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Abstract

A fundamental barrier in extremal hypergraph theory is the presence of many near-
extremal constructions with very different structure. Indeed, the classical constructions due
to Kostochka imply that the notorious extremal problem for the tetrahedron exhibits this
phenomenon assuming Turán’s conjecture.

Our main result is to construct a finite family of triple systems M, determine its Turán
number, and prove that there are two near-extremalM-free constructions that are far from
each other in edit-distance. This is the first extremal result for a hypergraph family that
fails to have a corresponding stability theorem.

1 Introduction

Let r ≥ 3 and F be a family of r-uniform graphs (henceforth r-graphs). An r-graph H is F-free
if it contains no member of F as a subgraph. The Turán number ex(n,F) of F is the maximum
number of edges in an F-free r-graph on n vertices. The Turán density π(F) of F is defined as
π(F) := limn→∞ ex(n,F)/

(
n
r

)
. The study of ex(n,F) is perhaps the central topic in extremal

graph and hypergraph theory.
Much is known about ex(n,F) when r = 2 and one of the most famous results in this regard

is Turán’s theorem, which states that for ` ≥ 2 the Turán number ex(n,K`+1) is uniquely
achieved by T (n, `) which is the `-partite graph on n vertices with the maximum number of
edges.

For ` > r ≥ 3, let Kr
` be the complete r-graph on ` vertices. Extending Turán’s theorem to

hypergraphs (i.e. r ≥ 3) is a major problem. Indeed, the problem of determining π(Kr
` ) was

raised by Turán [27] and is still wide open. Erdős offered $500 for the determination of any
π(Kr

` ) with ` > r ≥ 3 and $1000 for the determination of all π(Kr
` ) with ` > r ≥ 3.

Conjecture 1.1 (Turán [27]). π(K3
` ) = 1−

(
2

`−1

)2
.

The case ` = 4 above, which states that π(K3
4 ) = 5/9 has generated a lot of interest and

activity over the years. Many constructions (e.g. see [2, 13, 7]) are known to achieve the value
in Conjecture 1.1 for ` = 4, and that is perhaps one of the reasons why it is so challenging.
On the other hand, successively better upper bounds for π(K3

4 ) were obtained by de Caen [4],
Giraud (see [3]), Chung and Lu [3], and Razborov [24]. The current record is π(K3

4 ) ≤ 0.561666,
which was obtained by Razborov [24] using flag algebra machinery.

Many families F have the property that there is a unique F-free graph (or hypergraph) G on
n vertices achieving ex(n,F), and moreover, any F-free graph (or hypergraph) H of size close
to ex(n,F) can be transformed to G by deleting and adding very few edges. Such a property
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is called the stability of F . The first stability theorem was proved independently by Erdős and
Simonovits [26].

Theorem 1.2 (Erdős-Simonovits [26]). Let ` ≥ 2. Then for every δ > 0 there exists an ε > 0
and n0 such that the following statement holds for all n ≥ n0. Every K`+1-free graph on n
vertices with at least (1− ε)t(n, `) edges can be transformed to T (n, `) by deleting and adding at
most δn2 edges.

The stability phenomenon has been used to determine ex(n,F) exactly in many cases. It
was first used by Simonovits in [26] to determine ex(n,F) exactly for all color-critical graphs
and large n, and then by several authors (e.g. see [5, 6, 8, 9, 11, 12, 19, 20, 22]) to prove exact
results for hypergraphs.

However, there are many Turán problems for hypergraphs that (perhaps) do not have the
stability property. The example K3

4 we mentioned before was shown to have exponentially
many extremal constructions in the number of vertices (see Kostochka [13] and Brown [2]). We
will prove (Proposition 1.7) that these constructions can be used to show that K3

4 does not
have the stability property (assuming Conjecture 1.1 is true). For K3

` with ` ≥ 5, different
near-extremal constructions were given by Sidorenko [25], and Keevash and the second author
[10]. Although we do not provide the details, these also show that K3

` does not have stability
(assuming Conjecture 1.1 is true).

The absence of stability seems to be a fundamental barrier in determining the Turán numbers
of some families. Indeed, the Turán numbers of the examples we presented above are not known,
even asymptotically, and in fact, no Turán number of a family without the stability property
has been determined.

This paper provides the first such example. We construct a familyM of 3-graphs, prove that
M does not have the stability property, and determine π(M), and even ex(n,M) for infinitely
many n (Theorems 1.6 and 1.10).

The present paper has a slightly similar flavor as [23] in the sense that we will define the
extremal hypergraphs G1n and G2n first, and then define the forbidden family M, which is a
suitably chosen family based on G1n and G2n.

In order to state our results formally, we need some definitions.

Definition 1.3. Let r ≥ 2 and H be an r-graph. The transversal number of H is

τ(H) := min {|S| : S ⊂ V (H) such that S ∩ E 6= ∅ for all E ∈ H} .

We set τ(H) = 0 if H is an empty graph.

Let ` ≥ r ≥ 2 and Kr
`+1 be the collection of all r-graphs F on at most (`+ 1) + (r− 2)

(
`+1
2

)
vertices such that for some (`+1)-set S, which will be called the core of F , every pair {u, v} ⊂ S
is covered by an edge in F 1. Let V1 ∪ · · · ∪V` be a partition of [n] := {1, . . . , n} with each Vi of
size either bn/`c or dn/`e. The generalized Turán graph Tr(n, `) is the collection of all r-subsets
of [n] that have at most one vertex in each Vi. Let tr(n, `) = |Tr(n, `)|. It was shown by the
second author [17] that ex(n,Kr

`+1) = tr(n, `) and Tr(n, `) is the unique Kr
`+1-free r-graph on n

vertices with exactly tr(n, `) edges.
Suppose that T is an r-graph on s vertices and t = (t1, . . . , ts) with each ti a positive integer.

Then the blowup T (t) of T is obtained from T by replacing each vertex i by a set of size ti,
and replacing every edge in T by the corresponding complete r-partite r-graph.

An r-graph S is a star if all edges in S contain a fixed vertex v, which is called the center
of S.

1 The original definition of Kr
`+1 in [17] requires that F has at most

(
`+1
2

)
edges. The new definition we used here

will make our proofs simpler. Notice that Kr
`+1 is a finite family in both definitions.
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Definition 1.4. Let |A| = bn/3c and |B| = d2n/3e with A ∩B = ∅. Define

G1n :=
{
abb′ : a ∈ A and {b, b′} ⊂ B

}
.

Let G26 be the 3-graph with vertex set [6] whose complement is

G26 := {123, 126, 345, 456}.

For n > 6 let G2n be a 3-graph on n vertices which is a blowup of G26 with the maximum number
of edges.

Remarks.

• Notice that G1n is a (unbalanced) blowup of a star.

• Simple calculations show that each part in G2n has size either bn/6c or dn/6e.

• For i = 1, 2, let gi(n) = |Gin|. Then limn→∞ gi(n)/n3 = 2/27.

a
b

b′

A

B

(a) The 3-graph G1n.

1 2

45

6 3

(b) The complement of G26 .

Figure 1: G1 and G26 .

Definition 1.5. The family M is the union of the following three finite families.

(a) M1 is the set containing the complete 3-graph on five vertices with one edge removed,
M1 =

{
K3−

5

}
.

(b) M2 is the collection of all 3-graphs in K3
7 with a core whose induced subgraph has transver-

sal number at least two.

(c) M3 is the collection of all 3-graphs F ∈ K3
6 such that both F 6⊂ G1n and F 6⊂ G2n for all

positive integers n.

Our first result is about the Turán number of M.

Theorem 1.6. The inequality ex(n,M) ≤ 2n3/27 holds for all positive integers n. Moreover,
equality holds whenever n is a multiple of six.

For an r-graph H the shadow of H is

∂H :=

{
A ∈

(
V (H)

r − 1

)
: ∃B ∈ H such that A ⊂ B

}
.
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Note that both G1n and G2n are M-free and g1(n) ∼ g2(n) ∼ 2n3/27. Moreover, it is easy to see
that transforming G1n to G2n requires us to delete and add Ω(n3) edges. Indeed, ∂G1n contains a
clique on b2n/3c vertices, whereas ∂G2n has clique number six. By Turán’s theorem, one must
thus delete strictly more that (1− π(K7))

(b2n/3c
2

)
= Ω(n2) edges from ∂G2n to obtain a copy of

∂G2n. Since every edge in ∂G1n is covered by Ω(n) edges in G1n, we need to remove at least Ω(n3)
edges from G1n before getting G2n. So this proves that M does not have the stability property
(in the sense of Theorem 1.2).

