
Turán problems in pseudorandom graphs

Xizhi Liu ∗ Dhruv Mubayi † David Munhá Correia ‡
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Abstract

Given a graph F , we consider the problem of determining the densest possible
pseudorandom graph that contains no copy of F . We provide an embedding procedure
that improves a general result of Conlon, Fox, and Zhao which gives an upper bound
on the density. In particular, our result implies that optimally pseudorandom graphs
with density greater than n−1/3 must contain a copy of the Peterson graph, while the
previous best result gives the bound n−1/4. Moreover, we conjecture that the exponent
1/3 in our bound is tight. We also construct the densest known pseudorandom K2,3-
free graphs that are also triangle-free. Finally, we give a different proof for the densest
known construction of clique-free pseudorandom graphs due to Bishnoi, Ihringer, and
Pepe that they have no large clique.

1 Introduction

Given a family F of graphs we say a graph G is F-free if it does not contain any member
in F as a subgraph. A fundamental problem in extremal graph theory is to determine the
maximum number ex(n,F) of edges in an F-free graph on n vertices. Here ex(n,F) is
called the Turán number of F , and the limit π(F ) = limn→∞ ex(n,F)/

(
n
2

)
, whose existence

was proved by Katona, Nemetz, and Simonovits [23], is called the Turán density of F .

For a graph G we use V (G) to denote the vertex set of G, and use v(G) and e(G) to
denote the number of vertices and edges in G, respectively. For a set S ⊂ V (G) we use
eG(S) to denote the number of edges in the induced subgraph G[S]. Given two vertex sets
X,Y ⊂ V (G) we use eG(X,Y ) to denote the number of edges in G that have one vertex in
X and one vertex in Y (here edges with both vertices in X ∩ Y are counted twice, hence
eG(X,X) = 2eG(X)). We will omit the subscript G if it is clear from the context.

Informally, we say that a graph is pseudorandom if its edge distribution behaves like a
random graph. In this note we use the following notation, which was firstly introduced by
Thomason in his fundamental papers [38, 39], to quantify the randomness of a graph.

For two real numbers p ∈ [0, 1] and α ≥ 0, we say a graph G is (p, α)-jumbled if it satisfies

|e(X,Y )− p|X||Y || ≤ α
√

|X||Y | (1)
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for all X,Y ⊂ V (G).

A special family of (p, α)-jumbled graphs are the well-known (n, d, λ)-graphs. A graph G is
an (n, d, λ)-graph if it is a d-regular graph on n vertices and the second largest eigenvalue in
absolute value of its adjacency matrix is λ. The well-known Expander Mixing Lemma (e.g.
see [27, Theorem 2.11]) implies that an (n, d, λ)-graph is (d/n, λ)-jumbled. Conversely, Bilu
and Linial [9] proved that an n-vertex d-regular (p, α)-jumbled graph is an (n, d, λ)-graph
with λ = O(α log(d/α)).

It is known that a random graph G(n, p) is almost surely a (p, α)-jumbled graph with
α = O(

√
np) (see e.g. [27, Corollary 2.3]). The proof of Erdős and Spencer in [21] can be

extended to show that every (p, α)-jumbled graph on n vertices satisfies that α = Ω(
√
np)

(see e.g. [12, 27]), and, in particular, λ = Ω(
√
d) for an (n, d, λ)-graph. Therefore, an n-

vertex (p, α)-jumbled graph with α = Θ(
√
np) can be viewed as optimally pseudorandom.

The tightness of the bound λ = Ω(
√
d) in general is also witnessed by many well-known ex-

plicit constructions. For example, the well-known triangle-free (n, d, λ)-graph constructed
by Alon [2] satisfies d = Θ(n2/3) and λ = O(

√
d).

Constructions of dense pseudorandom graphs that avoid a certain graph as a subgraph are
extremely useful for many problems. In particular, the second author and Verstraëte [32]
recently showed that for every fixed integer t ≥ 3, the existence of Kt-free (n, d, λ)-graphs

with d = Ω(n1−
1

2t−3 ) and λ = O(
√
d) implies the lower bound R(t, n) = Ω∗(nt−1) for the

off-diagonal Ramsey numbers, and this matches the best known upper bound in exponent
(see [31] for recent breakthrough result on R(4, n)). More generally, [32] shows that the
existence of dense F -free pseudorandom graphs implies a good lower bound for the Ramsey
number R(F, n). This motivates us to consider the following pseudorandom version of the
Turán problem.

Let F be a family of graphs and C > 0 be a real number. Let exrand(n,C,F) be the
maximum number of edges in an n-vertex (p, α)-jumbled F-free graph with α ≤ C

√
np.

Note that in the definition of exrand(n,C,F) we do not have any restriction on p.

In many applications, it suffices to know the exponent of exrand(n,C,F). So we let

exp(F) = lim
C→∞

lim sup
n→∞

log (exrand(n,C,F)/n)

log n
.

In other words, exp(F) is the supremum of β such that there exist a constant C and a
sequence (Gn)

∞
n=1 of F-free (pn, αn)-jumbled graphs with

lim
n→∞

v(Gn) = ∞, lim
n→∞

log(pnv(Gn))

log v(Gn)
≥ β, and αn ≤ C

√
pnv(Gn).

