi ∈ ei ∩ ei+1 is not in X ′r−1. By (2) and (3), C ′ is a rainbow k-cycle in K ′ and we

expand it to a k-cycle in H. 2

4 Cycles and paths from shadows

We now present the key lemmas which show how to expand k-paths and k-cycles in ∂H to paths

and cycles in H itself. Throughout this section, r, k ≥ 3 and ` =
⌊
k−1
2

⌋
.

4.1 Paths.

Lemma 4.1. Let k ≥ 3, let H be an r-graph and let P = {e0, e1, . . . , e22`+1−1} be a 22`+1-path in

∂H. If |LP (e)| ≥ `+ 1 for all e ∈ P , then P̂ contains a k-path whose first edge contains e0.
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Proof. As b(k− 1)/2c = b(k− 2)/2c for k even, it is enough to consider even k ≥ 4. First we prove

the lemma for k = 4, and then apply an inductive proof. The case k = 4 is split into two cases:

Case 1: LP (e0) ∩ LP (ei) 6= ∅ for some i > 1.

Let α ∈ LP (e0) ∩ LP (ei) and let ei, f, g, h ∈ P form a path vertex-disjoint from e0 - this exists

since P has eight edges. Define L′(e) = LP (e) − {α} for e ∈ P . If we find distinct β ∈ L′(f) and

γ ∈ L′(g), then {e0∪{α}, ei∪{α}, f∪{β}, g∪{γ}} is a 4-path. Otherwise, LP (f) = LP (g) = {α, α′}
for some α′. The same argument with f in place of ei shows LP (g) = LP (h) = {α, α′}, in which

case the required 4-path is {e0 ∪ {α}, ei ∪ {α}, f ∪ {α′}, h ∪ {α′}}.

Case 2: LP (e0) ∩ LP (ei) = ∅ for all i > 1.

Let LP (e0) = {α, β}. If LP (e0) ∩ LP (e1) 6= ∅, say, β ∈ LP (e1), then by the case, we may pick

distinct γ ∈ LP (e2) and δ ∈ LP (e3) so that {e0 ∪ {α}, e1 ∪ {β}, e2 ∪ {γ}, e3 ∪ {δ}} is a 4-path,

as required. Suppose LP (e0) ∩ LP (e1) = ∅. If there is γ ∈ LP (e1) ∩ LP (e3), then choose any

λ ∈ LP (e4) − γ, and the edges e0 ∪ {α}, e1 ∪ {γ}, e3 ∪ {γ}, e4 ∪ {λ} form a 4-path. Otherwise, as

|LP (ei)| ≥ 2 for i ≥ 1, we can choose all distinct α1 ∈ LP (e1), α2 ∈ LP (e2), α3 ∈ LP (e3), and the

edges in the set {ei{αi} : i = 1, 2, 3} together with e0 ∪ {α} form a 4-path.

Now suppose k ≥ 6. If for some i > 1 we have β ∈ LP (e0)∩LP (ei), let P ′ = {ei+1, ei+2, . . . , ei+2k−3}
if i ≤ 2k−3 + 1 and P ′ = {ei−1, ei−2, . . . , ei−2k−3} if i > 2k−3 + 1 (note that i − 2k−3 ≥ 2). Let

e′0 = ei+1 if i ≤ 2k−3 + 1 and e′0 = ei−1 if i > 2k−3 + 1. Let us remove β from all lists of edges

of P ′. Then P ′ is a 2k−3-path all of whose lists have size at least `. So by induction on k, P̂ − β
has a (k − 2)-path {f2, f3, . . . , fk−1} where e′0 ⊂ f2. Set f0 = e0 ∪ {β}, f1 = ei ∪ {β}. Then

{f0, f1, . . . , fk} is the required k-path. So we may assume for all i > 1, LP (e0) ∩ LP (ei) = ∅. If we

find γ ∈ LP (e1)−LP (e0), then remove γ from all lists LP (ei) where i ≥ 2. Let P̂ ′ = P̂−LP (e0)−{γ}
if γ exists and P̂ ′ = P̂−LP (e0) otherwise (in this case LP (e1) ⊂ LP (e0)). By induction, P̂ ′ contains

a (k − 2)-path {f2, f3, . . . , fk−1} with e2 ⊂ f2 as the lists sizes have reduced by at most one. Set

f0 = e0 ∪ {α}, f1 = e1 ∪ {β} with α 6= β, α ∈ LP (e0) and β ∈ LP (e1) ∪ {γ} (if γ exists we may

choose β = γ); this works since |LP (e)| ≥ 2 for e ∈ P . Now {f0, f1, . . . , fk−1} ⊂ P̂ is a k-path. 2

4.2 Cycles. To extend Lemma 4.1 to k-cycles, we need the following technical definition.

Definition 4.2. Let H be an r-graph where r ≥ 3. Let Ψt(H) be the set of complete (r− 1)-partite

(r − 1)-graphs G ⊂ ∂H with parts of size t and |LG(e)| > ` for all e ∈ G, and if r = 3 and k is

odd, then in addition for xy ∈ G, there is xyα ∈ Ĝ such that

(a) min{dH(xα), dH(yα)} ≥ 2 and

(b) max{dH(xα), dH(yα)} ≥ 3k + 1.