A family F is t-stable if there exist t near-extremal constructions, and every F-free graph
(or hypergraph) of size close to ex(n,F) is structurally close to one of these near-extremal
constructions. The stability number of F , denoted by ξ(F), is the minimum integer t such that
F is t-stable. If there is no such integer t, then we let ξ(F) =∞.

Although the concept of t-stable families was raised over a decade ago (see [18] and [21]), no
example of t-stable families are known for any t ≥ 2 before this work. However, if we assume
that Turán’s conjecture is true, then the following result shows that the stability number of K3

4

is infinity.

Proposition 1.7. 2 If Conjecture 1.1 is true, then ξ(K3
4 ) =∞.

Our next result gives further detail about near-extremal M-free constructions by showing
that M is 2-stable with respect to G1n and G2n. More precisely, it shows that ξ(M) = 2.

Definition 1.8. Let H be a 3-graph. Then H is called semibipartite if V (H) has a partition
A ∪ B such that |E ∩ A| = 1 and |E ∩ B| = 2 for all E ∈ H, and H is called G26-colorable if it
is a subgraph of a blowup of G26 .

With some calculations one can get the following observation.

Observation 1.9. Let H be a 3-graph on n-vertices. If H is semibipartite, then |H| ≤ g1(n).
If H is G26-colorable, then |H| ≤ g2(n).

Theorem 1.10 (2-stability). For every δ > 0 there exists ε > 0 and n0 such that the following
holds for all n ≥ n0. Every M-free 3-graph on n vertices with at least 2n3/27 − εn3 edges can
be transformed to a 3-graph that is either semibipartite or G26-colorable by removing at most δn
vertices. In other words, ξ(M) = 2.

Note that Theorem 1.10 is stronger than the requirement in the definition of 2-stability since
removing at most δn vertices implies that the number of edges removed is at most δn3 but not
vice versa.

Let H be an r-graph on n vertices. The edge density of H is d(H) := |H|/
(
n
r

)
and the

shadow density of H is d(∂H) := |∂H|/
(

n
r−1
)
. The feasible region Ω(F) of F is the set of points

(x, y) ∈ [0, 1]2 such that there exists a sequence of F-free r-graphs (Hk)∞k=1 with limk→∞ v(Hk) =
∞, limk→∞ d(∂Hk) = x and limk→∞ d(Hk) = y. We introduced this notion recently in [15]
to understand the extremal properties of F-free hypergraphs beyond just the determination
of π(F) (it unifies and generalizes many classical problems). In particular, we proved that
Ω(F ) is completely determined by a left-continuous almost everywhere differentiable function
g(F) : projΩ(F)→ [0, 1], where

projΩ(F) = {x : ∃y ∈ [0, 1] such that (x, y) ∈ Ω(F)} ,

and
g(F , x) = max {y : (x, y) ∈ Ω(F)} , for all x ∈ projΩ(F).

Theorem 1.6 together with Theorem 1.10 yield the following result.

2 We refer the reader to [14] for a proof.
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Theorem 1.11. 3 The set projΩ(M) = [0, 1], and g(M, x) ≤ 4/9 for all x ∈ [0, 1]. Moreover,
g(M, x) = 4/9 iff x ∈ {5/6, 8/9}.

In words, Theorem 1.11 says that M-free 3-graphs can have any possible shadow density
but the edge density is maximized for exactly two values of the shadow densities.

( 2
3
, 1
4
)

1/2

4/9

5
6

8
9 1

x

y

Figure 2: g(M) has exactly two global maxima by Theorem 1.11.

This paper is organized as follows. In Section 2 we will present some preliminary definitions
and lemmas for the proofs of Theorems 1.6 and 1.10. In Section 3 we will prove Theorem 1.6,
and in Section 4 we will prove Theorem 1.10.

2 Preliminaries

For a graph G and two disjoint sets A,B ⊂ V (G) denote by G[A,B] the induced bipartite
subgraph of G with two parts A and B.

Let r ≥ 2 and H be an r-graph. For every v ∈ V (H) the link LH(v) of v in H is

LH(v) = {A ∈ ∂H : A ∪ {v} ∈ H} ,

the degree of v in H is dH(v) := |LH(v)|, and the minimum degree of H is δ(H) := min{dH(v) :
v ∈ V (H)}. For S ⊂ V (H), the neighborhood4 of S in H is

NH(S) := {v ∈ V (H) \ S : ∃E ∈ H such that {v} ∪ S ⊂ E}.

Two vertices u, v ∈ V (H) are adjacent in H if u ∈ NH(v). When it is clear from context we will
omit the subscript H in the notations above.

Let V (H) = [n]. For x = (x1, . . . , xn) define the weight polynomial of a hypergraph H as

pH(x) :=
∑
E∈H

∏
i∈E

xi.

The standard n-simplex is

∆n :=

{
x ∈ Rn+1 :

n+1∑
i=1

xi = 1 and xi ≥ 0 for all i ∈ [n+ 1]

}
.

The Lagrangian of H is
λ(H) := max

{
pH(x) : x ∈ ∆n−1} .

3 We refer the reader to [14] for a proof.
4 Note that this is not a standard definition for the neighborhood. Some authors define the the neighborhood of

an s-set S to be its (r − s)-uniform link.
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Note that ∆n−1 is compact in Rn and pH(x) is continuous, so λ(H) is well-defined.
Recall that in Section 1 we defined the blowup of an r-graph T . The next standard lemma

gives a relationship between λ(T ) and the size of a blowup of T .

Lemma 2.1. Let r ≥ 2 and T and H be two r-graphs. Suppose that H is a blowup of T with
v(H) = n. Then |H| ≤ λ(T )nr.

Proof. Suppose that |V (T )| = s and H = T (t) for some t = (t1, . . . , ts). Then

|H| =
∑
E∈T

∏
i∈E

ti = nr
∑
E∈T

∏
i∈E

ti
n
≤ λ(T )nr,

where the last inequality follows from the definition of λ(T ) and
∑

i∈[s] ti = n.

Given another r-graph F we say f : V (F ) → V (H) is a homomorphism if f(E) ∈ H for
all E ∈ F , i.e., f preserves edges. We say that H is F -hom-free if there is no homomorphism
from F to H. In other words, H is F -hom-free if and only if all blowups of H are F -free. For a
family F of r-graphs, H is F-hom-free if it is F -hom-free for all F ∈ F .

An r-graph F is 2-covered if every {u, v} ⊂ V (F ) is contained in some E ∈ F , and a family
F is 2-covered if all F ∈ F are 2-covered. It is easy to see that if F is 2-covered, then H is
F-free if and only if it is F-hom-free. Although M is not 2-covered, we still have a similar
result.

Lemma 2.2. A 3-graph H is M-free if and only if it is M-hom-free.

Proof. The backward implication is clear. Now suppose conversely that H fails to be M-hom-
free, i.e., that there is a homomorphism f : V (F ) → V (H) for some F ∈ M. If F ∼= K3−

5 ,
then f is injective due to the fact that K3−

5 is 2-covered. However, this implies that K3−
5 ⊂ H,

a contradiction. Therefore, F ∈ M2 ∪M3. Clearly the restriction of f to the core S of F is
injective. So f(F ) ∈ K3

|S| ∩M and in view of f(F ) ⊂ H it follows that H fails to be M-free.

3 Turán number of M
In this section, we will prove Theorem 1.6. The first subsection contains some technical lemmas
and calculations needed in the proof.

3.1 Lagrangian of some 3-graphs

Lemma 3.1. Suppose that T is a 3-graph with at most four vertices. Then λ(T ) ≤ 1/16.

Proof. Without loss of generality we may assume that v(T ) = 4 and |T | = 4, i.e., T ∼= K3
4 . It

is easy to see that

pK3
4
(x) = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 ≤ 4(1/4)3 = 1/16.

Therefore, λ(T ) ≤ 1/16.

Lemma 3.2. 5 Suppose that T is a 3-graph on five vertices with at most eight edges. Then
λ(T ) < 0.067277.

Lemma 3.3. λ(G26) ≤ 2/27.

5 We refer the reader to [14] for a proof.

6



Proof. Notice that

pG26 (x1, . . . , x6) = x3x6(x1 + x2 + x4 + x5)

+ (x1 + x2)(x3 + x6)(x4 + x5) + x1x2(x4 + x5) + x4x5(x1 + x2).

