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Abstract. The feasible region ΩindpF q of a graph F is the collection of points px, yq in
the unit square such that there exists a sequence of graphs whose edge densities approach x

and whose induced F -densities approach y. A complete description of ΩindpF q is not
known for any F with at least four vertices that is not a clique or an independent set.
The feasible region provides a lot of combinatorial information about F . For example, the
supremum of y over all px, yq P ΩindpF q is the inducibility of F and ΩindpKrq yields the
Kruskal-Katona and clique density theorems.

We begin a systematic study of ΩindpF q by proving some general statements about the
shape of ΩindpF q and giving results for some specific graphs F . Many of our theorems
apply to the more general setting of quantum graphs. For example, we prove a bound for
quantum graphs that generalizes an old result of Bollobás for the number of cliques in
a graph with given edge density. We also consider the problems of determining ΩindpF q

when F “ K´
r , F is a star, or F is a complete bipartite graph. In the case of K´

r our
results sharpen those predicted by the edge-statistics conjecture of Alon et. al. while also
extending a theorem of Hirst for K´

4 that was proved using computer aided techniques
and flag algebras. The case of the 4-cycle seems particularly interesting and we conjecture
that ΩindpC4q is determined by the solution to the triangle density problem, which has
been solved by Razborov.

§1. Introduction

1.1. Feasible regions. Given a graph G denote by V pGq and EpGq the vertex set and
edge set of G respectively. Let vpGq “ |V pGq|, epGq “ |EpGq|, and call %pGq “ epGq{

`

vpGq
2

˘

the edge density of G. For two graphs F and G denote by NpF,Gq the number of induced
copies of F in G, and let %pF,Gq “ NpF,Gq{

`

vpGq
vpF q

˘

be the induced F -density of G.
A quantum graph Q is a formal linear combination of finitely many graphs, i.e., an

expression of the form

Q “
m
ÿ

i“1
λiFi ,

where m is a nonnegative integer, the numbers λ1, . . . , λm are real, and F1, . . . , Fm are
graphs. We call Fi a constituent of Q if λi ‰ 0. Two quantum graphs Q, Q1 are equal if
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they have the same constituents and the same (nonzero) coefficients for each constituent.
The complement of Q is Q “

řm
i“1 λiF i, where F i denotes the complement of Fi for each

i P rms. A quantum graph Q is self-complementary if Q “ Q. Every graph parameter
f can be extended linearly to quantum graphs by stipulating fpQq “

řm
i“1 λifpFiq. In

particular,

NpQ,Gq “
m
ÿ

i“1
λiNpFi, Gq and %pQ,Gq “

m
ÿ

i“1
λi%pFi, Gq .

The main notion investigated in this article is the following.

Definition 1.1 (Feasible region). Let Q “
řm
i“1 λiFi be a quantum graph.

‚ A sequence pGnq
8

n“1 of graphs is Q-good if limnÑ8 vpGnq “ 8, limnÑ8 %pGnq exists,
and for every i P rms the limit limnÑ8 %pFi, Gnq exists.

‚ A Q-good sequence of graphs pGnq
8

n“1 realizes a point px, yq P r0, 1s ˆR if

lim
nÑ8

%pGnq “ x and lim
nÑ8

%pQ,Gnq “ y.

‚ The feasible region ΩindpQq of (induced)Q is the collection of points px, yq P r0, 1sˆR
realized by some Q-good sequence pGnq

8

n“1.

We commence a systematic study of the feasible region of quantum graphs Q. As we
shall see soon, ΩindpQq is determined by its boundary, so it suffices to consider for every
x P r0, 1s the numbers

ipQ, xq “ infty : px, yq P ΩindpQqu and IpQ, xq “ supty : px, yq P ΩindpQqu .

Determining the values of ipQ, xq and IpQ, xq under some constraints is a central topic
in extremal combinatorics. For example, the classical Kruskal-Katona theorem [1313, 1414]
implies

IpKr, xq “ xr{2 for all r ě 2 and x P r0, 1s .

Turán’s seminal theorem [2727] and supersaturation show that for every integer r ě 3,

ipKr, xq ą 0 ðñ x ą pr ´ 2q{pr ´ 1q .

Determining ipKr, xq for all x ą pr´2q{pr´1q is highly nontrivial and was solved for r “ 3
by Razborov [2222], for r “ 4 by Nikiforov [1919], and for all r by the third author [2323].

Regarding quantum graphs with at least two constituents, a classical result of Good-
man [88] says that ipK3 ` K3, xq ě 1{4 and equality holds only for x “ 1{2. Erdős [55]
conjectured that ipKr`Kr, xq ě 21´pr

2q for r ě 4 with equality for x “ 1{2. This conjecture
was disproved by Thomason [2626] for all r ě 4, but even for r “ 4 the minimum value of
ipKr `Kr, xq is still unknown.
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For a single graph F the function IpF, xq is closely related to the inducibility

indpF q “ lim
nÑ8

max t%pF,Gq : vpGq “ nu

of F introduced by Pippenger and Golumbic [2121]. In fact, indpF q “ maxtIpF, xq : x P r0, 1su,
where the maximum exists due to the continuity of IpF, xq (see Theorem 1.21.2 below).

Determining the feasible region ΩindpF q of a single graph F is a special case of the
more general problem to determine the graph profile T pFq of a given finite family of
graphs F “ tF1, . . . , Fku. Here T pFq Ď r0, 1sk is the collection of limit points of
pp%pF1, Giq, . . . , %pFk, Giqqq

8

i“1 with vpGiq Ñ 8. Besides the clique density theorem, very
few results are known about graph profiles (see [44,99,1010,1212]).

Our results are of two flavors.
‚ We prove some general results about the shape of ΩindpQq. Our main result here
is Theorem 1.21.2, which states that IpQ, xq and ipQ, xq are continuous and almost
everywhere differentiable.

‚ We study ΩindpQq for some specific choices of Q for which indpQq has been investi-
gated by many researchers. We focus on quantum graphs whose constituents are
complete multipartite graphs and prove a general upper bound for IpQ, xq. Prior
to this work, ΩindpF q for a single graph F was determined only when F is a clique
or an independent set. Here we extend this to the case F “ K1,2 and also obtain
results for complete bipartite graphs. Furthermore we study ΩindpK

´
r q, where K´

r

arises from the clique Kr by the deletion of a single edge. As a consequence of our
results, we determine the inducibility indpK´

r q, which is new for r ě 5.

1.2. General results. The following result describes the shape of the feasible region of
an arbitrary quantum graph.

Theorem 1.2. For every quantum graph Q we have

ΩindpQq “
 

px, yq P r0, 1s ˆR : ipQ,F q ď y ď IpQ,F q
(

.

Moreover, the boundary functions ipQ, xq and IpQ,F q are continuous and almost everywhere
differentiable.

In contrast to Theorem 1.21.2 Hatami and Norin [99] gave an example of a finite family F
of graphs such that the intersection of the graph profile T pFq with some hyperplane has a
nowhere differentiable boundary.

For every quantum graph Q the feasible regions of Q, ´Q and Q are closely related.
Indeed, using the formulae

NpF,Gq “ NpF ,Gq and %pF,Gq “ %pF ,Gq,
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which are valid for all graphs F and G, one easily confirms the following observation.
Fact 1.3. Let Q be a quantum graph.

(a ) The feasible regions of Q and ´Q are symmetric to each other about the x-axis.
Hence, Ip´Q, xq “ ´ipQ, xq and ip´Q, xq “ ´IpQ, xq hold for all x P r0, 1s.

(b ) The feasible regions of Q and Q are symmetric to each other about the line x “ 1{2.
Thus we have IpQ, xq “ IpQ, 1 ´ xq and ipQ, xq “ ipQ, 1 ´ xq for every x P r0, 1s.
In particular, if Q is self-complementary, then IpQ, xq “ IpQ, 1´ xq and ipQ, xq “
ipQ, 1´xq, i.e. the functions IpQ, xq and ipQ, xq are symmetric around x “ 1{2. �

The next result shows that for most single graphs F the lower boundary function ipF, xq
vanishes identically. The only exceptions occur when F is a clique and ipF, xq is given
by the clique density theorem (see Theorem 1.101.10), or if F is the complement of a clique
and ipF, xq is given by the Kruskal-Katona theorem (and Fact 1.31.3 (b )(b )).