The additional technical conditions for r = 3 and k odd will become apparent in the proof of

Case 2 of Lemma 4.4 below. We also will use the following consequence of Hall’s Theorem:

Lemma 4.3. Let p ≥ 1 and q ∈ {2p, 2p + 1}, and let S1, S2, . . . , Sq be sets such that Si ∩ Sj = ∅
for i ≤ p and j ≥ p+ 2, and |Si| > p for i ≤ p and |Si| ≥ p for i > p. Then {S1, S2, . . . , Sq} has a

system of distinct representatives, unless q = 2p+ 1 and all Sj for j > p are all equal and of size p.

Proof. If the lemma is false, then by Hall’s Theorem, there is I ⊂ [q] such that |
⋃
i∈I Si| < |I|.

As Si ∩ Sj = ∅ for i ≤ p and j ≥ p + 2, I ⊂ [p + 1] or I ⊂ [p + 1, q]. It is not possible that
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I ⊂ [p + 1], since |Si| > p for i ≤ p. If I ⊂ [p + 1, q], then since |Si| ≥ p for i ∈ I, the only possi-

bility is q = 2p+1 and I = [p+1, q] and |
⋃
i∈I Si| = p. In this case all Si for i ∈ I are identical. 2

Lemma 4.4. Let r ≥ 3, k ≥ 4, and let H be a Ck-free r-graph. If t is large enough then Ψt(H) = ∅.

Proof. Suppose G ∈ Ψt(H). Let M be a set of s = 2k−2(r − 1) pairwise disjoint edges of G. If

there exists α ∈ LG(e) for all e ∈ M , let F ⊂ G be a complete (r − 1)-partite subgraph of G with

V (F ) ⊂ V (M), |f ∩ V (M)| = 1 for all f ∈ F , and parts of size 2k−2. We show that F̂ contains

a (k − 2)-path avoiding α. For k ≥ 5, F contains a 2k−2-path, so by Lemma 4.1, F̂ contains a

(k − 2)-path. If k = 4 and F has lists of size 1 after removing α, we cannot use Lemma 4.1 to find

a (k − 2)-path as k − 2 < 3. To find a 2-path in F̂ in this case, consider any 3-path {f1, f2, f3}
in F . Suppose βi ∈ LG(fi) − α for i = 1, 2, 3. If β1 = β3, then {f1 ∪ β1, f3 ∪ β1} is a 2-path;

otherwise either {f1 ∪ β1, f2 ∪ β2} or {f2 ∪ β2, f3 ∪ β3} is a 2-path. For all k ≥ 4 we have found

x, y ∈ V (F ) ⊂ V (M) and an xy-path P̂ ⊂ F̂ − {α} of length k − 2. Picking edges e, f ∈ M with

x ∈ e and y ∈ f , P̂ ∪ {e ∪ {α}, f ∪ {α}} is a k-cycle in Ĝ, a contradiction. We conclude that

no color appears in the lists of s pairwise disjoint edges of G. (4)

For every e ∈ G, fix a subset L′G(e) of LG(e) with |L′G(e)| = ` + 1. Let m = bt/(s + 2)c. For

i ∈ [m], let Fi ⊂ G be vertex-disjoint complete (r − 1)-partite graphs with parts of size s+ 2, and

L′i =
⋃
{L′G(e) : e ∈ Fi}. Then |L′1| ≤ (` + 1)|F1| < (s + 2)r. For each color α ∈ L′1, by (4), there

are at most s different i for which α ∈ L′i∩L′1. So L′i∩L′1 6= ∅ for at most (s+ 2)r+1 values i ∈ [m].

Choose t so that m > (s+ 2)r+1. Then for some i > 1, L′i ∩L′1 = ∅, say for i = 2. Let F = F1 ∪F2

and let X,Y be two parts of F . Select e ∈ G with e∩V (F1) = {x} ⊂ X and e∩V (F2) = {y} ⊂ Y .

Case 1: r > 3, or r = 3 and k is even. Let e ∪ {α} ∈ Ĝ. By the symmetry between L′1
and L′2 we may suppose α 6∈ L′1. Let q = k − 1, p = ` and let U be a part of F1 − {x} and V be a

different part in F2−{y}. Let f be any edge f ∈ G with |f ∩U | = 1 = |f ∩V | and |f ∩V (F )| = 2.

Since U and V are subsets of different parts in F and r > 3, or r = 3 and k is even, there is a q-path

Q = {f1, f2, . . . , fq} from x to y in G with fi ⊂ F1 for i ≤ p, fp+1 = f , and fi ⊂ F2 for i > p+ 1. If

Q expands to a q-path Q̂ ⊂ Ĝ−α, then Q̂∪{e∪{α}} is a k-cycle in Ĝ, a contradiction. Therefore

Q does not expand to a q-path in Ĝ− α. (5)

Now let Si = L′G(fi) − α for 1 ≤ i ≤ q. Since L′1 ∩ L′2 = ∅, we have Si ∩ Sj = ∅ for i ≤ p and

j > p + 1, and since α 6∈ L′1, |Si| > p for i ≤ p, and |Si| ≥ |L′G(fi)| − 1 ≥ p for i > p. By (5), the

family {S1, S2, . . . , Sq} has no system of distinct representatives. By Lemma 4.3, all Si for i > p are

identical of size p = `, and since |L′g(fi)| = ` + 1, we have α ∈ L′G(f). Since f was any edge with

|f ∩U | = 1 = |f ∩ V | and |f ∩ V (F )| = 2, G is complete (r− 1)-partite, t is large, and |U |, |V | ≥ s,
we have s disjoint edges of G whose lists all contain α, contradicting (4). This finishes Case 1.