Setting a = (x3 + x6)/2, b = (x1 + x2)/2, c = (x4 + x5)/2, d = (b + c)/2, and then it follows
from the AM-GM inequality that

pG26 (x1, . . . , x6) ≤ 2a2(b+ c) + 8abc+ 2bc(b+ c) ≤ 4a2d+ 8ad2 + 4d3

= 2 ((a+ d) · (a+ d) · 2d)

≤ 2

(
(a+ d) + (a+ d) + 2d

3

)3

=
2

27
.

Lemma 3.4. Let T be a 2-covered 3-graph on k ≥ 7 vertices. Suppose that τ(T [S]) ≤ 1 for all
sets S ⊂ V (T ) with |S| = 7. Then T is a star.

Remark. In fact, a weaker condition that |S| = 6 is sufficient for the proof of Lemma 3.4.

Proof. Suppose that T is not a star. Then for every vertex v in T there exists an edge Ev in T
that does not contain v.

First notice that T cannot contain two disjoint edges. Therefore, T is intersecting. Suppose
that T contains two edges E1 = {u, v1, v2} and E2 = {u,w1, w2}, where {v1, v2}∩{w1, w2} = ∅.
Let E3 ∈ T be an edge that does not contain u. Since T is intersecting, we may assume that
v1, w1 ∈ E3. Then, we have |E1 ∪ E2 ∪ E3| ≤ 6, and τ({E1, E2, E3}) = 2, a contradiction.
Therefore, we may assume that the intersection of every two edges in T has size two. Let E1 =
{u, v, w1} and E2 = {u, v, w2} be two edges in T . By assumption there exists an edge E3 ∈ T
that does not contain u and, hence, we have E3 = {v, w1, w2}. Similarly there exists E4 ∈ T that
does not contain v and, hence, we have E4 = {u,w1, w2}. Then, we have |E1∪E2∪E3∪E4| = 4,
and τ({E1, E2, E3, E4}) = 2, a contradiction.

3.2 Proof of Theorem 1.6

In this section we complete the proof of Theorem 1.6.
For v ∈ V (H) and E ∈ H, H− v is obtained by removing v and all edges containing v from

H, and H− E is obtained by removing E from H and keeping V (H) unchanged.

Definition 3.5 (Equivalence classes). Let H be an r-graph and u, v be two non-adjacent (i.e.
no edge containing both) vertices in H. Then u and v are equivalent if L(u) = L(v), otherwise
they are non-equivalent. If u and v are equivalent, then we write u ∼ v. Let Cv denote the
equivalence class of v.

Algorithm 1 (Symmetrization without cleaning) Let H be an r-graph. We perform the fol-
lowing operation as long as there are two non-adjacent non-equivalent vertices in H. Let u, v
be two such vertices with d(u) ≥ d(v). Then we delete all vertices from Cv and duplicate u
using |Cv| vertices and still label these new vertices with labels in Cv. Another way to view
this operation is that we remove all edges in H that have nonempty intersection with Cv and
for every E ∈ H with u ∈ E we add E − {u} ∪ {v′} for all v′ ∈ Cv into H. We terminate the
process when there is no non-adjacent non-equivalent pair.

Note that the number of equivalence classes in H strictly decreases after each step that can
be performed, so Algorithm 1 always terminates. On the other hand, since symmetrization only
deletes and duplicates vertices, by Lemma 2.2, Algorithm 1 preserves theM-freeness of H. The
following lemma is immediate from the definition.
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Lemma 3.6. Let Ht be the 3-graph obtained from H by applying Algorithm 1, and let T ⊂ V (H)
such that T contains exactly one vertex from each equivalence class of Ht. Then,

(a) |Ht| ≥ |H|.

(b) Ht[T ] is 2-covered and Ht is a blowup of Ht[T ].

Now we are ready to finish the proof of Theorem 1.6.

Proof of Theorem 1.6. Let H be anM-free 3-graph on n vertices. Apply Algorithm 1 to H and
let Ht denote the resulting 3-graph. Let T ⊂ V (H) such that T contains exactly one vertex from
each equivalent class in Ht, and let T = Ht[T ]. By Lemma 3.6, in order to prove |H| ≤ 2n3/27,
it suffices to show |Ht| ≤ 2n3/27. Since Ht is a blowup of T , by Lemma 2.1, it suffices to show
that λ(T ) ≤ 2/27. Next, we will consider two cases depending on the size of T : either |T | ≥ 7
or |T | ≤ 6.

Case 1: |T | ≥ 7.
Since T is 2-covered and it is M2-free, τ(T [S]) ≤ 1 for all S ⊂ T with |S| = 7, and it follows
from Lemma 3.4 that T is a star.

Let us calculate λ(T ). We may assume that V (T ) = [s] for some integer s and 1 is the
center of T . Then,

pT (x) ≤ x1

 ∑
{i,j}⊂[s]\{1}

xixj

 ≤ s− 2

2(s− 1)
x1(1− x1)2 <

1

2
x1(1− x1)2 ≤

2

27
,

which implies that λ(T ) < 2/27.

Case 2: |T | ≤ 6.
If |T | ≤ 5, then Lemmas 3.1 and 3.2 imply that λ(T ) < 0.67277. So we may assume that
|T | = 6.

Lemma 3.6 implies that T is 2-covered, so T ∈ K3
6. Since Ht does not contain any member

in M3 as a subgraph, either T ⊂ G1n or T ⊂ G2n for some n ≥ 6. Due to the fact that T is
2-covered again, either T is a star or T ⊂ G26 . The former case has been handled by Case 1, so
we may assume that T ⊂ G26 , and it follows from Lemma 3.3 that λ(T ) ≤ λ(G26) ≤ 2/27.

4 Stability of M
In this section we will prove Theorem 1.10. First we present an algorithm and some lemmas
that will be used in the proof.

4.1 Symmetrization

Let 0 ≤ α ≤ 1 and H be a 3-graph. Then H is α-dense if δ(H) ≥ α
(
v(H)−1

2

)
. Let (V,≺V ) be

a poset on V with relation ≺V . For S ⊂ V the induced poset of (V,≺V ) on S is denoted by
(S,≺V ).

Algorithm 2 (Symmetrization and cleaning with threshold α).
Input: A 3-graph H.
Operation:

• Initial step: If δ(H) ≥ α
(
v(H)−1

2

)
, then let H0 = H and V0 = V (H). Otherwise, we keep

deleting vertices with the minimum degree one by one until the remaining 3-graph H0

is either empty or δ(H0) ≥ α
(
v(H0)−1

2

)
. Let Z0 be the set of deleted vertices during this

process so that V0 := V (H0) = V (H)− Z0.
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Let (V0,≺V0) be the poset with V0 itself an antichain, i.e., there is no relation between any
two vertices in V0.

Suppose we are at the i-th step for some i ≥ 1. We terminate the algorithm if either

(a) Hi−1 = ∅ or

(b) δ(Hi−1) ≥ α
(
v(Hi−1)−1

2

)
and there is no pair of non-adjacent non-equivalent vertices.

Otherwise, we iterate the following two operations.

Step 1 (Symmetrization): If Hi−1 contains no pair of non-adjacent non-equivalent
vertices, then let Gi = Hi−1 and go to Step 2. Otherwise, choose two non-adjacent non-
equivalent vertices u, v ∈ V (Hi−1) and assume that d(u) ≥ d(v). Delete all vertices in
Cv and add |Cv| new vertices into Cu by duplicating u and label these new vertices with
labels in Cv, which is the same as what we did in Algorithm 1. Let Gi denote the resulting
r-graph, and update the poset (Vi−1,≺Vi−1) by adding the following relations: v′ ≺ u′

for all v′ ∈ Cv and all u′ ∈ Cu. This new poset is well-defined as one will see from the
following operations that once two equivalence classes are merged they will never be split.

Step 2 (Cleaning): If δ(Gi) ≥ α
(
v(Gi)−1

2

)
, then let Hi = Gi and (Vi,≺Vi) = (Vi−1,≺Vi−1).

Otherwise let L = Gi and repeat Steps 2.1 and 2.2.

Step 2.1: LetB = {a ∈ V (L) : dL(a) = δ(L)} and choose a minimal element z ∈ (B,≺Vi−1

). Replace L, Vi−1, and (Vi−1,≺Vi−1) by L− z, Vi−1 \ {z}, and (Vi−1 \ {z},≺Vi−1), respec-
tively.