Proposition 1.4. If F denotes a graph which is neither complete nor empty, then
ipF, xq “ 0 for all x P r0, 1s.

We proceed with some estimates based on random graphs. Given a quantum graph
Q “

řm
i“1 λiFi we define

randpQ, xq “
ÿ

iPrms

λi
pvpFiqq!
|AutpFiq|

xepFiqp1´ xqepF iq for every x P r0, 1s ,

where AutpFiq is the automorphism group of Fi for i P rms. Equivalently,

randpQ, xq “ lim
nÑ8

E %pQ,Gpn, xqq ,

where Gpn, xq denotes the standard binomial random graph. It is well known that the ran-
dom variables %pGpn, xqq, %pQ,Gpn, xqq are tightly concentrated around their expectations.
This shows the following observation.

Fact 1.5. If Q denotes a quantum graph and x P r0, 1s, then

IpQ, xq ě randpQ, xq ě ipQ, xq .

In particular, for a single graph F the inequality IpF, xq ą 0 holds for all x P p0, 1q. �

Let P4,1 be the 5-vertex graph that is the disjoint union of a path on 4 vertices and an
isolated vertex. It was asked in [66] whether the inducibility of some graph is achieved by
a random graph and, in particular, whether the inducibility indpP4,1q is achieved by the
Erdős-Rényi random graph Gpn, 3{10q. Here we pose an easier question of a similar flavor.

Problem 1.6. Do there exist a graph F and some x P p0, 1q such that IpF, xq “ randpF, xq?
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1.3. Complete multipartite graphs. We now present our results on IpQ, xq for specific
quantum graphs Q. Our focus is on quantum graphs whose constituents are complete
multipartite graphs (a graph whose edge set is empty is viewed as complete multipartite
with only one part). A case of particular interest is Q “ Kr `Kr for r ě 3. Goodman [88]
proved that for every graph G on n vertices %pK3 `K3, Gq ě 1{4` op1q and the random
graph Gpn, 1{2q shows that this bound is tight. Therefore, ipK3`K3, xq ě 1{4 and equality
holds when x “ 1{2. Combining Goodman’s result [88] with a theorem of Olpp [2020] one can
determine ΩindpK3 `K3q completely.

10

1

1
4

Figure 1.1. ΩindpK3 `K3q is the shaded area above.

Theorem 1.7 (Goodman [88], Olpp [2020]). For every x P r0, 1s we have

ipK3 `K3, xq “ 1´ 3x` 3x2 and

IpK3 `K3, xq “ 1´ 3 min
 

x´ x3{2, p1´ xq ´ p1´ xq3{2
(

. �

For r ě 4 determining ΩindpKr `Krq seems beyond current methods.

Problem 1.8. Determine ΩindpKr `Krq for r ě 4.

Another well-studied problem concerns the determination of ΩindpKrq for r ě 3. We
already mentioned that IpKr, xq “ xr{2 follows from the Kruskal-Katona theorem [1313,1414].
For the lower bound ipKr, xq we consider (independently of r) the following complete
multipartite graphs.

Construction 1.9. For integers n ě k ě 2 and real x P
`

k´2
k´1 ,

k´1
k

‰

let H‹pn, xq be the com-
plete k-partite graph on n vertices with parts V1, . . . , Vk of sizes |V1| “ ¨ ¨ ¨ “ |Vk´1| “ tαknu

and |Vk| “ n´ pk ´ 1qtαknu, where

αk “
1
k

˜

1`
c

1´ k

k ´ 1x
¸

.

Moreover, H‹pn, 0q and H‹pn, 1q denote the empty and the complete graph on n vertices.
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One checks immediately that limnÑ8 %pH
‹pn, xqq “ x holds for every x P r0, 1s. Conse-

quently, for every r ě 2 the function grpxq “ limnÑ8 %pKr, H
‹pn, xqq is an upper bound

on ipKr, xq.
A more explicit description of gr is as follows. Clearly grpxq “ 0 holds for every x ď r´2

r´1
and gp1q “ 1. If x P

`

r´2
r´1 , 1

˘

there exists a unique integer k ě r such that x P
`

k´2
k´1 ,

k´1
k

‰

and a short calculation reveals

grpxq “
pkqr
kr

˜

1`
c

1´ k

k ´ 1x
¸r´1 ˜

1´ pr ´ 1q
c

1´ k

k ´ 1x
¸

,

where pkqr “ kpk ´ 1q ¨ ¨ ¨ pk ´ r ` 1q. Lovász and Simonovits conjectured in the seventies
that this function coincides with ipKr, xq and the third author proved that this is indeed
the case.

Theorem 1.10 (Clique density theorem, Reiher [2323]). For all integers r ě 3 and real
x P r0, 1s we have ipKr, xq “ grpxq. �

The non-asymptotic problem to determine for given natural numbers n and m the exact
minimum number of r-cliques an n-vertex graph with m edges needs to contain is still
wide open in general. But for triangles there has recently been spectacular progress by Liu,
Pikhurko, and Staden [1616].

Easy calculations show that the function grpxq is non-differentiable at the critical values
x “ 1 ´ 1{q, where q ě r ´ 1 denotes an integer. Moreover, grpxq is piecewise concave
between any two consecutive critical values. An old result of Bollobás [22] (proved long
before the clique density theorem) asserts that the piece-wise linear function interpolating
between the critical values of grpxq is a lower bound on ipKr, xq. Here we extend this result
to quantum graphs whose constituents are complete multipartite graphs.

To state this generalization we need the following concepts. For every positive integer
r ě 2 and every quantum graph Q we define the complete r-partite feasible region Ωind´rpQq

to be the collection of all points in r0, pr ´ 1q{rs ˆ R that can be realized by a Q-good
sequence pGnq

8

n“1 of complete r-partite graphs (isolated vertices are not allowed). For
x P r0, pr ´ 1q{rs, let

irpQ, xq “ infty : px, yq P Ωind´rpQqu and IrpQ, xq “ supty : px, yq P Ωind´rpQqu .

Optimizing over r we put

mpQ, xq “ inf
"

irpQ, xq : r ě
R

1
1´ x

V*

and MpQ, xq “ sup
"

IrpQ, xq : r ě
R

1
1´ x

V*

for every quantum graph Q and every real x P r0, 1q as well as

mpQ, 1q “MpQ, 1q “ lim
nÑ8

%pQ,Knq .
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Clearly, we have

ipQ, xq ď mpQ, xq ďMpQ, xq ď IpQ, xq .

Next we observe that for every bounded function f : r0, 1s ÝÑ R there exist a point-
wise minimum concave function cappfq ě f and, similarly, a maximum convex function
cuppfq ď f . In fact, cappfq is given by

cappfqpxq “ sup
!

λ1fpx1q ` ¨ ¨ ¨ ` λnfpxnq : n ě 1, pλ1, . . . , λnq P ∆n´1, and
n
ÿ

i“1
λixi “ x

)

for all x P r0, 1s, where

∆n´1 “
 

pλ1, . . . , λnq P r0, 1sn : λ1 ` ¨ ¨ ¨ ` λn “ 1
(

denotes the pn´ 1q-dimensional standard simplex. Moreover, replacing the supremum by
an infimum one obtains a formula for cuppfqpxq.

Theorem 1.11. Let Q “
řm
i“1 λiFi be a quantum graph all of whose constituents are

complete multipartite graphs.

(a ) If every Fi with λi ą 0 is complete, then

ipQ, xq ě cup pmpQ, xqq for all x P r0, 1s .

(b ) If every Fi with λi ă 0 is complete, then

IpQ, xq ď cap pMpQ, xqq for all x P r0, 1s .

The aforementioned result of Bollobás is the case Q “ Kr of Theorem 1.111.11 (a )(a ).

1.4. Almost complete graphs. For every integer t ě 3 we let K´
t denote the graph

obtained from a clique Kt by deleting one edge. As these graphs are neither complete nor
empty, Proposition 1.41.4 tells us that the feasible regions ΩindpK

´
t q are completely determined

by the functions IpK´
t , xq. For t “ 3 we have the following exact result showing that the

graphs H‹pn, xq minimizing the triangle density also maximize the induced K´
3 -density.

Theorem 1.12. The equality IpK´
3 , xq “

3
2 px´ g3pxqq holds for all x P r0, 1s.