Case 2: r = 3 and k is odd. Let q = k−2 and p = `−1, so q = 2p+1. Since G ∈ Ψt(H), some

xyα ∈ Ĝ satisfies (a) and (b) in Definition 4.2. Again, since L′1 ∩ L′2 = ∅, we may suppose α 6∈ L′1.
By symmetry we may assume dH(xα) > 3k and dH(yα) > 1. Choose an edge yαβ ∈ H with β 6= x.

Note that possibly β ∈ V (G). For i = 1, 2, let Xi = X∩V (Fi)−{x, β} and Yi = Y ∩V (Fi)−{y, β}.
Let f ∈ G be such that

|f ∩X1| = 1 = |f ∩ Y2| if q ≡ 1 (mod 4), |f ∩X2| = 1 = |f ∩ Y1| if q ≡ 3 (mod 4).
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Since q is odd, there is a q-path Q = {f1, f2, . . . , fq} from x to y in G with fi ⊂ F1 for i ≤ p,

fp+1 = f , and fi ⊂ F2 for i > p + 1. If Q expands to a q-path Q̂ ⊂ Ĝ − α − β, then select

γ ∈ V (H) − V (Q̂) − α − β so that xαγ ∈ H – this is possible since dH(xα) > 3k – and then

Q̂ ∪ {xαγ, yαβ} is a k-cycle in Ĝ. So

Q does not expand to a q-path in Ĝ− α− β. (6)

Let Si = L′G(fi) − α − β. Since L′1 ∩ L′2 = ∅, we have Si ∩ Sj = ∅ for i ≤ p and j > p + 1, and

since α 6∈ L′1, |Si| = |L′G(fi) − β| ≥ ` > p for i ≤ p, and |Si| ≥ |L′G(fi)| − 2 ≥ p for i > p. By

(6), the family {S1, S2, . . . , Sq} has no system of distinct representatives. By Lemma 4.3, all Si for

i > p are identical, and in particular, α ∈ L′G(f). Since f was an arbitrary edge joining X1 to Y2
or joining X2 to Y1 and |Xi|, |Yi| ≥ s for i = 1, 2, this contradicts (4). 2

5 Random sampling

We use a random sampling technique and Lemmas 4.4 and 4.1 to find k-cycles and k-paths in

an r-graph H when H has many sub-edges of codegree at least `+ 1.

Lemma 5.1. Let δ > 0, r ≥ 3 and k ≥ 4. Let H be an r-graph, and E ⊂ ∂H with |E| > δnr−1.

Suppose that dH(f) ≥ `+1 for every f ∈ E and, if r = 3 and k is odd, then in addition, for every f =

xy ∈ E there is ef = xyα ∈ H such that min{dH(xα), dH(yα)} ≥ 2 and max{dH(xα), dH(yα)} ≥
3k + 1. Then for large enough n, H contains Pk and Ck.

Proof. By Lemmas 4.4 and 4.1, it is enough to prove that Ψt(H) 6= ∅ for a large enough t.

Let m = `+1 and T be a random subset of V (H) obtained by picking each vertex independently

with probability p = 1/2. Let

F = {f ∈ E : f ⊂ T, |NH(f)− T | ≥ m, ef − f 6⊂ T}.

For f ∈ E and any choice of edges e1, e2, . . . , em ∈ H containing f such that e1 = ef , the probability

that f ⊂ T and ei − f 6⊂ T for i ∈ [m] is exactly pr−1(1− p)m. Therefore

E(|F |) ≥ |E|pr−1(1− p)m ≥ δ2−m−r+1nr−1.

So there is a T ⊂ V (H) with |F | ≥ δ2−m−r+1nr−1. If n is large enough, Proposition 3.6 gives a

complete (r − 1)-partite G ⊂ F with parts of size t. Since |LG(f)| ≥ |NH(f)− T | ≥ m for f ∈ G,

G ∈ Ψt(H) for r ≥ 4 and for even k when r = 3. Suppose r = 3 and k is odd. Then since for every

f ∈ G, ef ∈ Ĝ, again G ∈ Ψt(H). 2

6 Proof of Theorem 1.1

6.1 Part I : Asymptotics.

Theorem 6.1. Let r ≥ 3, k ≥ 4.

(a) If H is an n-vertex (`+ 1)-full r-graph and Ck 6⊂ H or Pk 6⊂ H, then |H| = o(nr−1).

(b) exr(n, Pk) ∼ exr(n,Ck) ∼ `
(
n
r−1
)
.
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Proof. To prove (a), we first show

|∂H| = o(nr−1). (7)

Suppose that |∂H| > δnr−1 where δ > 0, and n is large. If r > 3 or r = 3 and k is even, then

by Lemma 5.1 with E = ∂H, if t is large enough, then H contains a k-cycle and a k-path, a

contradiction.