Step 2.2: If δ(L) ≥ α
(
v(L)−1

2

)
or L = ∅, then stop. Otherwise, go to Step 2.1.

Let Hi = L and (Vi,≺Vi) = (Vi−1,≺Vi−1). Let Zi denote the set of vertices removed by
Step 2.1 so that Hi = Gi − Zi.

Output: A 3-graph Ht for some t such that either Ht is empty or δ(Ht) ≥ α
(
v(Ht)−1

2

)
and there

is no pair of non-adjacent non-equivalent vertices in Ht.

Remark. The point of Step 2 is that the symmetrization step (Step 1) could potentially bring
down the degree of some of the vertices in the hypergraph, making the pruning step (Step 2)
necessary.

Let ε > 0 be sufficiently small and n be sufficiently large. Let H be anM-free 3-graph on n
vertices with |H| ≥ 2n3/27− εn3. Apply Algorithm 2 to H with threshold α = 4/9− 3ε1/2 and
suppose that it stops at the t-th step. Let Ht denote the resulting 3-graph and W = V (Ht) and
ñ = |W |. For 0 ≤ i ≤ t let H̃i = Hi[W ] and G̃i = Gi[W ]. Note that H̃0 = H[W ] and G̃0 = G[W ],
and we will omit the subscript 0 if there is no cause for confusion. Let Z =

⋃t
i=0 Zi be the set

of vertices in H that were removed by Algorithm 2. In the rest of the proof we will focus on H̃i

and G̃i. Notice from Algorithm 2 that Hi = Gi −Zi and Zi ⊂ V (H) \W , therefore, H̃i = G̃i for
all 1 ≤ i ≤ t.

H H0 G1 H1 · · · Ht−1 Gt Ht

H̃0 H̃1 · · · H̃t−1 H̃t

⊇
−Z0 Sym. −Z1 Sym. −Zt−1 Sym. −Zt

⊇

Figure 3: The first line contains the 3-graphs produced by Algorithm 2 and the second line
contains the corresponding induced 3-graphs on W .
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Lemma 4.1. For every i ∈ [t] either H̃i−1 = H̃i or there exist two nonempty equivalence classes
Vi ⊂ W and Ui ⊂ W in H̃i−1 such that H̃i is obtained from H̃i−1 by deleting all vertices in Vi
and adding |Vi| new vertices by duplicating some vertex in Ui.

Proof. Fix 1 ≤ i ≤ t and suppose that in forming Gi from Hi−1 in Algorithm 2 we deleted all
vertices in Cv and added |Cv| new vertices by duplicating some u ∈ Cu, where Cv (resp. Cu)
is the equivalence class of v ∈ V (Hi−1) (resp. u ∈ V (Hi−1)) in Hi−1. Let Ĉu = Cv ∪ Cu and
notice that for every i ≤ j ≤ t the set Ĉu ∩ V (Gj) (resp. Ĉu ∩ V (Hj)) is an equivalence class in
Gj (resp. Hj).

If Cv ∩W = ∅, then H̃i−1 = H̃i and we are done. So we may assume that Cv ∩W 6= ∅.
First, we claim that Cu ⊂W . Indeed, suppose that there exists u′ ∈ Cu \W . Then it means

that u′ was removed at the j-th step for some i ≤ j ≤ t. Since all v′ ∈ Cv satisfy v′ ≺Vk
u′

and dGk(v′) = dGk(u′) for all i ≤ k ≤ j, by definition of Algorithm 2 all vertices in Cv must be
removed before u′ was removed, which implies that Cv ∩W = ∅, a contradiction. Therefore,
Cu ⊂W .

Let Vi = Cv ∩ W and Ui = Cu and note that neither of them is empty. Since Cv and
Cu are equivalence classes in Hi−1, Vi and Ui are equivalence classes in H̃i−1. According to
Algorithm 2, H̃i is obtained from H̃i−1 by deleting all vertices in Vi and adding |Vi| new vertices
by duplicating some vertex in Ui.

The following two lemmas show that the size of the set Z of vertices removed by Algorithm
2 is small, and the induced subgraph H̃i of Hi on W has a large minimum degree for 0 ≤ i ≤ t.
Their proofs can be found in [1].

Lemma 4.2. We have |Z| ≤ 3ε1/2n, and hence ñ ≥ n− 3ε1/2n.

Lemma 4.3. For all 0 ≤ i ≤ t,

δ(H̃i) >
(

4/9− 10ε1/2
)(ñ− 1

2

)
and, in particular,

|H̃i| >
(

4/9− 10ε1/2
)(ñ

3

)
.

Notice that H̃t = Ht and H̃0 = H[W ]. In order to prove Theorem 1.10 it suffices to show
that H̃0 is either semibipartite or G26 -colorable. We will proceed by backward induction on i.
The following lemma establishes the base case of the induction.

Lemma 4.4. Let T ⊂ W such that T contains exactly one vertex in each equivalence class
in Ht and T = Ht[T ]. Then, either T is a star or T ⊂ G26 and, in particular, Ht is either
semibipartite or G26-colorable.

Proof. First we claim that |T | ≥ 6. Indeed, suppose that |T | ≤ 5. Then, Lemmas 3.1 and
3.2 imply that λ(T ) < 0.067277. It follows from Lemma 2.1 that |Ht| < 0.067277ñ3 < (4/9 −
10ε1/2)

(
ñ
3

)
, which contradicts Lemma 4.3. Therefore, |T | ≥ 6.

Suppose that |T | ≥ 7. Since T is 2-covered and M2-free, τ(T [S]) ≤ 1 for all S ⊂ T with
|S| = 7. So by Lemma 3.4, T is a star, and hence Ht is semibipartite.

Suppose that |T | = 6. Since T ∈ K3
6 and H is M3-free, either T ⊂ G1m or T ⊂ G2m for some

integer m ≥ 6. Moreover, due to the fact that T is 2-covered, either T is a star or T ⊂ G26 . In
the former case, Ht is semibipartite, and in the latter case, Ht is G26 -colorable.

Next, we will consider two cases in the following two subsections depending on the structure
of Ht.
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4.2 Semibipartite

In this section we will prove the following statement.

Lemma 4.5. Suppose that Ht is semibipartite. Then H̃i is semibipartite for all 0 ≤ i ≤ t. In
particular, H[W ] = H̃0 is semibipartite.

We will use the following stability theorem due to Füredi, Pikhurko, and Simonovits [8] to
prove Lemma 4.5.

Let F3,2 be the 3-graph with vertex set [5] and edges set {123, 124, 125, 345}. Füredi,
Pikhurko, and Simonovits [8] proved that if n is sufficiently large, then G1n is the unique F3,2-free
3-graph on n vertices with the maximum number of edges. Moreover, they proved the following
strong stability result.

Theorem 4.6 (Füredi-Pikhurko-Simonovits [8]). Let γ ≤ 1/125 be fixed and n ≥ n0. Let H be
an F3,2-free 3-graph on n vertices with δ(H) > (4/9− γ)

(
n
2

)
. Then H is semibipartite.

Now we prove Lemma 4.5.

Proof of Lemma 4.5. The proof is by backward induction on i and the base case is i = t as
H̃t = Ht. Now suppose that H̃i+1 is semibipartite with two parts Ai+1 and Bi+1 for some
0 ≤ i ≤ t − 1, and every edge in H̃i+1 has exactly one vertex in Ai+1. We may assume that
both Ai+1 and Bi+1 are union of some equivalence classes. Our goal is to show that H̃i is also
semibipartite.

Recall that ε > 0 is a sufficiently small constant and ñ is a sufficiently large integer.
Denote by Ĝ the semibipartite 3-graph on W that consists of all triples that have exactly

one vertex in Ai+1. Notice that H̃i+1 ⊂ Ĝ and LH̃i+1
(w) ⊂ LĜ(w) for all w ∈W .

Claim 4.7. We have
∣∣|Ai+1| − ñ/3

∣∣ < 4ε1/4ñ and
∣∣|Bi+1| − 2ñ/3

∣∣ < 4ε1/4ñ.

Proof of Claim 4.7. Let β = |Bi+1|. Since H̃i+1 is semibipartite,

|H̃i+1| ≤ (ñ− β)

(
β

2

)
.