For t ě 4 we show a piecewise linear upper bound on IpK´
t , xq that yields the correct

value of the inducibility indpK´
t q. In the statement that follows, we set

kptq “

$

&

%

rpt` 1qp3t´ 8q{6s if t ‰ 5, 8, 11, 14, 17, 20

pt´ 2qp3t` 1q{6 if t “ 5, 8, 11, 14, 17, 20.
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Figure 1.2. ΩindpK
´
3 q.

Theorem 1.13. For all t ě 4 and x P r0, 1s we have IpK´
t , xq ď htpxq, where ht denotes

the piecewise linear function interpolating between htp0q “ 0 and

htp1´ 1{rq “
ˆ

t

2

˙

pr ´ 1qt´2

rt´1 for r ě kptq .

Furthermore,

indpK´
t q “

ˆ

t

2

˙

pqptq ´ 1qt´2

qptqt´1 , where qptq “ rpt´ 2qp3t` 1q{6s . (1.1)

For instance, for t “ 4 we have qp4q “ 5 and, hence, indpK´
4 q “ 72{125. This was

originally proved by Hirst [1111], whose computer assisted argument is based on the flag
algebra method. Moreover, Theorem 1.131.13 yields the upper bound IpK´

4 , xq ď 3x{4 for
x P r0, 3{4s. For small values of x we have the following stronger bound.

Proposition 1.14. If x P r0, 1{2s, then IpK´
4 , xq ď 3x2{2.

10

72
125

3
4

4
5

5
6

1
2

3
8

Figure 1.3. ΩindpK
´
4 q is contained in the shaded area above.

Finally, we remark that our determination of indpK´
t q in (1.11.1) implies

lim
tÑ8

indpK´
t q “ 1{e . (1.2)
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This is closely related to the so-called edge-statistics conjecture of Alon, Hefetz, Krivele-
vich, and Tyomkyn [11]. Given positive integers k and ` ď

`

k
2

˘

let the quantum graph Qk,` be
the sum of all k-vertex graphs with ` edges. Alon et al. conjectured indpQk,`q ď 1{e` okp1q
and proved this for some range of `. Following the work of Kwan, Sudakov, and Tran [1515],
the edges statistics conjecture was resolved by Fox and Sauermann [77] and, independently,
by Martinsson, Mousset, Noever, and Trujić [1818]. Part of the original motivation for the
edges statistics conjecture was the observation that for ` “ 1 we have Qk,1 “ K´

k and
randpK´

k , 1{
`

k
2

˘

q Ñ 1{e as k Ñ 8. Thus the asymptotic formula (1.21.2) follows from the
results in [77,1818]. However, the exact values indpK´

5 q “ 525{1024, indpK´
6 q “ 178200{135,

etc. implied by Theorem 1.131.13 are new.

1.5. Stars. A second case of asymptotic equality in the edge-statistics conjecture occurs
for stars. For every positive integer t we denote the star with t edges by St. As the case
S1 “ K2 is trivial, we may assume t ě 2 in the sequel. A quick calculation shows that the
induced St-density of a complete bipartite graph the sizes of whose vertex classes have
roughly the ratio 1 : t is 1{e` otp1q.

A precise formula for the inducibility of stars was discovered by Brown and Sidorenko [33]
(see Theorem 5.45.4 below). Here we shall show that for small densities x the values IpSt, xq
of the upper bound function of the feasible region are realized by complete bipartite graphs.

Toward this goal we consider for every real x P r0, 1{2s a sequence pBpn, xqq8n“1 of
complete bipartite graphs with vpBpn, xqq “ n for every n P N and limnÑ8 %pBpn, xqq “ x.
The vertex classes of Bpn, xq have the sizes αn and p1´αqn for some α P r0, 1{2s satisfying
αp1 ´ αq “ x{2 ` op1q. Since %pSt, Bpn, xqq “ pt ` 1q

`

αp1 ´ αqt ` p1 ´ αqαt
˘

` onp1q we
are lead to the function st : r0, 1{2s ÝÑ R defined by

stpxq “ lim
nÑ8

%pSt, Bpn, xqq “
t` 1

2t x
´

`

1´
?

1´ 2x
˘t´1

`
`

1`
?

1´ 2x
˘t´1

¯

. (1.3)

As we shall show in Section 55, there is a unique point x “ x‹ptq P r0, 1{2s at which stpxq
attains its maximum. Moreover,

x‹p2q “ x‹p3q “ 1
2 and 2t

pt` 1q2 ă x‹ptq ă
2

t` 1 holds for t ě 4 .

Using Theorem 1.111.11 we determine IpSt, xq for x P r0, x‹ptqs.

Theorem 1.15. If t ě 2 is an integer and x P r0, x‹ptqs, then I pSt, xq “ stpxq.

Notice that for t “ 2 this tells us IpK´
3 , xq “ 3x{2 for x P r0, 1{2s, which follows from

Theorem 1.121.12 as well. It seems hard to determine IpSt, xq for t ě 3 and x ě x‹ptq (some
remarks on this problem are given in Section 77).

For future reference it is convenient to extend the definitions of this subsection to the
trivial case t “ 1 by setting x‹p1q “ 1{2 and s1pxq “ x for every x P r0, 1{2s (which is
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one half of the values one would obtain by plugging t “ 1 into (1.31.3)). It is then still
true that we have I pS1, xq “ s1pxq for every x P r0, x‹p1qs and that equality holds for the
sequence pBpn, xqq8n“1 of bipartite graphs.

1.6. Complete bipartite graphs. For positive integers s and t let Ks,t denote the
complete bipartite graph whose vertex classes are of size s and t. So K1,t “ St is a star and
it turns out that the calculation of IpKs,t, xq reduces to IpS|s´t|`1, xq for x P r0, x‹p|s´t|`1qs.

Theorem 1.16. Let t ě s ě 2 be integers. Then for every x P r0, 1s we have

IpKs,t, xq ď
1

2s´1pt´ s` 2q

ˆ

s` t

s

˙

xs´1IpSt´s`1, xq,

and equality holds for x ď x‹pt´ s` 1q. In particular, for x P r0, x‹pt´ s` 1qs,

IpKs,t, xq “

$

&

%

1
2t

`2t
t

˘

xt if t “ s,

1
2t

`

s`t
s

˘

xs
´

`

1´
?

1´ 2x
˘t´s

`
`

1`
?

1´ 2x
˘t´s

¯

if t ą s.

The remainder of this subsection focuses on the case s “ t “ 2. Observe that K2,2 “ C4

is a four-cycle. Theorem 1.161.16 yields IpC4, xq “ 3x2{2 for every x P r0, 1{2s, where
equality is achieved by the sequence pBpn, xqq8n“1 of bipartite graphs. For x ě 1{2 we
believe that IpC4, xq is related to the constructions for the clique density theorem (see
Construction 1.91.9).

Conjecture 1.17. For every real number x P r1{2, 1s we have

IpC4, xq “ lim
nÑ8

% pC4, H
‹
pn, xqq .

This conjecture predicts IpC4, 1 ´ 1{kq “ 3pk ´ 1q{k3 for every integer k ě 2 and our
next result shows that this is indeed the case.

10
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Figure 1.4. ΩindpC4q is contained in the shaded area above.

Theorem 1.18. If x P r1{2, 1s, then

IpC4, xq ď 3xp1´ xq2 .

Moreover, the bound is tight for all x P tpk ´ 1q{k : k P N and k ě 2u.
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Organization. For every x P t2, 3, 4, 5, 6u the results stated in Subsection 1.x are proved
in Section x. Section 77 contains further remarks and open problems.

§2. Proofs of general results

We prove Theorem 1.21.2 and Proposition 1.41.4 in this section. The following result can be
proved using a similar argument as in [1717, Proposition 1.3].

Proposition 2.1. For every quantum graph Q the set ΩindpQq is closed. �

Therefore the definitions of ipQ, xq and IpQ, xq rewrite as

ipQ, xq “ min ty : px, yq P ΩindpQqu and IpQ, xq “ max ty : px, yq P ΩindpQqu .

Next we show that ΩindpQq is determined by ipQ, xq and IpQ, xq.

Proposition 2.2. Let Q be a quantum graph, x P r0, 1s and y1 ă y2. If px, y1q P ΩindpQq

and px, y2q P ΩindpQq, then px, yq P ΩindpQq holds for all y P ry1, y2s.