Using the Expander Mixing Lemma one can prove that for every integer t ≥ 3 we have
exp(Kt) ≤ 1− 1

2t−3 . Alon’s construction [2] shows that this bound is tight for t = 3, that

is, exp(K3) =
2
3 . It is a major open problem to determine exp(Kt) in general. Alon and

Krivelevich proved in [4] that exp(Kt) ≥ 1− 1
t . Recently, Bishnoi, Ihringer, and Pepe [10]

improved their bound and proved the following result.

Theorem 1.1 (Bishnoi–Ihringer–Pepe [10]). It holds that exp(Kt) ≥ 1− 1
t−1 for all inte-

gers t ≥ 4.

Mattheus and Pavese [30] give a different construction of Kt-free pseudorandom graphs
which also matches the bound in Theorem 1.1. In Section 4, we will present a construction
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that is isomorphic to the construction of Bishnoi, Ihringer, and Pepe [10], and give a new
proof to Theorem 1.1.

For bipartite graphs, the pseudorandom version of the Turán problem does not appear
to differ much from the ordinary Turán problem since many constructions for the lower
bound are pesudorandom. For example, for complete bipartite graphs, the projective norm
graphs (see [25, 5]) are optimally pseudorandom (see [36]) and do not contain Ks,t with
t ≥ (s−1)!+1. Therefore, together with the well known Kövari–Sós–Turán Theorem [26],
we know that exp(Ks,t) = 1 − 1

s for all positive integers s, t with t ≥ (s − 1)! + 1. For
even cycles, constructions from generalized polygons [28] and an old result of Bondy and
Simonovits [13] imply that exp(C6) = 1

3 and exp(C10) = 1
5 . The value of exp(C2k) for

k ̸= 2, 3, 5 are still unknown due to the lack of constructions. For non-bipartite graphs,
exp(F ) is completely different from the ordinary Turán problem (indeed, exp(F ) < 2 while
π(F ) > 0) and there are very graphs F for which exp(F ) is known. For example, for odd
cycles, a construction due to Alon and Kahale [3] together with Proposition 4.12 in [27]
implies that exp(Cℓ) =

2
ℓ for all odd integers ℓ ≥ 3.

The first general upper bound on exp(F ), is due to Kohayakawa, Rödl, Schacht, Sissokho,
and Skokan [24]. They prove that exp(F ) ≤ 1 − 1

2ν(F )−1 for every triangle-free graph F .

Here ν(F ) = 1
2 (d(F ) +D(F ) + 1), where D(F ) = min {2d(F ),∆(F )} and d(F ) is the

degeneracy of F . This was improved via the following result of Conlon, Fox, and Zhao
in [17].

Theorem 1.2 (Conlon–Fox–Zhao [17]). For every graph F , we have exp(F ) ≤ 1 −
1

2d2(F )+1 , where d2(F ) is the minimum real number d such that there is an ordering of

the vertices v1, . . . , vm of F so that N<i(vi) + N<i(vj) ≤ 2d for all edges vivj ∈ F . Here
N<i(v) is the number of neighbors of v in {v1, . . . , vi−1}.

In some cases the bound provided by Theorem 1.2 is sharp (e.g. it is conjectured to be
sharp for cliques), but we speculate that for most graphs F it can be improved. Below we
give an improvement that holds for many graphs.

Theorem 1.3. Let F be a fixed graph and d be such that the following holds. There exists
an ordering v1, v2, . . . , vm of the vertices of F and a 1 ≤ k ≤ m such that:

• F [{vk, . . . , vm}] is a forest,

• for all edges vivj ∈ F with i < j, i < k, we have N<i(vi) +N<i(vj) ≤ 2d, and

• for all edges vivj ∈ F with k ≤ i < j, we have N<k(vi) +N<k(vj) ≤ 2d.

Then, exp(F ) ≤ 1− 1
2d+1 .

Remark. Roughly speaking, Theorem 1.3 says that if there exists an induced forest on an
interval of some ordering of V (F ), then it is possible to improve the bound of Theorem 1.2
by treating this forest as one edge. In fact, we will see later that the proof of Theorem 1.3
can be extended easily to get a more general result (see Theorem 2.5). In addition, it
was observed by a referee that only one-sided jumbledness, namely e(X,Y ) − p|X||Y | ≥
−α
√
|X||Y |, is necessary to prove all of the results,

As an application of Theorem 1.3, we present an upper bound for exp(P), where P is
the Petersen graph. The Petersen graph was considered by several researchers in related
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contexts. For example, Tait and Timmons [37] proved that the Erdős–Rényi orthogonal
polarity graphs [20] (henceforth the Erdős–Rényi graph), which are optimally pseudoran-
dom C4-free graphs, contain the Petersen graph as a subgraph. Conlon, Fox, Sudakov, and
Zhao asked in [16] whether there is a counting lemma for the Petersen graph in an n-vertex
C4-free graph with Ω(n3/2) edges. We know very little about exp(P), for example, it is
not known whether exp(P) ≥ 1

2 . The only lower bound we have is exp(P) ≥ exp(C5) =
2
5 .