On the other hand, by Lemma 4.3, |H̃i+1| ≥ (4/9− 10ε1/2)
(
ñ
3

)
. Therefore,

(4/9− 10ε1/2)

(
ñ

3

)
≤ (ñ− β)

(
β

2

)
,

which implies that (2/3− 4ε1/4)ñ < β < (2/3 + 4ε1/4)ñ.

For every vertex w ∈ W let Mw = LĜ(w) \ LH̃i+1
(w). Members in Mw are called missing

edges of LH̃i+1
(w).

Claim 4.8. We have |Mw| ≤ 10ε1/4ñ2 for all w ∈W .

Proof of Claim 4.8. If w ∈ Ai+1, then LĜ(w) is a complete graph on Bi+1. If w ∈ Bi+1, then

LĜ(w) is a complete bipartite graph with two parts Ai+1 and Bi+1. Claim 4.7 and Lemma 4.3

imply that for every w ∈ Ai+1 we have

|Mw| ≤
(

2ñ/3 + 4ε1/4ñ

2

)
− (4/9− 10ε1/2)

(
ñ

2

)
≤ 10ε1/4ñ2,

and for every w ∈ Bi+1 we have

|Mw| ≤ (ñ/3 + 4ε1/4ñ)(2ñ/3 + 4ε1/4ñ)− (4/9− 10ε1/2)

(
ñ

2

)
≤ 10ε1/4ñ2.
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a
b

b′

v

L

R
Cv

Figure 4: The 3-graph H̃i+1 is obtained from H̃i by symmetrizing Cv to some equivalence class
Cu that is contained in L or R.

Lemma 4.1 implies that either H̃i = H̃i+1 or there exists two equivalence classes Cv and
Cu in H̃i such that H̃i+1 is obtained from H̃i by symmetrizing Cv to Cu (see Figure 4). In the
former case, there is nothing to prove, so we may assume that we are in the latter case.

Let L = Ai+1 \ Cv, R = Bi+1 \ Cv and W ′ = W \ Cv. Since H̃i+1 is obtained from H̃i by
symmetrizing Cv to Cu that is contained in either L or R, it follows that

either (L ∪ Cv, R) =
(
Ai+1, Bi+1

)
or (L,R ∪ Cv) =

(
Ai+1, Bi+1

)
, (1)

and in particular, L 6= ∅ and R 6= ∅.
Since Cv is an equivalence class in H̃i, LH̃i

(v′) = LH̃i
(v) for all v′ ∈ Cv. Thus we may

just focus on v. Notice that in forming H̃i+1 from H̃i we only delete and add edges that have
nonempty intersection with Cv, so H̃i[W

′] = H̃i+1[W
′]. Since H̃i+1 is semibipartite, it follows

that H̃i[W
′] is semibipartite with two parts L and R.

Claim 4.9. We have |NH̃i
(v) ∩R| ≥

(
1/3− 5ε1/4

)
ñ. In particular, |R| ≥

(
1/3− 5ε1/4

)
ñ.

Proof of Claim 4.9. By Lemma 4.3,(
|NH̃i

(v)|
2

)
≥ dH̃i

(v) ≥
(

4/9− 10ε1/2
)(ñ− 1

2

)
,

which implies that |NH̃i
(v)| ≥ (2/3− 15ε1/2)ñ. By Claim 4.7, |L| ≤ (1/3 + 4ε1/4)ñ, and hence

|NH̃i
(v) ∩R| ≥

(
2/3− 15ε1/2

)
ñ−

(
1/3 + 4ε1/4

)
ñ >

(
1/3− 5ε1/4

)
ñ.

Claim 4.10. For every vertex w ∈W ′ we have |NH̃i
∩R| ≥ |R| − ñ/100.

Proof of Claim 4.10. Notice that LH̃i+1
(w)[W ′] = LH̃i

(w)[W ′] for every w ∈ W ′. Therefore,

for every w ∈ L we have |LĜ(w)[R] \ LH̃i
(w)[R]| ≤ |Mw| ≤ 10ε1/4ñ2. By Claim 4.9, |R| ≥(

1/3− 5ε1/4
)
ñ. So the number of vertices in R that have degree 0 in LH̃i

(w)[R] is at most

2× 10ε1/4ñ2/|R| < 80ε1/4ñ < ñ/100.
Now fix u ∈ R. If |L| ≥ ñ/100, then a similar argument as above applied to graphs

LĜ(u)[L,R] and LH̃i
(u)[L,R] yields the number of vertices inR that have degree 0 in LH̃i

(u)[L,R]

is at most 2× 10ε1/4ñ2/|L| ≤ 2000ε1/4ñ < ñ/100.
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So we may assume that |L| < ñ/100. Due to Claim 4.7 and (1), we must have Cv∪L = Ai+1

since otherwise we would have |L| = |Ai+1| ≥ (1/6 − 4ε1/4)ñ > ñ/100, a contradiction. In
particular, |Cv| ≤ |Ai+1| ≤ (1/3 + 4ε1/4)ñ and |R| = |Bi+1|. Notice that LH̃i

(u) is a 3-partite
graph with three parts L, R, and Cv (note that Cv is an equivalence class, so no pair in Cv is
covered). Let x denote the number of vertices in R that have degree 0 in LH̃i

(u), and note that

for a vertex u′ ∈ R with degree 0 in LH̃i
(u) every vertex u′′ ∈ L∪Cv forms a pair {u′, u′′} that

is not contained in LH̃i
(u). Then due to dH̃i

(u) ≥ (4/9− 10ε1/2)
(
ñ−1
2

)
, we have

(4/9− 10ε1/2)

(
ñ− 1

2

)
+ x(|L|+ |Cv|) ≤ dH̃i

(u) + x(|L|+ |Cv|) ≤ |L||Cv|+ |R|(|L|+ |Cv|),

which implies that x ≤ ñ/100.

We may assume that H̃i contains a copy of F3,2, since otherwise by Theorem 4.6 we are

done. Let S ⊂W be a set of size 5 such that F3,2 ⊂ H̃i[S]. Observe that S ∩Cv 6= ∅ and due to
the fact that F3,2 is 2-covered, we actually have |S∩Cv| = 1. We may assume that {v} = S∩Cv.

Let {w1, w2, w3, w4} = S \ {v}. Define R′ = R ∩NH̃i
(v) ∩

(⋂
j∈[4]NH̃i

(wj)
)

. Then Claims 4.9

and 4.10 imply that |R′| ≥
(
1/3− 5ε1/4

)
ñ− 4× ñ/100 > ñ/6. Fix a vertex u ∈ L (it is possible

that u ∈ {w1, w2, w3, w4}). By Claim 4.8, |LĜ(u)[R′] \ LH̃i
(u)[R′]| ≤ |Mu| ≤ 10ε1/4ñ2. So there

exists an edge w5w6 ∈ LH̃i
(u)[R′]. Let E ⊂ H̃i be a set of edges of size at most 10 that covers all

pairs in {v, w1, w2, w3, w4}×{w5, w6}, and let F = H̃i[{v, w1, w2, w3, w4}]∪{uw5w6}∪E. Then
it is easy to see that F is a member in M2 (since F3,2 ⊂ H̃i[{v, w1, w2, w3, w4}] has transversal
number at least two), a contradiction.

4.3 G26-colorable

In this section we will prove the following statement.

Lemma 4.11. Suppose that Ht is G26-colorable. Then H̃i is G26-colorable for all 0 ≤ i ≤ t. In

particular, H[W ] = H̃0 is G26-colorable.

The following lemma, which will be used in the proof of Lemma 4.11, can be easily proved
using a probabilistic argument. Its proof can be found in [16].

Consider a 3-graph with V (G) = [m] and pairwise disjoint sets V1, . . . , Vm. The blowup
G[V1, . . . , Vm] of G is obtained from G by replacing each vertex j ∈ [m] with the set Vj and
each edge {j1, j2, j3} ∈ G with the complete 3-partite 3-graph with vertex classes Vj1 , Vj2 ,
and Vj3 . For a 3-graph H we say that a partition V (H) =

⋃
j∈[m] Vj is a G-coloring of H if

H ⊆ G[V1, . . . , Vm].