Proof of Proposition 2.22.2. Fix y P ry1, y2s. Let pG1nq
8

n“1 be a Q-good sequence of graphs
that realizes px, y1q, and let pG2nq

8

n“1 be a Q-good sequence of graphs that realizes px, y2q.
Without loss of generality we may assume that V pG1nq “ V pG2nq “ rns for n ě 1. We
shall construct a sequence of graphs pGnq

8

n“1 with V pGnq “ rns for every n ě 1 that
realizes px, yq.

For fixed n ě 1 we consider a finite sequence of graphs G1
n, . . . , G

mpnq
n with common

vertex set rns which interpolates between G1
n “ G1n and Gmpnq “ G2n in the sense that

‚ for 1 ď m ă mpnq the graph Gm`1
n arises from Gm

n by adding or deleting a single
edge,

‚ and mint%pG1nq, %pG2nqu ď %pGm
n q ď maxt%pG1nq, %pG2nqu for every m P rmpnqs.

Due to the first bullet we have %pQ,Gm`1
n q “ %pQ,Gm

n q ` op1q for every m P rmpnq ´ 1s.
Combined with %pQ,G1

nq “ y1 ` op1q and %pQ,Gmpnq
n q “ y2 ` op1q this proves that there

exists some kpnq P rmpnqs such that the graph Gn “ Gkpnq
n satisfies %pQ,Gnq “ y ` op1q.

Owing to the second bullet we also have %pGnq “ x` op1q. �

Towards the continuity of IpQ, xq we now establish the following lemma.

Lemma 2.3. For every quantum graph Q there exist constants ` ě 1 and C ě 0 such that
for all x, x1 with 0 ă x ď x1 ď 1 we have

IpQ, x1q

px1q`
ď
IpQ, xq

x`
` C ¨

˜

ˆ

1
x

˙`

´

ˆ

1
x1

˙`
¸

. (2.1)
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Proof of Lemma 2.32.3. Fix 0 ă x ď x1 ď 1, set α “ px1{xq1{2 ´ 1, and consider a Q-good
sequence pG1nq

8

n“1 that realizes px1, IpQ, x1qq. Without loss of generality we may assume
vpG1nq “ n for every n ě 1. Let Gn be the graph which is the union of G1n and a set of tαnu

isolated vertices. Since

% pGnq “
% pG1nq

`

n
2

˘

`

n`tαnu

2

˘ Ñ
x1

p1` αq2 “ x as nÑ 8 ,

we have
IpQ, xq ě lim sup

nÑ8
%pQ,Gnq . (2.2)

To estimate the right side we write Q “
ř

iPP λiFi `
ř

jPN λjFj with λi ą 0 for i P P
and λj ă 0 for j P N . Set `i “ vpFiq for every i P P YN and ` “ maxt`i{2: i P P YNu.
For every i P P the fact that G1n is a subgraph of Gn yields

% pFi, Gnq ě
% pFi, G

1
nq
`

n
`i

˘

`

n`tαnu

`i

˘ ě
% pFi, G

1
nq

p1` αq`i “
% pFi, G

1
nq

px1{xq`i{2
ě
% pFi, G

1
nq

px1{xq`
. (2.3)

For j P N we use that every induced copy of Fj in Gn is either already contained in G1n or
involves one of the new isolated vertices, which implies

% pFj, Gnq ď
% pFj, G

1
nq
`

n
`j

˘

` αn ¨
`

n`tαnu

`j´1

˘

`

n`tαnu

`j

˘ ď %pFj, G
1
nq `

`j ¨ α

1` α ` onp1q .

Taking into account that

%pFj, G
1
nq ď

% pFj, G
1
nq

px1{xq`
`

ˆ

1´
´ x

x1

¯`
˙

and
α

1` α “ 1´
´ x

x1

¯1{2
ď 1´

´ x

x1

¯`

we obtain
% pFj, Gnq ď

%pFj, G
1
nq

px1{xq`
` p`j ` 1q

ˆ

1´
´ x

x1

¯`
˙

` onp1q .

Combined with (2.32.3) this entails

% pQ,Gnq “
ÿ

iPP

λi% pFi, Gnq `
ÿ

jPN

λj% pFj, Gnq

ě
ÿ

iPP

λi
% pFi, G

1
nq

px1{xq`
`

ÿ

jPN

λj

ˆ

% pFj, G
1
nq

px1{xq`
` p`j ` 1q

ˆ

1´
´ x

x1

¯`
˙˙

´ onp1q

ě
%pQ,G1nq

px1{xq`{2
´ C ¨

ˆ

1´
´ x

x1

¯`
˙

´ onp1q ,

where C “
ř

jPNp´λjqp`j ` 1q ě 0. Now (2.22.2) reveals

IpQ, xq ě
IpQ, x1q

px1{xq`
´ C ¨

ˆ

1´
´ x

x1

¯`
˙
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and upon multiplying both sides by x´` the claim follows. �

For later use we record the following consequence.

Corollary 2.4. Given a quantum graph Q and x1 P r0, 1s, ε ą 0, there exists some δ ą 0
such that IpQ, xq ą IpQ, x1q ´ ε holds for all x P r0, x1q with |x´ x1| ă δ. �

Now we are ready to prove the main result of Subsection 1.21.2.

Proof of Theorem 1.21.2. Given a quantum graph Q the formula

ΩindpQq “
 

px, yq P r0, 1s ˆR : ipQ,F q ď y ď IpQ,F q
(

follows immediately from Proposition 2.22.2. Now, due to Fact 1.31.3 (a )(a ) it suffices to show
that IpQ, xq is continuous and almost everywhere differentiable.

Let ` ě 1, C ě 0 be the constants provided by Lemma 2.32.3. Owing to (2.12.1) the
function F : p0, 1s ÝÑ R defined by F pxq “ pIpQ, xq ` Cq {x` is decreasing. It follows
that F is almost everywhere differentiable and that for every x P p0, 1s the left-sided limit
limxÑx´0

F pxq exists. Consequently, the function IpQ, xq has the same properties.
Let us show next that IpQ, xq is left-continuous. Given an arbitrary x0 P p0, 1s we already

know that the limit y0 “ limxÑx´0
IpQ, xq exists. Proposition 2.12.1 yields px0, y0q P ΩindpQq,

whence IpQ, x0q ě y0. But IpQ, x0q ą y0 would contradict Corollary 2.42.4 and thus we have
indeed IpQ, x0q “ y0. By Fact 1.31.3 (b )(b ) the function IpQ, xq “ IpQ, 1´xq is right-continuous
as well. This concludes the proof. �

Proof of Proposition 1.41.4. For every n P N and x P r0, 1s we let H 1pn, xq denote the n-vertex
graph consisting of a clique of order tx1{2nu and n ´ tx1{2nu isolated vertices. Moreover,
we set H2pn, xq “ H 1pn, 1´ xq. Notice that limnÑ8 %pH

1pn, xqq “ limnÑ8 %pH
2pn, xqq “ x

holds for every x P r0, 1s.
Now suppose that F is a graph which is neither complete nor empty. If F has no isolated

vertex, then %pF,H 1pn, xqq “ 0 holds for all n P N and x P r0, 1s, which leads to ipF, xq “ 0.
If F has an isolated vertex we get the same conclusion from %pF,H2pn, xqq “ 0. �

§3. Proof for complete multipartite graphs

We prove Theorem 1.111.11 in this section. The following result of Schelp and Thomason [2525]
will be useful in our argument.

Theorem 3.1 (Schelp-Thomason [2525]). Let Q “
ř

iPrms λiFi be a quantum graph whose
constituents are complete multipartite graphs and let n P N. If every Fi with λi ă 0
is complete, then among all n-vertex graphs G maximizing %pQ,Gq there is a complete
multipartite one.
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Definition 3.2. Suppose that H : r0, 1s Ñ R is a concave function and L : r0, 1s Ñ R is
a linear function. We say L is a tangent line of H at x0 P r0, 1s if Lpxq ě Hpxq holds for
x P r0, 1s with equality for x “ x0.

It is easy to see that for every concave function F : r0, 1s Ñ R and every x0 P p0, 1q there
always exists a (not necessarily unique) tangent line of F at x0.