For r = 3 and k odd, let H∗ be the set of edges of H containing no pair of codegree at least

3k. Then H∗ is (2, 3k)-sparse, so by Proposition 3.8, |H∗| = o(n2). Let F = ∂H − ∂H∗ so that

for every f ∈ F , there is an edge e ∈ H containing f and containing a pair f ′ with dH(f ′) > 3k

(possibly, f ′ = f). Then |F | ≥ |∂H| − |∂H∗| ≥ δn2 − o(n2) > (δ/2)n2 if n is large enough.

If all edges of H containing a pair f ∈ F have all their sub-edges of codegree greater than 3k,

map f to itself. Otherwise, pick an edge of H containing f and containing some pair f ′ of codegree

at most 3k, and map f to f ′ (again f = f ′ is possible). This map is at most 6k to one, and therefore

we have a set E of (δ/12k)n2 pairs in ∂H each of codegree at least ` + 1 in H and each f ∈ E is

contained in some edge ef ∈ H in which some other pair has codegree at least 3k + 1. Since H is

(` + 1)-full, the conditions of Lemma 5.1 hold for E, and so H contains a k-cycle and a k-path, a

contradiction. So we proved (7) in both cases.

Now by Lemma 3.1, H has an r(k + 1)-full subgraph H ′ with

|H ′| ≥ |H| − r(k + 1)|∂H|.

By Lemma 3.2, if H ′ 6= ∅, then Pk, Ck ⊂ H ′ ⊂ H, which is a contradiction. we conclude H ′ = ∅,
and so |H| ≤ r(k + 1)|∂H| = o(nr−1), which proves (a).

Now we determine the asymptotic value of exr(n,Ck) and exr(n, Pk). The construction SrL(n)

in the statement of Theorem 1.1 shows exr(n,Ck), exr(n, Pk) ≥
(
n
r

)
−
(
n−`
r

)
∼ `
(
n
r−1
)
. Suppose H

is an r-graph and Ck 6⊂ H or Pk 6⊂ H. By Lemma 3.1, H has an (` + 1)-full subgraph H ′ with

|H ′| ≥ |H| − `|∂H|. By (a), |H ′| = o(nr−1). So |H| ≤ |H ′|+ `|∂H| ≤ o(nr−1) + `
(
n
r−1
)
. 2

6.2 Part II : Stability.

Theorem 6.2. Fix r ≥ 3, k ≥ 4 and let H be an n-vertex r-graph with |H| ∼ `
(
n
r−1
)

containing

no k-cycle or no k-path. Then there exists G∗ ⊂ ∂H with |G∗| ∼
(
n
r−1
)

and a set L of ` vertices of

H such that LG∗(e) = L for every e ∈ G∗. In particular, |H − L| = o(nr−1).

Proof. Let H∗ be the set of edges of H not containing any sub-edge of codegree at least rk + 1.

Then H∗ is (r − 1, rk)-sparse, so Proposition 3.8 implies |H∗| = o(nr−1). Let H ′ = H − H∗, so

|H ′| ∼ |H|. We construct sequences f1, f2, . . . , fq ∈ ∂H ′ and H0, H1, . . . ,Hq ⊂ H with H0 = H ′ as

follows. Suppose Hi is constructed and let di(f) = dHi(f). A sub-edge f of Hi is of type

(i) if di(f) < `,

(ii) if di(f) = ` and some e ∈ Hi containing f contains a sub-edge g 6= f with di(g) = `,

(iii) if ` < di(f) < rk.

If Hi has no sub-edges of types (i) – (iii), let q = i and stop. Otherwise, let f be a sub-edge of Hi

of minimum type, and Hi+1 = Hi − {e ∈ Hi : f ⊂ e} and fi+1 = f .

Every sub-edge f ∈ ∂Hq has dq(f) ≥ ` (since f is not type (i)) so Hq is certainly `-full. Also,

no edge has more than one sub-edge of codegree less than rk, for then we have a sub-edge of type

(ii) or (iii). Therefore Hq is `-superfull.
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Claim 1. |∂Hq| ∼
(
n
r−1
)
.

Proof. Let E be the set of fi of type (iii), and for each f ∈ E, let ef be any edge of H ′ containing

f . Suppose |E| > δnr−1. If r ≥ 4 or r = 3 and k is even, this contradicts Lemma 5.1. Let r = 3

and k be odd. By definition every edge of Hi containing fi of type (iii) has each of its subedges of

codegree at least ` ≥ 2 and dH(fi) ≥ `+1. Since every edge in H ′ contains some pair of codegree at

least 3k+1 in H, the conditions of Lemma 5.1 are met by E. Again, by this lemma, H contains Pk
and Ck, a contradiction. So, |E| = o(nr−1). Since we have deleted q sub-edges, |∂Hq| ≤

(
n
r−1
)
− q.

Note that if a sub-edge of type (ii) was chosen, then Hi+1 will have a sub-edge of type (i). So, if

ε > 0 and q = ε
(
n
r−1
)
, then for n sufficiently large,

|Hq| ≥ |H ′| − q(`−
1

2
)− rk|E| ≥ `|∂Hq| − o(nr−1) +

ε

2

(
n

r − 1

)
− rk|E| ≥ `|∂Hq|+

ε

4

(
n

r − 1

)
.