In the other direction, the previous best upper bound is exp(P) ≤ 3
4 that follows from [17]

(it is not too difficult to prove that d2(P) = 3
2).

1
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Figure 1: The induced subgraph of P on {2, 4, 5, 7, 8, 10} is a tree.

Theorem 1.4. We have exp(P) ≤ 2
3 .

It is easy to observe that Theorem 1.4 follows from Theorem 1.3 by letting the ordering
of V (P) be (v1, . . . , v10) = (1, 3, 6, 9, 2, 4, 5, 7, 8, 10) and choosing k = 5. We conjecture
that exp(P) = 2

3 . We think that the construction of K3-free pseudorandom graphs due to
Kopparty does not contain the Petersen graph as a subgraph. If this is true, then it will
prove the lower bound exp(P) ≥ 2

3 . For completeness, we include his construction here.

Let p ̸= 3 be a prime, and let Fq be a finite field with where q = ph for some integer h ≥ 1.

Recall that the absolute trace function Tr: Fq → Fp is defined as Tr(α) = α+αp+· · ·+αph−1

for every α ∈ Fq.

Let V = F3
q , T = {x ∈ Fq : Tr(x) ∈ {1,−1}}, and S ⊂ F3

q be a subset defined as

S =
{
(xy, xy2, xy3) : x ∈ T, y ∈ Fq \ {0}

}
.

Kopparty’s construction is the graph G on V in which two vertices u,v ∈ V are adjacent
iff u − v ∈ S. Using some simple linear algebra one can show that G is triangle-free,
and using some results about finite fields and abelian groups one can prove that G is an

(n, d, λ)-graph with n = q3, d = Θ( q
2

p ), and λ = Θ( qp).

Remark. Ferdinand Ihringer informed us that the construction above contains an induced
copy of the Petersen graph when p = 2 and h = 3, and he thinks that, in general,
Kopparty’s construction contains many copies of the Petersen graph. Nevertheless, it is
still might be true that exp(P) = 2

3 .

Our next result about K2,3 was motivated by an old problem of Erdős [19], which asks if

ex(n, {K3, C4}) =
(

1

2
√
2
+ o(1)

)
n3/2
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is true. A construction due to Parsons [33] for the lower bound comes from the Erdős–
Rényi graph by removing half of its vertices. Since the Erdős–Rényi graph is opti-
mally pseudorandom, Parsons’ construction also implies that exrand(n,C, {K3, C4}) ≥(

1
2
√
2
+ o(1)

)
n3/2 for some absolute constant C. In [1], Allen, Keevash, Sudakov, and

Verstraëte proved that the extremal constructions for ex(n, {K3,K2,t}) cannot be bipar-
tite for every t ≥ 3 by constructing a {K3,K2,t}-free graph whose number of edges is
greater than the maximum number of edges in a {K3,K2,t}-free bipartite graph. How-
ever, their construction is (t− 1)-partite, and therefore it does not give a lower bound for
exrand(n,C, {K3,K2,3}). The previous best lower bound is

exrand(n,C, {K3,K2,3}) ≥ exrand(n,C, {K3, C4}) ≥
(

1

2
√
2
− o(1)

)
n3/2

that follows from Parsons’ construction. We improve this and present a construction of
the densest known {K3,K2,3}-free pseudorandom graphs.

Theorem 1.5. We have exrand(n, 2, {K3,K2,3}) ≥
(
1
2 − o(1)

)
n3/2.

Remark. Thang Pham pointed out to us that the following construction1 also provides a
lower bound for exrand(n, 2, {K3,K2,3}). Let q be an odd prime power. The distance graph
D on F2

q is a graph whose vertex set is F2
q , and two points (x1, x2), (y1, y2) are adjacent iff

(x1−y1)2+(x2−y2)2 = 1. The K2,3-freeness of D follows from the fact that any two cycles
have at most two points in the intersection. The K3-freeness of D follows from results
in [8]. The pseudorandomness of D follows from results in [22]. Additionally, a referee
informed us that constructions in an even earlier work by Bannai–Shimabukuro–Tanaka [7]
also satisfy the desired properties.

In Section 2, we prove Theorems 1.3. In Section 3, we prove Theorem 1.5. In Section 4
we present a new proof of Theorem 1.1. Throughout the paper we will omit the use of
floors and ceilings to make the presentation cleaner.

2 Proof of Theorem 1.3

We prove Theorem 1.3 in this section.

Let us present two standard lemmas. We start with the following direct consequence of
the definition of a jumbled graph.

Lemma 2.1. Fix a real number q > 1. Let G be a (p, α)-jumbled graph on n vertices

and let X,Y1, . . . , Ym ⊆ V (G) be pairwise disjoint subsets. If |X||Yi| ≥ q2m
(
α
p

)2
for all

i ∈ [m], then there exists a vertex x ∈ X with at least q−1
q p|Yi| neighbours in Yi for all

i ∈ [m]. In particular, e(X,Yi) > 0 for all i ∈ [m].

Proof. Define Xi := {v ∈ X : |NG(v)∩Yi| < q−1
q p|Yi|} for i ∈ [m]. It suffices to prove that

|Xi| < |X|
m for all i ∈ [m]. Suppose to the contrary that |Xi| ≥ |X|

m for some i ∈ [m]. By
the definition of jumbleness, we get

e(Xi, Yi) ≥ p|Xi||Yi| − α
√
|Xi||Yi| =

(
p− α√

|Xi||Yi|

)
|Xi||Yi|.