Lemma 4.12 ([16]). Fix a real η ∈ (0, 1) and integers m,n ≥ 1. Let G be a 3-graph with
vertex set [m] and let H be a further 3-graph with v(H) = n. Consider a vertex partition
V (H) =

⋃
i∈[m] Vi and the associated blowup Ĝ = G[V1, . . . , Vm] of G. If two sets T ⊆ [m] and

S ⊆ V (we allow S to contain vertices from Vi for i ∈ T ) have the properties

(a) |Vj | ≥ (|S|+ 1)|T |η1/3n+ |S| for all j ∈ T ,

(b) |H[Vj1 , Vj2 , Vj3 ]| ≥ |Ĝ[Vj1 , Vj2 , Vj3 ]| − ηn3 for all {j1, j2, j3} ∈
(
T
3

)
, and

(c) |LH(v)[Vj1 , Vj2 ]| ≥ |LĜ(v)[Vj1 , Vj2 ]| − ηn3 for all v ∈ S and {j1, j2} ∈
(
T
2

)
.

then there exists a selection of vertices uj ∈ Vj \ S for all j ∈ [T ] such that U = {uj : j ∈ T}
satisfies Ĝ[U ] ⊆ H[U ] and LĜ(v)[U ] ⊆ LH(v)[U ] for all v ∈ S. In particular, if H ⊆ Ĝ, then

Ĝ[U ] = H[U ] and LĜ(v)[U ] = LH(v)[U ] for all v ∈ S.
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Now we prove Lemma 4.11.

Lemma 4.11. Similar to Lemma 4.5, the proof of Lemma 4.11 is also by backward induction
on i, and the base case is i = t as H̃t = Ht. Now suppose that H̃i+1 is G26 -colorable for some

0 ≤ i ≤ t− 1, and we want to show that H̃i is also G26 -colorable.

Since H̃i+1 is G26 -colorable, let

P = {V i+1
1 , . . . , V i+1

6 }.

be the set of six parts in H̃i+1 such that there is no edge between V i+1
1 V i+1

2 V i+1
3 , V i+1

1 V i+1
2 V i+1

6 ,

V i+1
3 V i+1

4 V i+1
5 , and V i+1

4 V i+1
5 V i+1

6 (and every edge in H̃i+1 hits at most one vertex in V i+1
j for

every j ∈ [6]). We may assume that each set V i+1
j is a union of some equivalence classes.

Let

y = (y1, . . . , y6) =
(
|V i+1

1 |/ñ, . . . , |V i+1
6 |/ñ

)
,

and notice that a similar argument as in the proof of Lemma 2.1 yields

|H̃i+1| ≤ pG26 (y)ñ3. (2)

First we give a lower bound and an upper bound for the size of every set in P.

Claim 4.13. We have ||A| − ñ/6| < 20ε1/4ñ for every set A ∈ P.

Proof of Claim 4.13. Let η = 4ε1/2 and note that by assumption η > 0 is sufficiently small and
ñ is sufficiently large. First, it follows from (2) and Lemma 4.3 that

pG26 (y1, . . . , y6) ≥
(

4/9− 10ε1/2
)(ñ

3

)
/ñ3 ≥ 2/27− η.

On the other hand, let a = (y3 +y6)/2, b = (y1 +y2)/2, c = (y4 +y5)/2, d = (b+ c)/2 and recall
from the proof of Lemma 3.3 that

pG26 (y1, . . . , y6) = y3y6(y1 + y2 + y4 + y5)

+ (y1 + y2)(y3 + y6)(y4 + y5) + y1y2(y4 + y5) + y4y5(y1 + y2)

≤ 2a2(b+ c) + 8abc+ 2bc(b+ c) ≤ 4a2d+ 8ad2 + 4d3 = 2 ((a+ d) · (a+ d) · 2d) .

Therefore,

(a+ d) · (a+ d) · 2d ≥ 1/27− η/2, (3)

and

4d(a2 − y3y6) ≤ η, 4d(d2 − bc) ≤ η, 2c(b2 − y1y2) ≤ η, 2b(c2 − y4y5) ≤ η. (4)

Now (3) and 2a+ 4d = 1 yield

η/2 ≥ 1/27− (a+ d)2 · 2d = 1/27− (1 + 2a)2(1− 2a)/32 = (a− 1/6)2(a/4 + 5/24)

≥ (a− 1/6)2/8,

whence |a − 1/6| ≤ 2η1/2. By 2|a − 1/6| = 4|d − 1/6| this implies |d − 1/6| ≤ η1/2. Since η is
sufficiently small, it follows that a, d ≥ 1/8. So the first inequality in (4) leads to (y3−y6) ≤ 8η,
whence |y3 − y6| ≤ 3η1/2. By the triangle inequality we obtain

2|y3 − 1/6| ≤ |y3 − y6|+ |y3 + y6 − 1/3| ≤ 3η1/2 + 2|a− 1/6| ≤ 7η1/2,

which shows |y3 − 1/6| ≤ 4η1/2. Similarly, |y6 − 1/6| ≤ 4η1/2. Applying the same reasoning to
the other estimates in (4) we obtain first |b− 1/6|, |c− 1/6| ≤ 3η1/2 and then |yi− 1/6| ≤ 5η1/2

for every i ∈ {1, 2, 4, 5}.
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U1 U2

U4U5

U6 U3Cv

Figure 5: H̃i+1 is obtained from H̃i by symmetrizing Cv to some equivalence class Cu that is
contained in Uj for some j ∈ [6]. Dashed lines indicate that there is no edge between these

parts in H̃i.

Lemma 4.1 implies that either H̃i = H̃i+1 or there exists two equivalence classes Cv and
Cu in H̃i such that H̃i is obtained from H̃i+1 by symmetrizing Cv to Cu (see Figure 5). In the
former case, there is nothing to prove, so we may assume that we are in the latter case. Notice
that Cv and Cu are contained in the same member in P, and in particular, Claim 4.13 implies
that |Cv| ≤ (1/6 + 10ε1/4)ñ. In the rest of the proof we will focus on the structure of H̃i. Let
Uj = V i+1

j \ Cv for j ∈ [6], W ′ = W \ Cv, and

P ′ = {U1, . . . , U6}.

Notice that there exists j0 ∈ [6] such that Uj0 ∪ Cv = V i+1
j0

, and Uj = V i+1
j holds for all

j ∈ [6] \ {j0}. In particular, no set in P ′ is the empty set.
First we will prove several claims about sets in P ′. Since U1 is a representative for sets in

{U1, U2, U4, U5} and U3 is a representative for sets in {U3, U6}, we shall only prove the statements
for U1 and U3, and by symmetry, the statements hold for all sets in P ′.

Denote by Ĝ the blowup G26 [U1, . . . , U6] of G26 , and notice that H̃i[W
′] ⊂ Ĝ. For j ∈ [6] fix a

vertex aj ∈ Uj , let G̃j = LĜ(aj), Gj = G̃j [{a1, . . . , a6} \ {aj}], and notice that G̃j is a graph on
W ′ \ Uj and is a blowup of Gj (see Figure 6).

a1 a2

a4a5

a6 a3

U1 U2

U4U5

U6 U3

(a) The graph G1 is the 5-vertex graph above, and

G̃1 is a blowup of G1.

a1 a2

a4a5

a6 a3

U1 U2

U4U5

U6 U3

(b) The graph G3 is the 5-vertex graph above, and

G̃3 is a blowup of G3.

Figure 6: Graphs G1 and G3.

For every w ∈ W , let L(w) = LH̃i
(w) and N(w) = NH̃i

(w). Since H̃i+1 is G26 -colorable and

H̃i[W
′] = H̃i+1[W

′], it follows that L(w)[W ′] ⊂ G̃j for all j ∈ [6] and w ∈ Uj . For every j ∈ [6]
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and every w ∈ Uj let

M(w) =
{
w1w2 ∈ G̃j : w1w2 6∈ L(w)[W ′]

}
,

and call members in M(w) missing edges of L(w)[W ′].

Claim 4.14. We have |M(w)| ≤ 30ε1/4ñ2 for every w ∈W .

Proof of Claim 4.14. We shall only prove the case w ∈ U1, since the arguments for other cases
are similar. Fix a vertex w ∈ U1. Let Ĝ1 be the blowup of G1 obtained by replacing each vertex
in V (G1) with the set in P that contains it. Since H̃i+1 is G26 -colorable, LH̃i+1

(w) ⊂ Ĝ1. On

the other hand, since LH̃i
(w)[W ′] = LH̃i+1

(w)[W ′], it follows from Lemma 4.3 and Claim 4.13

that

|M(w)| = |G̃1 \ LH̃i
(w)[W ′]| ≤ |Ĝ1 \ LH̃i+1

(w)|

= |Ĝ1| − |LH̃i+1
(w)|

< 8
(

1/6 + 10ε1/4
)2
ñ2 −

(
4/9− 10ε1/2

)(ñ− 1

2

)
< 30ε1/4ñ2.