By Lemma 3.1, Hq has an (`+ 1)-full subgraph with at least ε
4

(
n
r−1
)

edges, contradicting Theorem

6.1. So q = o
(
nr−1

)
, and `|∂Hq| ≤ |Hq| ≤ `|∂Hq|+ o(nr−1), which imply |∂Hq| ∼

(
n
r−1
)
. 2

Let G′ be the subgraph of ∂Hq formed by the sub-edges of codegree ` in Hq.

Claim 2. |G′| ∼
(
n
r−1
)
.

Proof. Let G′′ = ∂Hq −G′. Since Hq is `-superfull, the codegree of every f ∈ G′′ is at least `+ 1.

So if r ≥ 4 or r = 3 and k is even, then by Lemma 5.1 with E = G′′, |G′′| = o(nr−1). If r = 3 and k

is odd, then ` ≥ 2 and since Hq is `-superfull, the conditions of Lemma 5.1 are satisfied. So again

we get |G′′| = o(nr−1), and thus |G′| ∼
(
n
r−1
)

as required. 2

Claim 3. For each rk-clique K ⊂ G′, there exists L ⊂ V (Hq)\V (K) with |L| = ` and LK = L.

Proof. As Hq is `-superfull, this follows from Lemma 3.5. 2

Claim 4. For some G∗ ⊂ G′, |G∗| ∼
(
n
r−1
)

and all edges of G∗ have the same list in Hq.

Proof. Let N be the number of rk-cliques in G′. Since |G′| ∼
(
n
r−1
)
, we easily see that N ∼

(
n
rk

)
.

By averaging, some edge e∗ ∈ G′ is contained in at least

N

|G′|

(
rk

r − 1

)
rk-cliques in G′.

Since Hq is superfull, if K is an rk-clique in G′ containing e∗ and α ∈ LK(e∗), then for every

v ∈ e∗, the sub-edge e∗ + α − v has codegree more than rk > `, and hence is not in G′. Thus

LK(e∗)∩V (K ′) = ∅ for every two rk-cliques K,K ′ ⊂ G′ containing e∗. We stress that the lists here

are taken in Hq. In particular, there exists a set of ` vertices L ⊂ V (Hq) such that LK(e∗) = L

for every rk-clique K ⊂ G′ containing e∗. Let G∗ ⊂ G′ be the set of edges of G′ contained in a

common rk-clique of G′ with e∗. By Claim 3, LK(f) = L for all f ∈ G∗. The number of pairs

(K, f) where K is an rk-clique in G′ containing e∗ and f ∈ K is disjoint from e∗ is at least

N
(
rk
r−1
)(
rk−r+1
r−1

)
|G′|

.
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The number of rk-cliques containing both e∗ and f is at most
(

n
rk−2r+2

)
. We conclude

|G∗| ≥
N
(
rk
r−1
)(
rk−r+1
r−1

)
|G′|

(
n

rk−2r+2

) .

Using |G′| ∼
(
n
r−1
)

and N ∼
(
n
rk

)
, a straightforward calculation shows |G∗| ∼

(
n
r−1
)
. 2

6.3 Part IIIa : Exact result for cycles. Fix r ≥ 3, k ≥ 4 and let n be large. Let H

be an n-vertex r-graph containing no k-cycle and with |H| =
(
n
r

)
−
(
n−`
r

)
+ f(n, k, r), where

f(n, k, r) = 0 if k is odd, f(n, k, r) = exr(n− `, {P2, 2P1}) =
(
n−`−2
r−2

)
if k is even and (k, r) 6= (4, 3)

and f(n, 4, 3) = ex3(n− `, P2).

Let β = 1/10. Theorem 6.2 implies that for n sufficiently large, exr(n,Ck) < 2`
(
n
r−1
)

and

consequently, there is a c = c(k, r) such that exr(n,Ck) < cnr−1 for all n ≥ 1. Choose α sufficiently

small so that

c2r−1(k3rr)r−1α(r−2) < β/2. (8)

Finally, choose n sufficiently large so that all inequalities involving α, k, r in the proof below are

valid. By Theorem 6.2, there exists L = {x1, . . . , x`} ⊂ [n] such that |H − L| ≤ αnr−1. Let

B = H − L be the set of edges of H that are disjoint from L so |B| < αnr−1. If k is odd, then we

shall show that B = ∅. If k is even then we shall show that B is an extremal family with no P2

and 2P1 unless k = 4, r = 3, in which case B is an extremal family with no P2. This proves both

the extremal result and the characterization of equality. Let

M =

{
e ∈

(
[n]

r

)
−H : e ∩ L 6= ∅

}
,

so that

|B| = |M |+ f(n, k, r).

If M = ∅, then we are done, so we may suppose for a contradiction that M 6= ∅ and |B| > f(n, k, r).

Set m := |M | so that m ≤ |B| < αnr−1.

Claim 1. There exist pairwise disjoint (r − 2)-sets Z1, Z2, . . . , Zkr ⊂ V (H) − L such that for

each i ∈ [kr] and j ∈ [`]

dH(Zi ∪ {xj}) ≥ n− r + 1− krm(
n−`
r−2
) .