1 It was pointed out by a referee to us that this construction is essentially a two-dimensional version of
Brown’s K3,3-free construction [15].
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It follows from |X||Yi| ≥ q2m
(
α
p

)2
that α ≤ p

q

√
|X||Yi|

m ≤ p
q

√
|Xi||Yi|. Therefore, it follows

from the inequality above that

e(Xi, Yi) ≥
q − 1

q
p|Xi||Yi|,

but our definition of Xi yields e(Xi, Yi) <
q−1
q p|Xi||Yi|, a contradiction.

The next lemma is a simple cleaning procedure which is useful in problems concerning
(p, α)-jumbled graphs.

Lemma 2.2. Let G be a (p, α)-jumbled graph on n vertices. Then, for all sets X,Y ⊆
V (G) such that |X||Y | ≥ 100(α/p)2 the following holds. There exist subsets X ′ ⊆ X,Y ′ ⊆
Y respectively of size at least 9|X|/10 and 9|Y |/10 such that all v ∈ X ′ have d(v, Y ′) ≥
p|Y ′|/10 and all u ∈ Y ′ have d(u,X ′) ≥ p|X ′|/10.

Proof. Consider the following process. Start with X0 := X,Y0 := Y and at step i ≥ 0,
do the following. Take Gi := G[Xi, Yi] and if there exists a vertex v ∈ Xi such that
d(v, Yi) < p|Yi|/10 or a vertex v ∈ Yi such that d(v,Xi) < p|Xi|/10, remove it from Xi,
Yi respectively, giving new Xi+1, Yi+1. We claim that this process stops before |Xi| ≤
9|X|/10 or |Yi| ≤ 9|Y |/10, which would imply that we are done. Indeed, if it did not stop
before that, consider the step at which, w.l.o.g., |Xi| = 9|X|/10 and |Yi| ≥ 9|Y |/10. By
construction, every vertex in X \Xi has less than p|Y |/10 ≤ p|Yi|/9 neighbours in Yi. So,

e(X \Xi, Yi) ≤ p|Yi||X \Xi|/9.

On the other hand, the definition of a (p, α)-jumbled graph implies that

e(X \Xi, Yi) ≥ p|Yi||X \Xi| − α
√
|Yi||X \Xi|

which is a contradiction since |X \Xi||Yi| ≥ 1
10 · 9

10 · |X||Y | ≥ 4
(
α
p

)2
.

We also need the following embedding lemma for forests.

Lemma 2.3. Suppose that T is a forest on [m] and G is an n-vertex (p, α)-jumbled graph.
Let X1, . . . , Xm ⊂ V (G) be nonempty pairwise disjoint subsets of V (G) that satisfy

|Xi||Xj | ≥ 2m
(
α

p

)2

for all edges ij in T . Then there exists an embedding of f : T → G such that f(i) ∈ Xi

for all i ∈ [m].

Proof. We prove this lemma by induction on m. The base case m = 1 is clear since X1

is nonempty. So we may assume that m ≥ 2. Without loss of generality, we may assume
that the vertex m is a leaf of T and the vertex m−1 is its neighbor in T . Let T ′ := T −m.
Let

X ′
m−1 := {v ∈ Xm−1 : |NG(v) ∩Xm| ≥ 1}

We claim that |X ′
m−1| ≥ |Xm−1|/2. Indeed, suppose to the contrary that |X ′

m−1| <
|Xm−1|/2. Then we would have |Xm||Xm−1 \ X ′

m−1| ≥ |Xm||Xm−1|/2 ≥ 2m−1(α/p)2 ≥
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2(α/p)2, it follows from Lemma 2.1 (with q =
√
2 > 1) that e(Xm, Xm−1 \ X ′

m−1) > 0.
This contradicts the fact that e(Xm, Xm−1 \X ′

m−1) = 0. Hence, |X ′
m−1| ≥ |Xm−1|/2.

Now apply the induction hypothesis to the sets X1, . . . , Xm−2, X
′
m−1, we obtain an em-

bedding f : T ′ → G such that f(i) ∈ Xi for i ∈ [m − 2] and f(m − 1) ∈ X ′
m−1. By the

definition of X ′
m−1, there exists v ∈ Xm such that {f(m − 1), v} ∈ G. Hence we can

extend f to get an embedding of T to G by setting f(m) = v. This completes the proof
of Lemma 2.3.

Now we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Let G be a (p, α)-jumbled graph with α < pd+1n
C for an arbitrarily

large constant C > m4m. We will show that G contains a copy of F . This implies that

exp(F ) ≤ 1 − 1
2d+1 . Indeed, if C1 > 0 and C2 > (C1C)

2
2d+1 and G is (p, α)-jumbled with

p > C2n
− 1

2d+1 and α < C1
√
pn, then a short calculation shows that α < pd+1n

C and our
result will imply the theorem.