By Lemma 4.3 and Claim 4.14, H̃i and Ĝ satisfy the following statements, which will be
useful later when we applying Lemma 4.12.

(a) |H̃i[A1, A2, A3]| ≥ |Ĝ[A1, A2, A3]| − 2ε1/2n3 for every triple {A1, A2, A3} ⊂ P ′, and

(b) |LH̃i
(u)[A1, A2]| ≥ |LĜ(u)[A1, A2]| − 30ε1/4n3 for every u ∈W ′ and every pair {A1, A2} ⊂

P ′ satisfying u 6∈ A1 ∪A2.

Claim 4.15. Let j ∈ [6] and w ∈ Uj. Then |N(w) ∩ (W ′ \ Uj)| > |W ′ \ Uj | − 400ε1/4ñ.

Proof of Claim 4.15. We shall only prove the case that P = U1, since the arguments for other
cases are similar. Let w ∈ U1 and W ′′ = W ′ \U1. Since Cv is contained in exactly one set in P,
it follows from Claim 4.13 that all but at most one set in P ′ have size at least

(
1/6− 10ε1/4

)
ñ.

On the other hand, since δ(G1) ≥ 2 and G̃1 is a blowup of G1, we obtain

δ(G̃1) >
(

1/6− 10ε1/4
)
ñ.

So it follows from Claim 4.14 that the number of vertices in W ′′ with degree 0 in L(w)[W ′] is
at most

2|MU (w)|
δ(G̃1)

<
60ε1/4ñ2

(1/6− 10ε1/4)ñ
< 400ε1/4ñ.

Recall that H̃i+1 is obtained from H̃i by symmetrizing Cv to Cu, where Cv and Cu are
equivalence classes of v and u in H̃i, respectively. Let Pu denote the member in P ′ that contains u
and notice that Pu∪Cv is a member in P. So Claim 4.13 implies that |Pu∪Cv| ≤ (1/6+10ε1/4)ñ.

Claim 4.16. Suppose that |Cv| > ñ/12. Then every vertex in W ′ \Pu is adjacent to all vertices
in Cv in H̃i.

16



Proof of Claim 4.16. We shall only prove the case Pu = U2, since the arguments for other cases
are similar. First it follows from |Pu∪Cv| ≤ (1/6+10ε1/4)ñ that |Pu| < (1/6+10ε1/4)ñ−ñ/12 <
ñ/10. Let w ∈W ′ \ Pu, and suppose that w is not adjacent to any vertex in Cv. We shall only
prove that case w ∈ U1, since the arguments for other cases are similar.

Since H̃i[W
′] = H̃i+1[W

′] and H̃i+1 is G26 -colorable, LH̃i
(w)[W ′] ⊂ G̃1. On the other hand,

since NH̃i
(w) ∩ Cv = ∅, we actually have LH̃i

(w) ⊂ G̃1. It follows from the definition of G̃1,
Claim 4.13, and |U2| = |Pu| < ñ/10 that

|LH̃i
(w)| ≤ |G̃1| < 6

(
1/6 + 10ε

1
4

)2
ñ2 + 2× ñ

10

(
1/6 + 10ε

1
4

)
ñ <

(
2/9− 10ε1/2

)
ñ2,

which contradicts Lemma 4.3.
Therefore, w is adjacent to some vertex in Cv (in H̃i). Since Cv is an equivalence class in

H̃i, w is adjacent to all vertices in Cv (in H̃i).

v
w1

w′1
w2

w6 w3

w4w5

U1 U2

U4U5

U6 U3

Figure 7: The 3-graph F = H̃i[{w1, w2, . . . , w6}]∪ H̃i[{w′1, w2, . . . , w6}]∪ {vw1w
′
1} is a member

in M2 with core {w1, w
′
1, w2, . . . , w6}. In particular, τ({w1w3w4, w

′
1w5w6}) > 1.

Claim 4.17. We have L(v)[A] = ∅ for every set A ∈ P ′.

Proof of Claim 4.17. Suppose to the contrary that there exists an edge w1w
′
1 ∈ LH̃i

(v)[A] for

some A ∈ P ′. We shall only prove the case A = U1, since the arguments for other cases are
similar. It follows from Claim 4.15 that

|N(w1) ∩N(w′1) ∩ (W ′ \ U1)| > |W ′ \ U1| − 800ε1/4ñ. (5)

Suppose that |W ′ \U1| > 11ñ/15. Then by Claim 4.13, |Uj | ≥ 11ñ/15− 4(1/6 + 20ε1/4)ñ >
ñ/20 for every j ∈ [2, 6]. Applying Lemma 4.12 with S = {w1, w

′
1}, T = [2, 6], and η = 30ε1/4

we obtain wj ∈ Uj for j ∈ [2, 6] (see Figure 7) such that the induced subgraphs of H̃i on sets

{w1, w2, . . . , w6} and {w′1, w2, . . . , w6} are isomorphic to G26 . Let F = H̃i[{w1, w2, . . . , w6}] ∪
H̃i[{w′1, w2, . . . , w6}]∪{vw1w

′
1}. Then it is easy to see that F ∈M2 with core {w1, w

′
1, w2, . . . , w6}

(see Figure 7), a contradiction.
Suppose that |W ′ \U1| ≤ 11ñ/15 ≤ 5(1/6−10ε1/4)ñ. Then by Claim 4.13, |Cv| ≥ ñ− (1/6+

10ε1/4)ñ − 11ñ/15 > ñ/12 and Pu 6= U1. We shall only prove that case Pu = U2, since the
arguments for other cases are similar. Applying Lemma 4.12 with S = {w1, w

′
1}, T = [3, 6], and

η = 30ε1/4 we obtain wj ∈ Uj for j ∈ [3, 6] (see Figure 8) such that the induced subgraphs of

H̃i and Ĝ on the sets {w1, w3, . . . , w6} and {w′1, w3, . . . , w6} are isomorphic (and they are all 2-

covered), respectively. For j ∈ [3, 6] let ej ∈ H̃i be an edge containing v and wj (by Claim 4.16,

v is adjacent to wj , so such ej exists). Define F = H̃i[{w1, w3, . . . , w6}]∪H̃i[{w′1, w3, . . . , w6}]∪
{vw1w

′
1} ∪ {ej : j ∈ [3, 6]}. Then it is easy to see that F ∈M2 with core {v, w1, w

′
1, w3, . . . , w6}

(see Figure 8), a contradiction.
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v

w1

w′1

w6 w3

w4w5

U1 U2

U4U5

U6 U3

Figure 8: The 3-graph F = H̃i[{w1, w3, . . . , w6}] ∪ H̃i[{w′1, w3, . . . , w6}] ∪ {vw1w
′
1} ∪

{ej : j ∈ [3, 6]} is a member in M2 with core {v, w1, w
′
1, w3, . . . , w6}. In particular,

τ({w1w3w4, w
′
1w5w6}) > 1.

Claim 4.18. There is at most one set A ∈ P ′ such that |N(v) ∩A| < ñ/48.

Proof of Claim 4.18. Let U ′j = N(v) ∩ Uj for j ∈ [6]. By Claim 4.17, L(v) is a 6-partite graph
(not necessarily complete) with the set of parts P ′′ := {U ′1, U ′2, U ′3, U ′4, V ′1 , V ′2}. Suppose to the
contrary that there are at least two sets in P ′′ that have size at most ñ/48. Then, by Claim
4.13,

|L(v)| ≤ 6
(

1/6 + 10ε1/4
)2
ñ2 + (ñ/48)2 + 8× ñ/48×

(
1/6 + 10ε1/4

)
ñ <

(
2/9− 10ε1/2

)
ñ2,

which contradicts Lemma 4.3.

v

w1 w2

w6 w3

w4w5

U1 U2

U4U5

U6 U3

Figure 9: The 3-graph F = H̃i[{w1, . . . , w6}] ∪ {ej : j ∈ [6]} is a member in M2 with core
{v, w1, . . . , w6}. In particular, τ({w1w3w4, w2w5w6}) > 1.

Claim 4.19. There exists a set A ∈ P ′ such that N(v) ∩A = ∅.