If r ≥ 4 there exists an additional (r − 2)-set Zkr+1 that is disjoint from Zi for i ∈ [kr − 1] and

|Zkr+1 ∩ Zkr| = 1

Proof. Pick an (r − 2)-set T ⊂ V (H) − L uniformly at random. Let H = {e ⊂ V (H) : |e| =

r, e 6∈ H}. For j ∈ [`], let

Xj = dH(T ∪ {xj}) = n− r + 1− dH(T ∪ {xj}).

In other words, Xj counts the number of r-sets e 6∈ H with T ∪ {xj} ⊂ e. The number of r-sets

e ⊃ {xj} with e 6∈ H is at most m. For each such e, let Xj(e) be the indicator for the event that

T ⊂ e. Then

E(Xj) =
∑
e

E(Xj(e)) ≤ m
(
r−1
r−2
)(

n−`
r−2
) < rm(

n−`
r−2
) .
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By Markov’s inequality,

P

(
Xj >

krm(
n−`
r−2
)) < 1/k.

This implies that

P

(
∃j : Xj >

krm(
n−`
r−2
)) < `/k < 1/2.

In other words, the number of T for which dH(T ∪ {xj}) ≥ n − r + 1 − krm/
(
n−`
r−2
)

for all j is at

least
(
n−`
r−2
)
/2.

Now consider the family of all (r − 2)-sets described above, and let T1, . . . , Tt be a maximum

matching in this family. If t < kr, then all other sets of this family have an element within ∪iTi,
which implies that the number of such T is less than

(
n−`
r−2
)
/2, because n is sufficiently large. This

contradiction shows that t ≥ kr.
If r ≥ 5, then by a result of Frankl [11] that exr−2(n−`, P2) = O(nr−4), we can find two sets T1,

T2 with |T1 ∩T2| = 1 and then find the remaining kr− 1 sets using the greedy procedure described

above. If r = 4, then we use the fact that a graph with Ω(n2) edges has a 2-path together with a

disjoint from it matching of size kr − 1. 2

Claim 2. Let Z = ∪iZi and Y = V (H)− (L∪Z). Then there exists a set D ⊂ Y such that H

contains all edges of the form Zi ∪ {xj , y}, for all i ∈ [kr], xj ∈ L and y ∈ D and

|D| = n− `kr −
⌈k3rrm
nr−2

⌉
.

Proof. For each i ∈ [kr] and j ∈ [`], let Si,j = {y ∈ Y : Zi ∪ {xj , y} 6∈ H}. Claim 1 implies that

|Si,j | < krm/
(
n−`
r−2
)
. Let S = ∪i,jSi,j . Then

|S| < (kr`)krm(
n−`
r−2
) <

k3rrm

nr−2
.

We may add points arbitrarily to S till D := Y − S has the required size. 2

Claim 3. No two edges e, e′ ∈ B have |e ∩ e′| = 1 and (e − e′) ∩D 6= ∅ and (e′ − e) ∩D 6= ∅.
If k ≥ 5 is odd, then no edge e ∈ B has |e ∩D| ≥ 2. If k ≥ 6 is even and r = 3, then there are no

two disjoint edges each with at least two points in D.

Proof. For k even and |e ∩ e′| = 1 suppose u ∈ e − e′ and v ∈ e′ − e. Then there is a path P

of length k − 2 in H between u and v consisting of edges Zi ∪ {xj , y} with y ∈ D and such that

V (P ) ∩ (e ∪ e′) = {u, v}. All vertices of L will have degree two in P . Now P ∪ {e, e′} is a k-cycle

in H. For k ≥ 5 odd and r ≥ 4, we repeat the same argument except that we use Zkr−1 and Zkr
which have a common intersection point. Thus we use `− 1 of the xj ’s in two edges and the last xj
together with Zkr and (e′ − e) ∩D. Lastly, for k ≥ 5 odd and r = 3, we use a particular Zi twice

to complete the odd cycle (since |Zi| = 1, this approach is valid only for r = 3).
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For k ≥ 5 odd, suppose u, v ∈ e∩D. Then again there is a path P of length k−1 in H between

u and v consisting of edges Zi ∪ {xj , y} with y ∈ D such that V (P ) ∩ e = {u, v}, and P ∪ {e} is a

k-cycle in H.

Finally, if k ≥ 6 is even, r = 3, e = uvw, e′ = u′v′w′ with e∩ e′ = ∅, and {u, v, u′, v′} ⊂ D, then

we form a Ck as follows: If k = 6 we use the edges e, x1z1u, x1z2u
′, e′, x2z3v

′, x2z4v where Zi = {zi}
for all i. If k > 6 then instead of the edge x2z4v, we use an edge x2z4y for some y ∈ D, expand the

path using the remaining xi’s and zi’s, and close the path with x`z2`v. We obtain a cycle of length

2`+ 2 = k as desired. 2

Claim 4. m >
(
n−3r−3k
r−2

)
.