Consider an ordering v1, v2, . . . , vm of the vertices of F and a 1 ≤ k ≤ m such that:

(i) F [{vk, . . . , vm}] is a forest,

(ii) for all edges vivj ∈ F with i < j, i < k, we have N<i(vi) +N<i(vj) ≤ 2d, and

(iii) for all edges vivj ∈ F with k ≤ i < j, we have N<k(vi) +N<k(vj) ≤ 2d.

Let us denote F [{v1, . . . , vk−1}] by F1 and F [{vk, . . . , vm}] by F2. We will first embed a
copy of F1 using (b). At the same time, we will also ensure by (c), that the candidate sets
for the vertices vk, . . . , vm are still large enough so that the forest F2 can be embedded in
them, thus giving an embedding of F .

Take a partition V (G) = V1 ∪ · · · ∪ Vm such that |Vi| ≥ n
2m for all i ∈ [m].

Claim 2.4. Let s ∈ [k − 1]. Then there exist vertices uj ∈ Vj for all j ∈ [s] such that
G[{u1, . . . , us}] contains a copy of F [{v1, . . . , vs}] and

Vi,s := Vi ∩

 ⋂
j≤s : vivj∈F

NG(uj)


satisfies the inequality

|Vi,s| ≥
p|N≤s(vi)||Vi|

2s
≥ p|N≤s(vi)|n

m2m

for all i ∈ [s+ 1,m].

Proof. For every j ∈ [m] let Ij := {ℓ ∈ [j + 1,m] : vjvℓ ∈ F}. The proof is by induction
on s. For the base case s = 1, first observe that

|V1||Vj | ≥
( n

2m

)2
≥ 4m

(
α

p

)2

for all j ∈ I1. Hence we can apply Lemma 2.1 to V1 and Vj for all j ∈ I1 with q = 2
to obtain a vertex u1 ∈ V1 such that d(u1, Vj) ≥ p|Vj |/2 for all j ∈ I1. Now suppose
that s ≥ 2. Apply the induction hypothesis to get ui ∈ Vi for i ∈ [s − 1] such that
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G[{u1, . . . , us−1}] contains a copy of F [{v1, . . . , vs−1}] and for every i ∈ [s,m] the set
Ui := Vi,s−1 satisfies

|Ui| ≥
p|N≤s−1(vi)||Vi|

2s−1
. (2)

Observe that for every j ∈ Is we have

|Us||Uj | ≥
p|N≤s−1(vs)|n

m2m
· p

|N≤s−1(vj)|n
m2m

=
p|N≤s−1(vs)|+|N≤s−1(vj)|n2

m222m
≥ p2dn2

m222m

> 2m
(
α

p

)2

. (3)

In the second last inequality we used (b), and in the last inequality we used the assumption
that α ≤ pd+1n/(m4m). So we may apply Lemma 2.1 to Us and Uj for all j ∈ Is with
q = 2 and obtain us ∈ Us such that d(us, Uj) ≥ p|Uj |/2 for all j ∈ Is. Now by (2), for
every i ∈ Is we have

|Vi,s| ≥ |Ui ∩N(us)| ≥
p

2

p|N≤s−1(vi)||Vi|
2s−1

=
p|N≤s(vi)||Vi|

2s
.

On the other hand, by (2), for every i ∈ [s+ 1,m] \ Is, we have

|Vi,s| = |Ui| ≥
p|N≤s−1(vi)||Vi|

2s−1
≥ p|N≤s(vi)||Vi|

2s
.

Finally, it is clear that G[{u1, u2, . . . , us}] contains a copy of F [{v1, v2, . . . , vs}], so the
proof of the claim is complete.

Applying Claim 2.4 with s = k − 1 we obtain uj ∈ Vj for j ∈ [k − 1] such that
G[{u1, . . . , uk−1}] contains a copy of F1 and

|Vi,k−1| ≥
p|N<k(vi)|n

m2m

for all i ∈ [k,m]. Now that the first portion of the graph has been embedded, it remains
only to embed a forest on the given candidate sets Xi := Vi,k−1. If we find an embedding
f : F2 → G with f(vi) ∈ Xi for all i ∈ [k,m], then G[{u1, . . . , uk−1, f(vk), . . . , f(vm)}]
contains a copy of F . Similar to (3), by (c) and Claim 2.4, for every {vi, vj} ∈ F2 we have

|Xi||Xj | ≥
p|N<k(vi)|n

m2m
· p

|N<k(vj)|n

m2m
=
p|N<k(vi)|+|N<k(vj)|n2

m222m
≥ p2dn2

m222m
> 2m

(
α

p

)2

.

Applying Lemma 2.3 with T = F2 and the sets Xk, . . . , Xm, we know that such an em-
bedding f exists. This completes the proof of Theorem 1.3.

We remark that there are some graphs to which the precise statement of the above theorem
cannot be applied in order to get a tight result - for example, odd cycles. However, the
proof can be slightly adapted to deal with them. For odd cycles we take k = 2, so that
F [vk, . . . , vm] is a path; this F2 can then be embedded in a different way than in the
general theorem above (see [17] for more details), in particular, using also the expansion
properties of (α, p)-jumbled graphs.
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We now give a further generalization of Theorem 1.3 where instead of partitioning the
graph into two parts which are dealt with separately, we partition the graph into several
parts.