Proof of Theorem 1.111.11. By Fact 1.31.3 (a )(a ) it suffices to show part (b )(b ). Let Q “
ř

iPrms λiFi

be a quantum graph whose constituents are complete multipartite graphs such that every Fi
with and λi ă 0 is complete. For brevity we set Hpxq “ cap pMpQ, xqq for every x P r0, 1s.
Clearly

Hp0q “MpQ, 0q “ lim
nÑ8

%pQ,Knq “ IpQ, 0q

and a similar argument shows Hp1q “ IpQ, 1q. So it remains to prove Hpx0q ě IpQ, x0q for
every x0 P p0, 1q. To this end we choose a tangent line Lpxq “ kx` p of H at x0, so that

Hpxq ď kx` p for all x P r0, 1s and Hpx0q “ kx0 ` p . (3.1)

Now let pGnq
8

n“1 be a sequence of graphs that realizes px0, IpQ, x0qq. By Theorem 3.13.1
applied to the quantum graph Q‹ “ Q´ kK2 there exists for every n ě 1 a multipartite
n-vertex graph G1n such that vpG1nq “ vpGnq and

%pQ,Gnq ´ k%pGnq “ %pQ‹, Gnq ď %pQ‹, G1nq “ %pQ,G1nq ´ k%pG
1
nq . (3.2)

By passing to a subsequence of pG1nq
8

n“1 we may assume that the limits x1 “ limnÑ8 %pG
1
nq

and y1 “ limnÑ8 %pQ,G
1
nq exist. Due to the definition of MpQ, x1q and (3.13.1) we have

y1 ďMpQ, x1q ď Hpx1q ď kx1 ` p

and taking the limit nÑ 8 in (3.23.2) it follows that

IpQ, x0q ´ kx0 ď y1 ´ kx1 ď p .

Together with (3.13.1) this leads to the desired estimate IpQ, x0q ď kx0 ` p “ Hpx0q. �

§4. Proofs for almost complete graphs

In this section we prove Theorems 1.121.12 and 1.131.13 as well as Proposition 1.141.14.

4.1. Cherries. We begin with the proof of Theorem 1.121.12. Consider a graph G “ pV,Eq
with |V | “ n vertices. Counting the number of pairs ptx, yu, zq P E ˆ V with z ‰ x, y in
two different ways, we obtain

pn´ 2q|E| “ NpK´
3 , Gq ` 2NpK´

3 , Gq ` 3NpK3, Gq .
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Dividing by 2
`

n
3

˘

and rearranging we deduce

%pK´
3 , Gq “

3
2
`

%pK2, Gq ´ %pK3, Gq
˘

´
1
2%pK

´
3 , Gq .

Therefore the clique density theorem yields for every x P r0, 1s the upper bound
IpK´

3 , xq ď
3
2px ´ g3pxqq. Moreover, for every x P r0, 1s the sequence of multipartite

graphs pH‹pn, xqq8n“1 is K´
3 -free and establishes the lower bound IpK´

3 , xq ě
3
2px´ g3pxqq.

4.2. Piecewise linear upper bounds. Roughly speaking we show in this subsection
that a concave piecewise linear function is an upper bound on IpK´

t , xq if it respects the
constraints coming from Turán graphs.

Lemma 4.1. Suppose that an integer s ě 1 and real numbers λ, µ have the property that
1
rs`1

ˆ

r ´ 1
s

˙

ď λ
r ´ 1

2r ` µ (4.1)

holds for every positive integer r. If m ě 1 and pα1, . . . , αmq P ∆m´1, then
m
ÿ

i“1

ÿ

WPprmsrtius q

α2
i

ź

jPW

αj ď λ
ÿ

ti,juPprms2 q

αiαj ` µ .

Proof. Assume for the sake of contradiction that this fails and let m denote the least
positive integer for which there exists a counterexample. Appealing to a theorem of
Weierstraß, we pick a point pα‹1, . . . , α‹mq P ∆m´1 such that the difference

Φ “
m
ÿ

i“1

ÿ

WPprmsrtius q

pα‹i q
2
ź

jPW

α‹j ´ λ
ÿ

ti,juPprms2 q

α‹iα
‹
j

is maximal. Due to our indirect assumption we know Φ ą µ. The case r “ m of (4.14.1)
reveals that α‹1 “ ¨ ¨ ¨ “ α‹m “ 1{m is false. Therefore, we have m ě 2 and and for reasons
of symmetry we may assume that α‹1 ă α‹2.

Given two real numbers α1, α2 ě 0 satisfying

α1 ` α2 “ α‹1 ` α
‹
2

we write Φpα1, α2q for the result of replacing α‹1, α‹2 in the above formula for Φ by α1, α2.
So Φpα‹1, α‹2q “ Φ and there are constants c1, . . . , c5 depending only on α‹3, . . . , α‹m, and λ
such that

Φpα1, α2q “ c1 ` c2pα1 ` α2q ` c3pα
2
1 ` α

2
2q ` c4α1α2 ` c5pα1 ` α2qα1α2 .

Since α1 ` α2 is constant and α2
1 ` α

2
2, 2α1α2 add up to the constant pα‹1 ` α‹2q2, it follows

that there are constants c6, c7 such that

Φpα1, α2q “ c6α1α2 ` c7 .
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If c6 ‰ 0 we can find a real number ξ ‰ 0 such that |ξ| is very small and Φpα‹1`ξ, α‹2´ξq ą Φ
contradicts the maximality of Φ. So c6 “ 0 and Φpα1, α2q “ c7 “ Φ is constant. But now
Φpα‹1 ` α‹2, 0q “ Φ contradicts the minimality of m. This completes the proof. �

Lemma 4.2. Suppose that t ě 3 and that f : r0, 1s ÝÑ R is a piecewise linear concave
function. If for every positive integer r we have

fp1´ 1{rq ě
ˆ

t

2

˙

pr ´ 1q ¨ ¨ ¨ pr ´ pt´ 2qq
rt´1 , (4.2)

then IpK´
t , xq ď fpxq holds for every x P r0, 1s.

Proof. Since f is the pointwise minimum of a family of linear functions, it suffices to deal
with the case that fpxq “ λx` µ is itself linear. By Theorem 1.111.11 (b )(b ) it is enough to show
MpK´

t , xq ď λx` µ for every x P r0, 1s. We shall establish the more precise estimate that
every complete multipartite graph G on n vertices satisfies

NpK´
t , Gq ď p2λ|EpGq| ` µn2

qnt´2
{t! . (4.3)

Let a1, . . . , am be the sizes of the vertex classes of G and set αi “ ai{n for every i P rms.
Now

řm
i“1 αi “ 1 and

NpK´
t , Gq “

m
ÿ

i“1

ˆ

ai
2

˙

ÿ

WPprmsrtiut´2 q

ź

jPW

aj ď
nt

2

m
ÿ

i“1
α2
i

ÿ

WPprmsrtiut´2 q

ź

jPW

αj

and, therefore, instead of (4.34.3) it suffices to show
m
ÿ

i“1
α2
i

ÿ

WPprmsrtiut´2 q

ź

jPW

αj ď
4λ
t!

ÿ

ti,juPprms2 q

αiαj `
2µ
t! .

By Lemma 4.14.1 applied to t´ 2, 4λ{t!, 2µ{t! here in place of s, λ, µ there this inequality
follows from the fact that

1
rt´1

ˆ

r ´ 1
t´ 2

˙

ď
4λ
t! ¨

r ´ 1
2r `

2µ
t! “

2fp1´ 1{rq
t!

holds for every r ě 1, which is in turn equivalent to the hypothesis (4.24.2). �

4.3. Precise calculations. Fix an integer t ě 4. Our next goal is to show that the
function ht introduced in Theorem 1.131.13 satisfies the assumptions of Lemma 4.24.2. To this
end we set Ar “

`

t
2

˘

pr´2qt´3
rt´2 for every integer r ě 2.

Lemma 4.3. Let t ě 4 and r ě t´ 1 be integers.
(a ) If r ď p3t2 ´ 5t´ 4q{6, then Ar´1 ă Ar.
(b ) If r “ p3t2 ´ 5t´ 2q{6, then Ar´1 ă Ar or Ar´1 ą Ar holds depending on whether

t ď 20 or t ą 20.
(c ) If r ě p3t2 ´ 5tq{6, then Ar´1 ą Ar .
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In particular, there exists a unique integer k ě t´ 2 satisfying Ak “ maxtAr : r ě t´ 2u,
namely k “ kptq.

Proof. One confirms easily that

Ar´1 ă Ar ðñ 1´ t´ 1
r

ă

´

1´ 1
r

¯t´2´
1´ 2

r

¯

.