Proof of Claim 4.19. Suppose to the contrary that every set A ∈ P ′ satisfies A∩N(v) 6= ∅. By
Claim 4.18, there are at least five sets A′ ∈ P ′ with |A′∩N(v)| ≥ ñ/48. We shall only prove the
case that every set A′ ∈ P ′ \ {U1} satisfies |A′ ∩ N(v)| ≥ ñ/48, since the arguments for other
cases are similar.

Fix a vertex w1 ∈ N(v)∩U1. Let U ′j = Uj ∩N(v) for i ∈ [2, 6]. By assumption, |U ′j | ≥ ñ/48

for j ∈ [2, 6]. So applying Lemma 4.12 with T = {w1}, S = [2, 6], and η = 30ε1/4 we obtain
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wj ∈ U ′j for j ∈ [2, 6] (see Figure 9) such that the induced subgraph of H̃i on {w1, . . . , w6}
is isomorphic to G26 . For j ∈ [6] let ej ∈ H̃i be an edge containing v and wj . Define F =

H̃i[{w1, . . . , w6}] ∪ {ej : j ∈ [6]}. Then it is easy to see that F is a member in M2 with core
{v, w1, . . . , w6} (see Figure 9), a contradiction.

Our next step is to show that H̃i is G26 -colorable with the sets of parts P̃, where P̃ is obtained
from P ′ by replacing A with A ∪ Cv and the set A is guaranteed by Claim 4.19. We shall only
prove the case A = U1, since the arguments for other cases are similar.

Let

Bv =
{
ww′ ∈ L(v) : ww′ 6∈ G̃1

}
, and Mv =

{
ww′ ∈ G̃1 : ww′ 6∈ L(v)

}
.

Members in Bv are called bad edges of L(v) and members in Mv are called missing edges of
L(v).

v

w6

w2

w3

w4w5

w1

U1 U2

U4U5

U6 U3

Figure 10: The 3-graph F = H̃i[{w1, . . . , w6}] ∪ {ej : j ∈ {4, 5, 6}} ∪ {vw2w3} is a member in
M3 with core {v, w1, . . . , w5}.

Claim 4.20. We have |Bv| < 300ε1/12ñ2.

Proof of Claim 4.20. Suppose to the contrary that |Bv| ≥ 300ε1/12ñ2. Notice that every edge
in Bv must have one vertex in U2 and the other vertex in U3 ∪ U6. By symmetry and the
Pigeonhole principle, we may assume that at least |Bv|/2 edges in Bv have one vertex in U2

and the other vertex in U3. Then Claim 4.13 and an easy averaging argument show that there
exists a vertex w2 ∈ U2 such that

|NBv(w2) ∩ U3| ≥
|Bv|/2
|U2|

>
300ε1/12ñ2/2

ñ/5
> 600ε1/12ñ.

Let U ′3 = NBv(w2) ∩ U3, and U ′j = N(v) ∩ Uj for j ∈ {4, 5, 6}. Since |U ′3| ≥ 600ε1/12ñ and
|U ′j | ≥ ñ/13 for j ∈ {4, 5, 6}, applying Lemma 4.12 with T = {w2}, S = {1, 3, 4, 5, 6}, and

η = 30ε1/4 we obtain w1 ∈ U1 and wj ∈ U ′j for j ∈ {3, 4, 5, 6} (see Figure 10) such that the

induced subgraph of H̃i on {w1, . . . , w6} is a copy of G26 . For j ∈ {4, 5, 6} let ej ∈ H̃i be an edge

containing v and wj . Let F = H̃i[{w1, . . . , w6}]∪{ej : j ∈ {4, 5, 6}}∪ {vw2w3}. It is easy to see
that F is a member in K3

6 with core {v, w2, . . . , w6} (see Figure 10). So, by assumption, either
F ⊂ G1m or F ⊂ G2m for any integer m. It is easy to see that the former case cannot hold since
the induced subgraph of F on the set {w1, . . . , w6} is a copy of G26 and G26 6⊂ G1m for any integer
m. So, F ⊂ G2n for some integer m. In other words, there exists a map ψ : V (F )→ V (G26) such
that ψ(e) ∈ G26 for all e ∈ F . Notice that both {w1, . . . , w6} and {v, w2, . . . , w6} are 2-covered
in F , so the restrictions of ψ on {w1, . . . , w6} and {v, w2, . . . , w6} are both injective (similar to
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the proof of Lemma 2.2), and moreover, ψ(v) = ψ(w1). Let w = ψ(v) = ψ(w1). Notice that the
induced subgraph of LF (w1) on {w2, . . . , w3} has size 8 and w2w3 ∈ LF (v) \ LF (w1). Since ψ
preserves edges, the degree of w in G26 should be at least 8 + 1 = 9. However, this contradicts
the fact that the maximum degree of G26 is 8.

A consequence of Claim 4.20 is that the size of Mv satisfies

|Mv| = |G̃1 \ L(v)| = |G̃1| − |G̃1 ∩ L(v)|

= |G̃1| − (|L(v)| − |Bv|)

< 8
(

1/6 + 10ε1/4
)2
ñ2 −

((
2/9− 10ε1/2

)
ñ2 − |Bv|

)
< 400ε1/12ñ2.

v

w6

u2

u3

w4w5

w1 w2

w3

U1 U2

U4U5

U6 U3

Figure 11: The 3-graph F = H̃i[{v, u2, u3, w1, . . . , w6}] ∪ {vu2u3} ∪ {eu3w4} is a member in M3

with core {v, u2, u3, w4, w5, w6}.

Claim 4.21. We have Bv = ∅. In other words, LH̃i
(v) ⊂ G̃1.

Proof of Claim 4.21. Suppose to the contrary that there exists an edge u2u3 ∈ Bv and by
symmetry we may assume that u2 ∈ U2 and u3 ∈ U3. For j ∈ {4, 5, 6} let U ′j = Uj ∩ N(v) ∩
N(u1)∩N(u2) and notice that due to |Mv| ≤ 400ε1/12ñ2 and Claim 4.13 we have |U ′j | ≥ |Uj |/2 >
ñ/20. Applying Lemma 4.12 with T = {u2, u3}, S = [6], and η = 400ε1/36 we obtain wj ∈ U ′j
for j ∈ [6] (see Figure 11) such that

(a) H̃i[{w1, . . . , w6}] ∼= G26 ,

(b) LH̃i
(v)[{w2, . . . , w6}] = LĜ(w1)[{w2, . . . , w6}],

(c) LH̃i
(u2)[{w1, w3, . . . , w6}] = LĜ(u2)[{w1, w3, . . . , w6}], and

(d) LH̃i
(u3)[{w1, w2, w4, w5, w6}] = LĜ(u3)[{w1, w2, w4, w5, w6}].

Let eu3w4 ∈ H̃i be an edge containing u3 and w4. Let F = H̃i[{v, u2, u3, w1, . . . , w6}]∪{vu2u3}∪
{eu3w4}. Then it is easy to see that F is a member in K3

6 with core {v, u2, u3, w4, w5, w6} (see
Figure 11). Similar to the proof of Claim 4.20, F ⊂ G2m for some integer m. In other words, there
exists a map ψ : V (F )→ V (G26) such that ψ(e) ∈ G26 for all e ∈ F . Notice that both {w1, . . . , w6}
and {v, u2, u3, w4, w5, w6} are 2-covered in F , so the restrictions of ψ on sets {w1, . . . , w6} and
{v, u2, u3, w4, w5, w6} are both injective (similar to the proof of Lemma 2.2), and moreover,
ψ(v) = ψ(w1) (due to (b), v is adjacent to all vertices in {w2, . . . , w6}, so ψ(v) is distinct from
{ψ(w2), . . . , ψ(w6)}), ψ(u2) = ψ(w2) (due to (c) and a similar reason), and ψ(u3) = ψ(w3) (due
to (d) and a similar reason). Let w = ψ(v) = ψ(w1). Notice that the induced subgraph of
LF (w1) on {w2, . . . , w6} has size 8 and u2u3 ∈ LF (v) \ LF (w1). Since ψ preserves edges, the
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degree of w in G26 should be at least 8 + 1 = 9. However, this contradicts the fact that the
maximum degree of G26 is 8.

Define

V i
j =

{
U1 ∪ Cv, if j = 1,

Uj , otherwise.

By Claim 4.21, L(v) ⊂ G̃1. Therefore, H̃i is G26 -colorable with set of parts {V i
1 , . . . , V

i
6}. This

completes the proof of Lemma 4.11.
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