For every graph F on m vertices, let d̂2(F ) denote the smallest number d for which there
exists an ordering v1, v2, . . . , vm of V (F ) such that the following statements hold for some
ℓ ∈ N and 1 = k1 < k2 < · · · < kℓ < kℓ+1 = m:

(i) F [{vks , . . . , vks+1−1}] is a forest for all s ∈ [ℓ],

(ii) for all edges vivj ∈ F \
(⋃ℓ

s=1 F [{vks , . . . , vks+1−1}]
)
with i < j, we have N<i(vi) +

N<i(vj) ≤ 2d, and

(iii) for all s ∈ [ℓ] and for all edges vivj ∈ F [{vks , . . . , vks+1−1}], we have N<ks(vi) +
N<ks(vj) ≤ 2d.

It is clear that d̂2(F ) ≤ d2(F ) since in the definition of d2(F ) we always let ℓ = m− 1 and
ki = i for all i ∈ [m].

Theorem 2.5. For every graph F we have exp(F ) ≤ 1− 1
2d̂2(F )+1

.

Remark. One can extend Theorem 2.5 to get a counting result for F in pseudorandom
graphs that improves Theorem 1.14 in [17] (by replacing d2(F ) there with d̂2(F ) here).
This could result in some improvements for the corresponding Turán and Ramsey problems
in pseudorandom graphs (see Theorems 1.4, 1.5, and 1.6 in [17]).

3 {K2,3, K3}-free pseudorandom graphs

In this section we present a construction of {K2,3,K3}-free pseudorandom graphs thereby
proving Theorem 1.5.

Suppose that F is a finite group and S ⊂ H is a symmetric subset, i.e. S = S−1. Then
the Cayley graph Cay(H,S) is a graph on F with edge set

{{v, vs} : v ∈ H and s ∈ S} .

The spectrum, i.e. the eigenvalues of the adjacency matrix, of a Cayley graph can be
represented by the characters of of F (see e.g. [29, 6]). For our purpose, we only need the
following result for the case that F is an abelian group.

Recall that an abelian group H can be represented as H =
⊕k

i=1 Zni for some integers k
and n1, . . . , nk. For abelian groups we have a simple description of all the characters. For
each a = (a1, . . . , ak) ∈

⊕k
i=1 Zni we have a character ψa : H → C defined by

ψa(h1, . . . , hk) =
k∏

i=1

ωaihi
ni

,

where ωt = e2πi/t.
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Lemma 3.1 (see e.g. [29, 6]). Suppose that H =
⊕k

i=1 Zni is an abelian group. Then the
spectrum of the Cayley graph Cay(H,S) is{∑

s∈S
ψa(s) : a ∈ H

}
.

Our main result is as follows.

Theorem 3.2. Suppose that p ̸= 3 is a prime number, H = Z2
p, and

S =
{
(x, x3) : x ∈ Zp \ {0}

}
.

Then Cay(H,S) is a {K3,K2,3}-free (n, d, λ)-graph with n = p2, d = p − 1, and λ ≤
2
√
p+ 1.

We will use the following well known estimate of Weil in the proof of Theorem 3.2.

Recall that the order of a character χ is the smallest positive integer d such that χd = χ0,
where χ0 is the trivial character.

Theorem 3.3 (see e.g. [11, Theorem 13.3]). Let χ be a character of order d > 1. Suppose
that f(X) ∈ F[X] has precisely m distinct zeros and it is not a dth power, that is f(X) is
not the form c (g(X))d, where c ∈ F and g(X) ∈ F[X]. Then∣∣∣∣∣∑

x∈F
χ (f(x))

∣∣∣∣∣ ≤ (m− 1)
√
p.

Proof of Theorem 3.2. Let G = Cay(H,S). Let n = p2. It is clear that the number of
vertices in G is n, and it follows from the definition of Cayley graphs that G is |S|-regular.
Let λ1 ≥ · · · ≥ λn be the eigenvalues of the adjacency matrix AG of G. Since G is regular,
we have λ1 = |S| = p− 1.

First we prove that G is K3-free. Suppose to the contrary that there exist three vertices
u,v,w ∈ Z2

p that form a copy of K3 in G. Assume that v− u = (a, a3), w− v = (b, b3),
and u−w = (c, c3). Then

a+ b+ c = 0,

a3 + b3 + c3 = 0.

Therefore,

0 = (a+ b+ c)(a2 + b2 + c2)− (a3 + b3 + c3) = ab(a+ b) + ac(a+ c) + bc(b+ c)

= −3abc.

Since p ̸= 3, we must have 0 ∈ {a, b, c}, a contradiction.

Next we prove that G is K2,3-free. It is equivalent to show that every pair of vertices
{u,v} ⊂ Z2

p has at most two common neighbors. Let (a, b) = u− v. A common neighbor
of u and v implies that there exist x, y ∈ Zp \ {0} such that

y − x = a, and

y3 − x3 = b.
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These two equations imply that (x+a)3 = x3+b, which simplifies to 3ax2+3a2x+a3−b = 0.
Since (a, b) ̸= (0, 0) and p ̸= 3, this quadratic equation in x has at most two solutions in
Zp \ {0}. Therefore, u and v have at most two common neighbors.