Due to the approximations
3
ÿ

i“0

p´1qi
ri

ˆ

t´ 2
i

˙

ď

ˆ

1´ 1
r

˙t´2

ď

4
ÿ

i“0

p´1qi
ri

ˆ

t´ 2
i

˙

we obtain the implications
pt` 2qpt´ 2qpt´ 3q

6 ă r

ˆ

pt` 1qpt´ 2q
2 ´ r

˙

ùñ Ar´1 ă Ar

and

pt` 2qpt´ 2qpt´ 3q
6 ą r

ˆ

pt` 1qpt´ 2q
2 ´ r

˙

`
t` 3

4r

ˆ

t´ 2
3

˙

ùñ Ar´1 ą Ar

(see also the proof of Lemma 4.54.5).
So for the proof of part (a )(a ) it suffices to observe that pt´ 1q{3 ď r ď p3t2 ´ 5t´ 4q{6

implies

r

ˆ

pt` 1qpt´ 2q
2 ´ r

˙

ě
3t2 ´ 5t´ 4

6 ¨
t´ 1

3 ě
tpt´ 1qpt´ 2q

6 ą
pt` 2qpt´ 2qpt´ 3q

6 .

Similarly, if r ě p3t2 ´ 5tq{6 ą pt´ 2qpt` 3q{6 we have

r

ˆ

pt` 1qpt´ 2q
2 ´ r

˙

`
t` 3

4r

ˆ

t´ 2
3

˙

ă
3t2 ´ 5t

6 ¨
t´ 3

3 `
pt´ 3qpt´ 4q

4

ă
pt` 2qpt´ 2qpt´ 3q

6 ,

which proves part (c )(c ).
We proceed with the case r “ p3t2 ´ 5t ´ 2q{6, which requires t ” 2 pmod 3q. Direct

calculations show Ar´1 ă Ar for t P t5, 8, 11, 14, 17, 20u and Ar´1 ą Ar for t “ 23. As soon
as t ě 26 we have 8pt´ 8qr ą 3pt` 3qpt´ 3qpt´ 4q and hence

r

ˆ

pt` 1qpt´ 2q
2 ´ r

˙

`
t` 3

4r

ˆ

t´ 2
3

˙

ă
3t2 ´ 5t´ 2

6 ¨
t´ 2

3 `
pt´ 2qpt´ 8q

9

“
pt` 2qpt´ 2qpt´ 3q

6 ,

which concludes the discussion of (b )(b ). Finally, (a )(a ) – (c )(c ) together imply

At´2 ă At´1 ă ¨ ¨ ¨ ă Akptq and Akptq ą Akptq`1 ą . . . ,

whence Akptq “ maxtAr : r ě t´ 2u. �
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Lemma 4.4. We have IpK´
t , xq ď htpxq for every x P r0, 1s.

Proof. For later use we observe that the number k “ kptq satisfies

k ě
tpt´ 2q

2 . (4.4)

Indeed, if t ‰ 5, 8, 11, 14, 17, 20, then k ´ tpt´ 2q{2 “ rpt´ 8q{6s ě r´2{3s “ 0 and in the
remaining cases we have k ´ tpt´ 2q{2 “ pt´ 2q{6 ě 0.

Next we show
htp1´ 1{rq ě

ˆ

t

2

˙

pr ´ 1q ¨ ¨ ¨ pr ´ pt´ 2qq
rt´1

for every positive integer r. The cases r ď t ´ 2 and r ě k are clear. Now suppose that
t´ 1 ď r ă k. Since 1´ 1{r ď 1´ 1{k and htpxq “ Ak ¨ x for all x P r0, 1´ 1{ks we have

htp1´ 1{rq “ Ak ¨ p1´ 1{rq ě Ar ¨ p1´ 1{rq “
ˆ

t

2

˙

pr ´ 1q ¨ ¨ ¨ pr ´ pt´ 2qq
rt´1 ,

as desired.
According to Lemma 4.24.2 it only remains to show that ht is concave. Now Ak ą Ak`1

rewrites as
htp1´ 1{kq

1´ 1{k ą
htp1´ 1{pk ` 1qq

1´ 1{pk ` 1q
and, therefore, ht is concave in some sufficiently small neighbourhood around x “ 1´ 1{k.
Define F :

“

0, 1
k

‰

ÝÑ R by F pxq “ x
śt´2

i“1p1´ ixq. Since htp1´ 1{rq “
`

t
2

˘

F p1{rq holds for
every r ě k, it suffices to show that F is concave. If x P r0, 1{ks, then

t´2
ÿ

i“1

i

1´ ix ď
1` ¨ ¨ ¨ ` pt´ 2q

1´ pt´ 2qx
(4.44.4)
ď
pt´ 2qpt´ 1q

2p1´ 2{tq “
pt´ 1qt

2 ă
2
x

and thus
F 2pxq

F pxq
“

ÿ

1ďiăjďt´2

ij

p1´ ixqp1´ jxq ´
1
x

t´2
ÿ

i“1

i

1´ ix ă
1
2

´
t´2
ÿ

i“1

i

1´ ix

¯2
´

1
x

t´2
ÿ

i“1

i

1´ ix ď 0 ,

which proves that F is indeed concave. �

The only part of Theorem 1.131.13 still lacking verification is (1.11.1). Setting Br “
`

t
2

˘

pr´1qt´2
rt´1

for every r ě t´ 2 and f “ rpt´ 2qp3t` 1q{6s we are to show Bf “ maxtBr : r ě t´ 2u.
It turns out that this holds in the following slightly stronger form.

Lemma 4.5. We have 0 “ Bt´2 ă Bt´1 ă ¨ ¨ ¨ ă Bf and Bf ą Bf`1 ą . . . .

Proof. First we show Br´1 ă Br for every integer r P rt´1, f s. The fact that pt´2qp3t`1q
is even yields f ď pt´ 2qp3t` 1q{6` 2{3 “ pt´ 1qp3t´ 2q{6, whence

t´ 1
3 ď r ď

ˆ

t

2

˙

´
t´ 1

3 .
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For this reason we have

r

ˆˆ

t

2

˙

´ r

˙

ě
t´ 1

3

ˆˆ

t

2

˙

´
t´ 1

3

˙

ą

ˆ

t

3

˙

,

which rewrites as

1´ t´ 1
r

ă 1´ t

r
`

ˆ

t

2

˙

1
r2 ´

ˆ

t

3

˙

1
r3 .

As the right side is at most p1´ 1{rqt, this proves

1 ă pr ´ 1qt
rt´1pr ´ pt´ 1qq “

Br

Br´1
,

as desired.
Next we show Br´1 ą Br for every r ě f ` 1. Due to r ě p3t2 ´ 5t ` 4q{6 ą 1

2

`

t
2

˘

we
have

r

ˆˆ

t

2

˙

´ r

˙

ă
3t2 ´ 5t` 4

6 ¨
t´ 2

3 “

ˆ

t

3

˙

´
pt´ 2q2

9 .

Moreover, r ě tpt´ 2q{2 implies
ˆ

t

4

˙

¨
1
r
ă
pt´ 1qpt´ 3q

12 ă
pt´ 2q2

9 .

Adding the previous two estimates we obtain

r

ˆˆ

t

2

˙

´ r

˙

`

ˆ

t

4

˙

¨
1
r
ă

ˆ

t

3

˙

,

which rewrites as

1´ t´ 1
r

ą 1´ t

r
`

ˆ

t

2

˙

1
r2 ´

ˆ

t

3

˙

1
r3 `

ˆ

t

4

˙

1
r4 .

As the right side is an upper bound on p1´ 1{rqt we can conclude

1 ą pr ´ 1qt
rt´1pr ´ pt´ 1qq “

Br

Br´1
. �

4.4. More on K´
4 . Our last result on ΩindpK

´
4 q, Proposition 1.141.14, is an immediate conse-

quence of the following result.

Lemma 4.6. Every graph G satisfies NpK´
4 , Gq ď

1
2

`

|EpGq|
2

˘

.

Proof. Notice that an abstract K´
4 has two perfect matchings. Now with every induced

copy of K´
4 in G we associate its two perfect matchings, viewed as members of

`

EpGq
2

˘

. We
are thereby considering 2NpK´

4 , Gq pairs of edges of G. Since every pair te, fu P
`

EpGq
2

˘

can be associated to at most one copy of K´
4 in G (namely the copy induced by eY f , if it

exists), this proves the claim. �
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§5. Proofs for stars

In this section we prove Theorem 1.151.15. Recall from Section 1.51.5 that for every integer
t ě 3 and every real x P r0, 1{2s we defined

stpxq “
t` 1

2t x
´

`

1´
?