Proof. Suppose that k is even and there are e, e′ ∈ B with |e ∩ e′| = 1. Let u ∈ e − e′ and

v ∈ e′ − e and let f be an r-set with f ∩ (e ∪ e′) = {u} and |f ∩ L| = 1. If no such r-set is an edge

of H, then m ≥
(
n−|e∪e′∪L|

r−2
)

and we are done. So we may assume that there is such an f ∈ H. If

k > 4, then let g be an r-set disjoint from f and with g ∩ (e ∪ e′) = {v} and |g ∩ L| = 1. If k = 4,

then let g be an r-set with g ∩ (e ∪ e′ ∪ f) = {v} ∪ (f ∩ L). Let us argue that g 6∈ H. Indeed, if

k > 4 and g ∈ H, then we find a path P of length k − 2 in H as in Claim 3 containing f and g,

and P ∪ {e, e′} is a k-cycle in H. If k = 4, then e, e′, f, g is already a 4-cycle. Since g 6∈ H we have

g ∈M and hence

m = |M | ≥
(
n− |e ∪ e′ ∪ f ∪ L|

r − 2

)
>

(
n− 3r − 3k

r − 2

)
.

If r > 3, then by Frankl’s theorem [11], |B| > f(n, k, r) implies that there exist e, e′ ∈ B with

|e∩ e′| = 1. Now we are done by the preceding argument. If r = 3 and k = 4, then by definition of

f(n, 4, 3) we find e, e′ with |e ∩ e′| = 1 and we are again done. If r = 3 and k ≥ 6 is even and we

cannot find such e, e′ with a singleton intersection, then there are e, e′ ∈ B with e ∩ e′ = ∅ (this is

easy to see since if we have more than f(n, k, 3) = n− `− 2 triples on n− ` points and no singleton

intersection, then we must have many disjoint complete 3-graphs on four points). Then for every i

and every u ∈ e ∪ e′, dH(xiu) < 3k for otherwise we can build a k-cycle using e, e′ and k − 2 edges

each containing some xi and at most one point of e∪ e′ (many of the edges will not intersect e1∪ e2
if k is large). This immediately gives at least n − 9 − 3k triples in M that contain both xi and u

and Claim 4 is proved in this case.

If k is odd, then pick any edge e ∈ B and apply a similar argument. 2

For 0 ≤ i ≤ r, define Br
i = {e ∈ B : |e ∩ (Y −D)| = i}.

Claim 5. |Br
r | < βm.

Proof. Recall that c satisfies exr(n,Ck) < cnr−1 for all n ≥ 1. As Br
r itself has no Ck, we can

apply this weaker bound to obtain

|Br
r | ≤ exr(n− |D|, Ck) < c(n− |D|)r−1.

Since n is large, Claim 4 implies that c2r−1(`kr)r−1 < (β/2)m and Claim 2 gives

|Br
r | < c

(
`kr +

k3rrm

nr−2

)r−1
< c2r−1

(
(`kr)r−1 +

(
k3rrm

nr−2

)r−1)
<
β

2
m+ c′

mr−1

n(r−2)(r−1)
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where c′ = c2r−1(rrk3)r−1. By (8) and m < αnr−1,

c′
mr−1

n(r−2)(r−1)
= c′m

( m

nr−1

)r−2
≤ c′mαr−2 < β

2
m

and the claim follows. 2

Claim 6. |Br
r−1| < βm for r ≥ 4 and |B3

2 | < 3m/4.

Proof. Partition Br
r−1 into P r ∪Qr, where P r comprises those r-sets e ∈ Br

r−1 with dBr
r−1

(e−
D) = 1. Clearly |P r| <

(|Y |−|D|
r−1

)
< (β/2)m as in Claim 5.

Let us now focus on Qr. Let F be the collection of (r−1)-sets f ⊂ Y −D such that there exists

e ∈ Br
r−1 with f ⊂ e. We now partition the argument depending on whether r = 3 or r ≥ 4

Suppose that r = 3. Then F is a (graph) matching for if we have vw and vw′ in F , then

we have (by definition of Q3) distinct vertices y, y′ and edges vwy, vw′y′ in B3
2 . This contradicts

Claim 3. We will prove that |Q3| ≤ 2m/3. Suppose for contradiction that |Q3| > 2m/3. Then

by averaging, there is a vertex u ∈ D with dB3
2
(u) ≥ d2m/(3n)e := t. Let v1w1, . . . , vtwt be the

neighbors of u in Q3 (meaning that uviwi ∈ Q3 for all i). Note that these pairs form a matching.

Given i < j, there are at least 2(|D| − 2) sets of M containing an element of {vi, wi} or at least

2(|D| − 2) edges of M containing an element of {vj , wj}. Indeed, if this is not the case, then we

can form a copy of Ck using uviwi and uvjwj . Since the pairs {viwi}ti=1 form a matching this

implies that |M | ≥ 2(|D| − 2)(t − 1). Since m is large by Claim 4 and α is small this is at least

2× (0.9)n× (2m3n − 1) > m, contradiction.

Next suppose that r ≥ 4. In this case F is a collection of (r−1)-sets on D that have no singleton

intersection by Claim 3. We conclude by a result of Keevash-Mubayi-Wilson [20] that |F | <
(
n−|D|
r−3

)
and hence that

|Qr| < |F |n <
(
n− |D|
r − 3

)
n.

By Claim 2, there exists C depending only on k and r such that this is at most

Cn
( m

nr−2

)r−3
= Cm

mr−4

n(r−2)(r−3)−1
.