Finally, we prove that |λi| ≤ 2
√
p for all i ∈ [2, n]. By Lemma 3.1, for every i ∈ [n] there

exists (a1, a2) ∈ Z2
p such that

λi = λ(a1,a2) =
∑
s∈S

φ(a1,a2)(s) =

p−1∑
x=1

ωa1x+a2x3

p

If (a1, a2) = (0, 0), then λ(a1,a2) = |S| = p − 1, and this corresponds to λ1. So we may
assume that (a1, a2) ̸= (0, 0).

First, it is easy to see that the character χ : Zp → C× defined by χ(α) = ωα
p for all

α ∈ Zp has order p. On the other hand, since (a1, a2) ̸= (0, 0) and p ̸= 3, the polynomial
f(X) = a1X + a2X

3 is not of the form c (g(X))p for any c ∈ Zp and for any polynomial
g(X). Therefore, it follows from Theorem 3.3 that∣∣∣∣∣

p−1∑
x=1

ωa1x+a2x3

p

∣∣∣∣∣ =
∣∣∣∣∣
p−1∑
x=0

ωa1x+a2x3

p − 1

∣∣∣∣∣ ≤
∣∣∣∣∣
p−1∑
x=0

ωa1x+a2x3

p

∣∣∣∣∣+ 1 ≤ 2
√
p+ 1.

This implies that |λi| ≤ 2
√
p + 1 for all i ∈ [2, n], and hence completes the proof of

Theorem 3.2.

4 Kt-free pseudorandom graphs

In this section, we present a construction that is isomorphic to the construction of Bishnoi,
Ihringer, and Pepe [10], and provide a new proof of Theorem 1.1. For simplicity, we omit
the short proof of the (p, α)-jumbledness part (which can be found in [4, p.220] and [10,
Theorem 9]) and focus only on the Kt-freeness part.

Denote by PG(t−1, q) the (t−1)-dimensional projective space over Fq, i.e. PG(t−1, q) =
Ft
q/∼, where two vectors x,y ∈ Ft

q are equivalent under ∼ if there exists a non-zero element
a ∈ Fq such that x = ay. For a vector x ∈ Ft

q we use JxK to denote its equivalence class in

Ft
q/∼. It is easy to see that the number of points in PG(t− 1, q) is qt−1

q−1 = (1 + o(1))qt−1.

Recall that the dot-product x · y of two vectors x,y ∈ Ft
q is defined as x · y =

∑t
i=1 xiyi.

A point x = (x1, . . . , xt) ∈ Ft
q is called

• absolute if x · x = 0,

• square if x · x = a2 for some a ∈ Fq,

• non-square if x · x ̸= a2 for all a ∈ Fq,

We use X0(t, q), X□(t, q), X⊠(t, q) to denote the collection of all absolute points, square
points, and non-square points in Ft

q, respectively. If t and q are clear from the context,
we will omit them and use X0, X□, X⊠ for simplicity. It is easy to see from the definition
that if x ∈ X0, x ∈ X□, or x ∈ X⊠, then JxK ⊂ X0, JxK ⊂ X□, or JxK ⊂ X⊠, respectively.
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Recall that a character of a group H is a homomorphism ψ : H → C×, and the quadratic
character χ(·) of Fq is defined as

χ(x) =


0, if x = 0,

1, if x is a square,

−1, if x is a non-square.

Let AK(t−1, q) be the graph whose vertices are non-absolute points of PG(t−1, q) and two
vertices JxK and JyK are adjacent iff x · y = 0. Note that AK(2, q) is just the Erdős–Renyi
graph. In [4], Alon and Krivelevich proved that AK(t− 1, q) is a Kt+1-free (n, d, λ)-graph

with n = (1 + o(1))qt−1, d = Θ(n1−
1

t−1 ), and λ = Θ(
√
d).

Parsons [33] proved that for q odd, the induced subgraph of AK(2, q) on X⊠/∼ is K3-free.
Indeed, suppose to the contrary that there exist three distinct points Jx1K, Jx2K, Jx3K ∈
X⊠/∼ that induce a copy of K3 in AK(2, q). Then x1,x2,x3 are pairwise orthogonal,
which means that there exists a non-zero element a ∈ Fq such that x3 = ax1 × x2, where
x1 × x2 is the cross-product of x1 and x2. Therefore, we have

x3 · x3 = (ax1 × x2) · (ax1 × x2) = a2 · (x1 · x1) · (x2 · x2) ,

where in the last equality we used the fact that x1 · x2 = 0. Applying the quadratic
character χ(·) to both sides of the equation above we obtain

−1 = χ(x3 · x3) = χ(a2) · χ(x1 · x1) · χ(x2 · x2) = 1 · (−1) · (−1) = 1,

a contradiction. Therefore, the induced subgraph of AK(2, q) on X⊠/∼ is K3-free.

Our aim in this section is to extend Parsons’ proof to the following general symmetric
bilinear forms on Ft × Ft for all t ≥ 4.