1´ 2x
˘t´1

`
`

1`
?

1´ 2x
˘t´1

¯

.

We commence by showing that there is a unique x‹ptq P r0, 1{2s, where the function st
attains its maximum. For t “ 3 we have s3pxq “ 2xp1´ xq and, hence, x‹p3q “ 1{2 is as
desired. The case t ě 4 is addressed by the next lemma.

Lemma 5.1. For t ě 4 there exists a unique real x‹ptq P
` 2t
pt`1q2 ,

2
t`1

˘

such that the
function st is strictly increasing on r0, x‹ptqs and strictly decreasing on rx‹ptq, 1{2s.

Proof. Define the auxiliary function h : r0, 1s ÝÑ R by hpyq “ 1´ ty ` tyt´1 ´ yt. Due to
h2pyq “ tpt´ 1qyt´3pt´ 2´ yq ą 0 for y P p0, 1s this function is strictly convex. Together
with hp0q “ 1, hp1q “ 0, and h1p1q “ tpt ´ 3q ą 0 this shows that there exists a unique
y‹ “ p0, 1q such that hpy‹q “ 0, hpyq ą 0 for y P r0, y‹q, and hpyq ă 0 for y P py‹, 1q.

Due to
d
dy

y ` yt

p1` yqt`1 “
hpyq

p1` yqt`2

it follows that y`yt

p1`yqt`1 is strictly increasing on r0, y‹q and strictly decreasing on py‹, 1s.
As 2y

p1`yq2 is strictly increasing on r0, 1s and

st

ˆ

2y
p1` yq2

˙

“
pt` 1qpy ` ytq
p1` yqt`1 ,

it follows that st has the desired monotonicity properties for x‹ptq “ 2y‹
p1`y‹q2 .

Next, due to hp1{tq “ t2´t ´ t´t ą 0 we have y‹ ą 1
t
and, consequently, x‹ptq ą 2t

pt`1q2 .
Similarly,

h

ˆ

1
t´ 1

˙

ă ´
1

t´ 1 `
t

pt´ 1qt´1 ď
t´ pt´ 1q2
pt´ 1q3 ă 0

yields y‹ ă 1
t´1 , whence

x‹ptq ă
2pt´ 1q

t2
ă

2
t` 1 . �

Lemma 5.2. For every integer t ě 3 the function st is increasing and concave on r0, x‹ptqs.

Proof. Our choice of x‹ptq guarantees that st is indeed increasing. So it suffices to show
that st is concave on the interval It “

“

0, 2
t`1

‰

. Since

stpxq “
t` 1
2t´1

ÿ

0ďnďpt´1q{2

ˆ

t´ 1
2n

˙

xp1´ 2xqn
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it suffices to show for every positive integer n ď pt´ 1q{2 that xp1´ 2xqn is concave on It.
This follows immediately from

d2

dx2xp1´ 2xqn “ 4np1´ 2xqn´2
rpn` 1qx´ 1s . �

Our next step is to show MpSt, xq “ I2pSt, xq “ stpxq for x P r0, x‹ptqs. To this end
we use the following result due to Brown and Sidorenko, which is implicit in the proof
of [33, Proposition 2].

Proposition 5.3 (Brown-Sidorenko [33]). Let r, s, t, n be positive integers with r ě 3.
For every complete r-partite graph G on n vertices there exists a complete pr ´ 1q-partite
graph G1 on the same vertex set such that epG1q ď epGq and NpKs,t, G

1q ě NpKs,t, Gq.

The proof proceeds by “merging” two smallest vertex classes of G, i.e., if V1, . . . , Vr with
|V1| ď ¨ ¨ ¨ ď |Vr| are the vertex classes of G, then one constructs G1 so as to have the
vertex classes V1 ŸV2, V3, . . . , Vr. Clearly, r´ 2 iterations of this process lead to a complete
bipartite graph G2 such that V pG2q “ V pGq, epG2q ď epGq, and NpKs,t, G

1q ě NpKs,t, Gq.
This shows that for the determination of the inducibility of Ks,t only complete bipartite
host graphs are relevant. This establishes the following result on stars.

Theorem 5.4 (Brown-Sidorenko [33]). For every integer t ě 2 the inducibility of St is given
by indpStq “ I2pSt, x

‹ptqq.

We proceed with another simple consequence of Proposition 5.35.3.

Lemma 5.5. If r, t ě 2 are integers and x P r0, x‹ptqs, then I2pSt, xq ě IrpSt, xq.

Proof of Lemma 5.55.5. Let y2 “ I2pSt, xq, yr “ IrpSt, xq and consider an St-good sequence
of complete r-partite graphs pGnq

8

n“1 that realizes px, yrq. In view of Proposition 5.35.3 there
exists a sequence pG1nq

8

n“1 of complete bipartite graphs such that

V pG1nq “ V pGnq, epG1nq ď epGnq, and NpKs,t, G
1
nq ě NpKs,t, Gnq (5.1)

hold for every positive integer n. By passing to a subsequence we may assume that the
limits x1 “ limnÑ8 %pG

1
nq and y12 “ limnÑ8 %pSt, G

1
nq exist. Now (5.15.1) implies

x1 ď x and y12 ě yr , (5.2)

and as pG1nq
8

n“1 is an St-good sequence of complete bipartite graphs that realizes px1, y12q
we have y12 ď I2pSt, x

1q. Since I2pSt, ¨q “ stp¨q is increasing on r0, x‹ptqs, the first estimate
in (5.25.2) entails I2pSt, x

1q ď I2pSt, xq. So altogether we obtain

yr ď y12 ď I2pSt, x
1
q ď I2pSt, xq ,

which concludes the proof. �
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Now we are ready to prove Theorem 1.151.15.

Proof of Theorem 1.151.15. The case t “ 2 already being understood in Theorem 1.121.12 we may
assume that t ě 3. It is clear that IpSt, xq ě I2pSt, xq “ stpxq holds for x P r0, 1{2s and
thus we just need to show IpSt, xq ď stpxq for x P r0, x‹ptqs. Define f : r0, 1s ÝÑ R by

fpxq “

$

&

%

stpxq for x P r0, x‹ptqs

st px
‹ptqq for x P rx‹ptq, 1s.

Lemma 5.25.2 informs us that f is concave. Moreover, we have fpxq ě MpSt, xq for all
x P r0, 1s. Indeed, if x P r0, x‹ptqs this follows from Lemma 5.55.5 and for x P rx‹ptq, 1s we can
appeal to Theorem 5.45.4 instead. Summarizing, fpxq is a concave upper bound on MpSt, xq.
Owing to Theorem 1.111.11 this proves IpSt, xq ď fpxq “ stpxq for every x P r0, x‹ptqs. �

§6. Proofs for complete bipartite graphs

In this section we prove Theorems 1.161.16 and 1.181.18. The upper bound on IpKs,t, xq stated
in Theorem 1.161.16 is an immediate consequence of the following result.

Proposition 6.1. If t ě s ě 2 are positive integers, then for every graph G we have

NpKs,t, Gq ď
pt´ s` 1q!

s!t! NpSt´s`1, Gq ¨ pepGqq
s´1 .

Proof of Proposition 6.16.1. Notice that for an abstract Ks,t the number of ordered partitions
V pKs,tq “ U1 Ÿ . . . Ÿ Us such that U1 induces a star St´s`1 and each of U2, . . . , Us induces
an edge is

`

t
t´s`1

˘

ps´1q!s!. This is because there are s
`

t
t´s`1

˘

possibilities for U1; moreover,
if i P r2, ss and U1, . . . , Ui´1 are already fixed, then there are ps´ i` 1q2 possibilities for Ui.

By double counting it follows that
`

t
t´s`1

˘

ps ´ 1q!s!NpKs,t, Gq is at most the number
of s-tuples pU1, . . . , Usq of subsets of G such that GrU1s – St´s`1 and GrUis – K2 for all
i P r2, ss, whence

ˆ

t

t´ s` 1

˙

ps´ 1q!s!NpKs,t, Gq ď NpSt´s`1, Gq ¨ pepGqq
s´1 .