Since m < nr−1, (r − 1)(r − 4) < (r − 2)(r − 3) − 1 and n is large, the last expression is at most

(β/2)m and the claim follows. 2

Since |B| = m + f(n, k, r), Claims 5 and 6 imply that |Br
r−1| + |Br

r | < (2β + 3/4)m < m and

therefore |Br
0 ∪ . . . ∪Br

r−2| > f(n, k, r).

If k is odd, then Br
0 ∪ . . . ∪ Br

r−2 6= ∅. If k is even and r ≥ 4 then there are edges e, e′ ∈
Br

0 ∪ . . .∪Br
r−2 such that |e∩ e′| = 1. This is because for r ≥ 4 the extremal function for P2 is the

same as the extremal function for {P2, 2P1} by [11] as long as n is sufficiently large (in both cases

the extremal example is obtained by taking all r-sets that intersect a specific set of two points). If

(k, r) = (4, 3), then by definition of f(n, 4, 3) there are edges e, e′ ∈ B3
0 ∪B3

1 such that |e ∩ e′| = 1.

Finally, if k ≥ 6 is even, r = 3 and |B3
0 ∪ B3

1 | > f(n, k, 3) = n − ` − 2 then we find two edges

e, e′ ∈ B3
0 ∪B3

1 with |e∩ e′| ≤ 1. In all four cases above we contradict Claim 3. This completes the

proof of Theorem 1.1. 2
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6.4 Part IIIb : Exact result for paths. We closely follow the proof in Section 6.3 except

that we replace f(n, k, r) by h(n, k, r), where h(n, k, r) = 0 if k is odd and h(n, k, r) = exr(n −
`, {P2, 2P1}) if k is even. Claims 1, 2 and 5 follow immediately and Claim 4 follows by a very

similar proof. We strengthen Claim 3 as follows.

Claim 3′. No two edges e, e′ ∈ B have |e ∩ e′| ≤ 1, (e− e′) ∩D 6= ∅ and (e′ − e) ∩D 6= ∅. If k

is odd, then no edge e ∈ B has |e ∩D| ≥ 1.

Proof. In the first case, we may form a path using the two vertices of e4e′ in D and 2` other

edges. This is a path of length 2` + 2 ≥ k. In the case when k is odd, we form a path of length

2`+ 1 = k ending at e by the same procedure. 2

If k is odd, then Claim 3′ implies that B = Br
r and Claim 5 implies the contradiction m ≤

|B| < βm. Let us suppose that k is even. We now observe that Claim 6 also holds (in fact we can

improve the argument when r = 3 to obtain 4(|D|− 1) instead of 2(|D|− 1) as it is easier to form a

k-path), so |Br
0 ∪ . . . ∪Br

r−2| > h(n, k, r) and we find a P2 or a 2P1 in this union. This contradicts

Claim 3′ and completes the proof. 2

7 Proof of Theorem 1.2

In this short section we show how to modify the proof of Theorem 1.1 to prove Theorem 1.2.

The case of minimal paths is easier than minimal cycles, so we concentrate only on minimal cycles.

We only prove the case r = 3 as all other cases are covered by the result of Füredi-Jiang [14] (though

our proof works just as easily for all r ≥ 3 and k ≥ 4). We closely follow the proof of Theorem 1.1.

We may assume that k ≥ 4 is even as the case k = 3 is already solved in [6, 13, 21] and if k ≥ 5 is

odd, then we apply Theorem 1.1 directly. Since Ck ∈ Ck, we immediately obtain a stability result

(Theorem 6.2) for Ck. Now we repeat the proof in Section 6.3 with f(n, k, r) replaced by f(k),

where f(k) = 0 if k is odd, f(k) = b(n− 1)/rc if k = 4 and f(k) = 1 if k ≥ 6 is even. The proofs of

Claims 1, 2, 4, 5 and 6 remain the same or very similar and we do not repeat them. Claim 3 can

be strengthened by replacing |e∩ e′| = 1 with |e∩ e′| ≥ 1 since it is enough to find a minimal cycle.

Suppose that k = 4, ` = 1 and we are trying to find a minimal 4-cycle. Then |B3
2 |+ |B3

3 | < (β+

3/4)m ≤ (1/10+3/4)m < (6/7)m and therefore |B3
0 |+ |B3

1 | = m+f(k)−|B3
2 |−|B3

3 | > f(k)+m/7.

If |B3
0 | > f(k), then we find e, e′ ∈ B3

0 with e ∩ e′ 6= ∅ which contradicts (the strengthened) Claim

3. So we may assume that |B3
0 | ≤ f(k) and |B3

1 | > m/7. Each edge of B3
1 has a vertex in Y −D,

and since n is large, |Y −D| < m/7. Therefore there is a vertex v ∈ Y −D with dB3
1
(v) > 1. This

again contradicts Claim 3.

Now we suppose that k ≥ 6 is even, and f(k) = 1. If |B3
0 | > f(k) = 1, then there are two edges

e, e′ ⊂ D and this contradicts Claim 3 (no matter what their intersection size). We may therefore

assume that |B3
1 | > m/7 and this again contradicts Claim 3 as above. 2
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