Fix a non-degenerate symmetric bilinear form B : Ft × Ft → F such that

B(x,y) =
∑
i∈[t]

aixiyi for all (x,y) ∈ Ft × Ft, (4)

where a1, . . . , at are non-zero elements in Fq. A point x = (x1, . . . , xt) ∈ Ft
q is called

• B-absolute if B(x,x) = 0,

• B-square if B(x,x) = a2 for some a ∈ Fq,

• non-B-square if B(x,x) ̸= a2 for all a ∈ Fq,

We use XB,0(t, q), XB,□(t, q), XB,⊠(t, q) to denote the collection of all B-absolute points,
B-square points, and non-B-square points in Ft

q, respectively. Similarly, let AKB(t− 1, q)
be the graph whose vertices are non-B-absolute points of PG(t − 1, q) and two vertices
JxK and JyK are adjacent iff B(x,y) = 0.

The cross-product used by Parsons [33] in F3
q can be extended to t-dimensional space Ft

q

under the general symmetric bilinear form defined by (4) for every t ≥ 4 by letting

x1 × · · · × xt−1 := ⋆(x1 ∧ · · · ∧ xt−1).
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Here ⋆ :
∧t−1 Ft

q →
∧1 Ft

q is the Hodge star map defined by

x ∧ (⋆y) := B(x,y)e1 ∧ · · · ∧ et for all x,y ∈
t−1∧

Ft
q,

where e1 := (1, 0, . . . , 0), · · · , et := (0, . . . , 0, 1) (see [14, Section 3]). We refer the reader
to [35, 18] for more discussions on this definition. Here we only list some basic properties
of the cross-product defined above.

Fact 4.1 (see e.g. [18]). Suppose that x1, . . . ,xt−1 ∈ Ft
q are t− 1 vectors. Then

(i) x1 × · · · × xt−1 is skew-symmetric and linear in each xi,

(ii) x1 × · · · × xt−1 is a vector that is orthogonal to each of x1, . . . ,xt−1,

(iii) x1 × · · · × xt−1 = 0 iff x1, . . . ,xt−1 are linearly dependent.

A proof of the following theorem for the case where B(·, ·) is the dot-product can be found
in [34, 18]. In fact, their proof2 works for the symmetric bilinear form defined by (4)
(see [34, Proof C] and[18, p.888] for more details).

Theorem 4.2 (see e.g. [18]). Let x1, . . . ,xt−1,y1, . . . ,yt−1 ∈ Ft
q and B : Ft × Ft → F be

the non-degenerate symmetric bilinear form defined by (4). Then

B(x1 × · · · × xt−1, y1 × · · · × yt−1) =
∏
i∈[t]

ai · det

 B(x1,y1) . . . B(x1,yt−1)
...

. . .
...

B(xt−1,y1) . . . B(xt−1,yt−1)

 .
Our main result in this section is as follows.

Theorem 4.3. Suppose that q is an odd prime power, t ≥ 3 is an integer, and B : Ft ×
Ft → F is the non-degenerate symmetric bilinear form defined by (4). Then the following
statements hold.

(i) If t is odd and
∏

i∈[t] ai is a square, then the induced subgraph of AKB(t − 1, q) on
XB,⊠/∼ is a Kt-free.

(ii) If t is even and
∏

i∈[t] ai is a non-square, then the induced subgraph of AKB(t− 1, q)
on XB,⊠/∼ is a Kt-free.

(iii) If
∏

i∈[t] ai is a non-square, then the induced subgraph of AKB(t− 1, q) on XB,□/∼
is a Kt-free.

Proof. Suppose that there exists a set S = {Jx1K, . . . , JxtK} ⊂ (XB,⊠ ∪ XB,□)/∼ is a set
of t distinct points such that the induced subgraph of AKB(t − 1, q) on S is complete.
Then it follows from Fact 4.1 that there exists a nonzero element a ∈ Fq such that xt =
ax1 × · · · × xt−1. Therefore, by Theorem 4.2, we have

B(xt,xt) = B(ax1 × · · · × xt−1, ax1 × · · · × xt−1)

= a2 ·
∏
i∈[t]

ai · det

 B(x1,x1) . . . B(x1,xt−1)
...

. . .
...

B(xt−1,x1) . . . B(xt−1,xt−1)

 = a2 ·
∏
i∈[t]

ai ·
t−1∏
i=1

B (xi,xi) .

2 We did not check the details to confirm whether it works for a general non-degenerate symmetric bilinear
form, but it seems that for the general case, one just needs to replace

∏
i∈[t] ai with det(M) in Theorem 4.2,

where M ∈ Ft×t
q is the associated matrix of the bilinear form.
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In the last equality, we used the fact that B(xi,xj) = 0 for all i ̸= j. Applying the
quadratic character χ(·) to both sides of the equation above, we obtain

χ (B(xt,xt)) = χ

a2 · ∏
i∈[t]

ai ·
t−1∏
i=1

B (xi,xi)


= χ(a2) · χ

∏
i∈[t]

ai

 ·
t−1∏
i=1

χ (B(xi,xi)) = χ

∏
i∈[t]

ai

 ·
t−1∏
i=1

χ (B(xi,xi)) ,

which is impossible in the following three cases: t is odd,
∏

i∈[t] ai is a square, and S ⊂
XB,⊠/∼; t is even,

∏
i∈[t] ai is a non-square, and S ⊂ XB,⊠/∼;

∏
i∈[t] ai is a non-square,

and S ⊂ XB,□/∼.
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