Now it remains to observe
`

t
t´s`1

˘

ps´ 1q!s! “ s!t!
pt´s`1q! . �

We remark that this argument is asymptotically optimal if G is a complete bipartite
graph. More precisely, for x ď x‹pt ´ s ` 1q the sequence pBpn, xqq8n“1 establishes the
equality case in Theorem 1.161.16. This observation concludes the proof of Theorem 1.161.16.

In the remainder of this section we show the following explicit version of Theorem 1.181.18.

Theorem 6.2. Every graph G on n vertices with xn2{2 edges satisfies

NpC4, Gq ď
xp1´ xq2

8 n4
` 2n3 .
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For the proof we need the following well-known result due to Goodman [88], whose short
proof we include for the sake of completeness.

Proposition 6.3 (Goodman [88]). For every real number x P r0, 1s, every positive integer n,
and every graph G on n vertices with xn2{2 edges we have

ÿ

vPV pGq

epvq ě
ÿ

vPV pGq

dpvq2 ´ xn3
{2 ,

where epvq “ epGrNpvqsq denotes the number of triangles containing the vertex v.

Proof of Proposition 6.36.3. Counting the number of pairs pu, tv, wuq P V pGq ˆ EpGq with
v, w P Npuq in two different ways, we obtain

ÿ

uPV pGq

epuq ě
ÿ

vwPG

`

dpvq ` dpwq ´ n
˘

“
ÿ

vPV pGq

dpvq2 ´ epGq ¨ n . �

Goodman’s formula has the following consequence, which will assist us in the inductive
proof of Theorem 6.26.2.

Corollary 6.4. Every graph G with n vertices and xn2{2 edges possesses a vertex v

satisfying

epvq ě
dpvq2

2 `
p1´ 4x` 3x2qn2

4 ´
p1´ xq3n3

4pn´ dpvqq .

Proof. The Cauchy-Schwarz inequality implies
ř

vPV pGq dpvq
2 ě x2n3 and because of

ÿ

vPV pGq

pn´ dpvqq “ p1´ xqn2

we also have
ÿ

vPV pGq

1
n´ dpvq

ě
1

1´ x .

Consequently,
ÿ

vPV pGq

´dpvq2

2 `
p1´ 4x` 3x2qn2

4 ´
p1´ xq3n3

4pn´ dpxqq

¯

ď
ÿ

vPV pGq

dpvq2

2 `
px2 ´ xqn3

2

ď
ÿ

vPV pGq

dpvq2 ´ xn3
{2 .

Due to Proposition 6.36.3 the result now follows by averaging. �

Proof of Theorem 6.26.2. We argue by induction on n. The base case n ď 3 is clear, for there
are no 4-cycles in graphs with less than four vertices. Now suppose n ě 4 and that our
claim holds for every graph on n´ 1 vertices.
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Given a graph G on n vertices with xn2{2 edges we invoke Corollary 6.46.4 and get a vertex
v P V pGq such that

e ě
d2

2 `
p1´ 4x` 3x2qn2

4 ´
p1´ xq3n3

4pn´ dq , (6.1)

where d “ dpvq and e “ epvq. We contend that

NpC4, Gq ď NpC4, G´ vq ` pd
2
{2´ eqpn´ dq , (6.2)

or, in other words, that there are at most pd2{2 ´ eqpn ´ dq induced copies of K2,2 in G
which contain the vertex v. The reason for this is that each such copy contains a pair of
non-adjacent members of Npvq and a fourth vertex belonging to V pGq r Npvq. Clearly
there are at most d2{2 ´ e possibilities for such a non-adjacent pair and at most n ´ d

possibilities for the fourth vertex.

Claim 6.5. We have

8NpC4, G´ vq ď xp1´ xq2pn4
´ 4n3

q ` 2pxn´ dqp1´ 4x` 3x2
qn2

` 16n3 .

Proof. The induction hypothesis yields

8NpC4, G´ vq ď x1p1´ x1q2pn´ 1q4 ` 16pn´ 1q3 , (6.3)

where x1 is defined by

x1 “
2|EpG´ vq|
pn´ 1q2 “

xn2 ´ 2d
pn´ 1q2 .

The function hpxq “ xp1´xq2 has derivatives h1pxq “ 1´ 4x` 3x2 and h2pxq “ ´4` 6x.
Therefore we have }h1}r0,1s “ 1 and }h2}r0,1s “ 4, where } ¨ }r0,1s denotes the supremum norm
with respect to the unit interval. So Taylor’s formula and (6.36.3) imply

8NpC4, G´ vq ď xp1´ xq2pn´ 1q4 ` p1´ 4x` 3x2
qpx1 ´ xqpn´ 1q4

` 2px1 ´ xq2pn´ 1q4 ` 16pn´ 1q3 .

Here

xp1´ xq2pn´ 1q4 ď xp1´ xq2pn4
´ 4n3

` 6n2
q ď xp1´ xq2pn4

´ 4n3
q ` n2

and due to
x1 ´ x “

p2n´ 1qx´ 2d
pn´ 1q2 (6.4)

we have 2px1 ´ xq2pn ´ 1q4 “ 2
ˇ

ˇp2n ´ 1qx ´ 2d
ˇ

ˇ

2
ď 8n2. For these reasons it suffices to

establish

p1´ 4x` 3x2
qpx1 ´ xqpn´ 1q4 ď 2pxn´ dqp1´ 4x` 3x2

qn2
` 7n2 . (6.5)
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Now the triangle inequality yields
ˇ

ˇpx1 ´ xqpn´ 1q4 ´ 2pxn´ dqn2ˇ
ˇ

ď
ˇ

ˇpx1 ´ xqpn´ 1q2 ´ 2pxn´ dq
ˇ

ˇpn´ 1q2 ` 2|xn´ d|
`

n2
´ pn´ 1q2

˘

(6.46.4)
ď xpn´ 1q2 ` 4n2

ď 5n2

and together with }h1}r0,1s “ 1 this proves (6.56.5). Thereby Claim 6.56.5 is proved. �

Now combining (6.16.1), (6.26.2), and Claim 6.56.5 we obtain

8NpC4, Gq ď xp1´ xq2pn4
´ 4n3

q ` 2pxn´ dqp1´ 4x` 3x2
qn2

` 16n3

´ 2p1´ 4x` 3x2
qn2
pn´ dq ` 2p1´ xq3n3

“ xp1´ xq2n4
` 16n3 ,

as desired. �

§7. Concluding remarks

7.1. General questions. As the example Q “ K3 `K3 shows, for a quantum graph Q
the function IpQ, xq can have at least two global maxima. We do not know whether this is
possible for single graphs F as well.

Problem 7.1. Does there exist a graph F such that the function IpF, xq has at least two
global maxima?

Two questions of a similar flavor are as follows.

Problem 7.2. Does there exist a graph F such that for some nontrivial interval J we have
IpF, xq “ indpF q for all x P J?

Problem 7.3. Does there exist a graph F such that the function IpF, xq has a nontrivial
local maximum (minimum)?

Recall that for a self-complementary graph F the function IpF, xq is symmetric around
x “ 1{2. One may thus wonder whether some appropriate self-complementary graph F
yields an affirmative solution to Problem 7.17.1. This approach leads to the following question.

Problem 7.4. Let F be a self-complementary graph. Is it true that IpF, xq “ indpF q holds
if and only if x “ 1{2?
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7.2. Problems for specific graphs. The smallest problem left open by our results on
stars in Section 55 is to determine IpS3, xq for x P r1{2, 1s. In an interesting contrast to the
case S2 “ K´

3 one can show that the clique density construction (see Construction 1.91.9) is
not extremal for this problem. For x P r4

?
2´ 5, 1s the best construction we are aware of

is the complement of a clique of order tp1´ xq1{2nu, which leads to the bound

IpS3, xq ě 4p1´ p1´ xq1{2qp1´ xq3{2 . (7.1)

For x P r0.91, 0.93s we have a complicated argument based on the results in [2424] which
shows that equality holds in (7.17.1). In the range x P r1{2, 4

?
2´ 5q the complement of two

disjoint cliques of order tpp1´xq{2q1{2nu shows that IpS3, xq is strictly larger than the right
side of (7.17.1). We hope to return to this problem in the near future.

Finally, we would like to emphasize Conjecture 1.171.17 again: Is it true that for x P r1{2, 1s
the graphs in Construction 1.91.9 minimizing the triangle density maximize the induced C4

density?
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