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Abstract. The edge-bandwidth of a graph G is the bandwidth of the line graph of
G. We show asymptotically tight bounds on the edge-bandwidth of two dimensional
grids and tori, the product of two cliques and the n-dimensional hypercube.

1. Introduction

Let G = (V (G), E(G)) be a simple graph with n vertices. A labelling η is a bijection
of V (G) to {1, . . . , n}. The bandwidth of η is

B(η, G) = max{|η(u)− η(v)| : uv ∈ E(G)}.
The bandwidth B(G) of G is

B(G) := min
η
{B(η, G)}.

The notion first came up in the seminal paper of Harper [6] in which the bandwidth
of the n-dimensional hypercube was given. It turns out that the determination or
computation of the bandwidth of graphs is hard (in fact, it is NP-hard [14]); for a
good survey, see [4] or [12].

The edge-bandwidth was introduced by Hwang and Lagarias in [9]. Here the edges
are labelled instead of the vertices, and the bandwidth of an edge-labelling η of a graph
G is

B′(η, G) := max{|η(uv)− η(vw)| : uv, vw ∈ E(G)}.
The edge-bandwidth of a graph G is

B′(G) := min
η
{B′(η, G)}.

Of course B′(G) = B(L(G)), where L(G) is the line graph of G, see [10]. The
Cartesian product of graphs G and H is denoted by G ⊕ H, with V (G ⊕ H) =
{(u, v)| u ∈ V (G), v ∈ V (H)} and E(G⊕H) = {〈(u1, v1), (u2, v2)〉| u1 = u2, (v1, v2) ∈
E(H) or (u1, u2) ∈ E(G), v1 = v2}. The n-th fold product G⊕G⊕· · ·⊕G is denoted
Gn. In this paper we shall give estimates for edge-bandwidth of four types of graph
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products, Pn⊕Pn, where Pn denotes the path with n vertices, Cn⊕Cn, where Cn is the
cycle on n vertices, Kn⊕Kn, where Kn is the clique on n vertices, and P n

2 = Kn
2 , the

n-dimensional hypercube. The bandwidths of Pn⊕Pn, Cn⊕Cn and Kn⊕Kn are well
studied, the first one is n, the second is 2n−1, while the third one is b(n2 +n−1)/2c,
see [5, 13, 1]. Nevertheless, only the trivial lower bounds n on B′(Pn ⊕ Pn) and
n2(n − 1)/3 ≤ B′(Kn ⊕ Kn) are known on the edge-bandwidth of those. (One can
readily get those by Proposition 5, in the next section.) Note that it is easy to see that
B′(Pn) = 1, B′(Cn) = 2, and in [10] it was proved that B′(Kn) = bn2/4c+ dn/2e − 2
and B′(Kn,n) =

(
n+1

2

)
− 1 where Kn,n denotes the complete bipartite graph. Our

results are the following.

Theorem 1. Let n ≥ 2. Then

(1) 2n−
√

n− 1 ≤ B′(Pn ⊕ Pn) ≤ 2n− 1

and

(2) 4n− 2
√

2n− 1 ≤ B′(Cn ⊕ Cn) ≤ 4n− 1.

We also obtain asymptotically tight bounds on the edge-bandwidth of the product
of two equal cliques.

Theorem 2.

(3)
3n3

8
− n2

16
− 7n

8
+

3

16
≤ B′(Kn ⊕Kn) ≤ 3n3

8
+

19n2

8
.

The third family of graphs have been studied extensively earlier. Recall that P n
2

is the n-dimensional hypercube, that is the vertices of P n
2 are the 0-1 sequences of

length n, and there is an edge between the vertices x and y iff their Hamming distance
is one. Bezrukov, Grünwald and Weber [2] showed that

2n−1 + 2n−2 ≤ B′(P n
2 ) ≤ 2

⌈
n

2

⌉(
n

bn
2
c

)
− 1.

An improved lower bound on B′(P n
2 ) was proved by Calamoneri, Massini and Vrťo

[3], namely that

n

4

(
n

bn
2
c

)
≤ B′(P n

2 ).

Our final result establishes the right asymptotical growth of B′(P n
2 ):

Theorem 3.

(4) B′(P n
2 ) =

(n

2
+ o(n)

)(
n

dn
2
e

)
.
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2. General Bounds

The standard techniques for obtaining lower bounds on bandwidth apply isoperi-
metric inequalities. In the literature many vertex and edge isoperimetric problems
were considered, in particular on the square grid and the hypercube. Given a graph
G, for an S ⊂ V (G) let

∂(S) = {v ∈ V (G) \ S| (u, v) ∈ E(G), u ∈ S}.

A typical (vertex) isoperimetric question is that for a given graph G of order n, and
for a fixed integer k what is

Lk(G) := min
|S|=k, S⊂V (G)

|∂(S)|?

As Proposition 4 states, the value of maxk Lk(G) is a lower bound for B(G). It is
not hard to see that this bound is sharp if the extremal structures for different k’s,
achieving the isoperimetric bound, can be positioned in G to be built a “nested”
sequence of sets, more precisely a sequence {Sk}n

k=1 ⊂ V (G) can be build that for all
i < j, Si ⊂ Sj and either Si ∪ ∂(Si) ⊂ Sj or Sj ⊂ Si ∪ ∂(Si). See [7] for more details.

In our cases, Proposition 4 does not even give asymptotically sharp bounds, but
surprisingly the iterated version of it, Proposition 6 does. In particular, we remark
that the vertex isoperimetric number of L(Pn ⊕ Pn) ≤ n + 1, but the bandwidth is
around 2n.

Proposition 4. [6] Let G be a graph and k be an integer, 0 ≤ k ≤ |V (G)|. Then

B(G) ≥ min
S, |S|=k

max{|∂(S)|, |∂(V − S)|}.

The length of a Pn is n− 1. The distance of two vertices in a graph G is the length
of the shortest path between them, and the diameter, diam(G), of a graph G is the
maximum distance between its vertices.

Proposition 5. [4] Let G be a graph. Then

B(G) ≥ |V (G)| − 1

diam(G)
.

Since we need an extension of these results, we give the outline of their proofs. Fix
a labelling of G, and let S be the set of vertices labelled by the numbers {1, . . . , k}.
Now the largest number appearing on the vertices in ∂(S) is at least k + |∂(S)|,
which gives a (absolute) difference at least |∂(S)| with the label of some vertex of S;
that is B(G) ≥ |∂(S)|. Using the same estimate for V − S and taking the optimal
labelling, Proposition 4 follows. For Proposition 5 consider a shortest path connecting
the vertices labelled by 1 and |V (G)|. The average (absolute) difference between the
labels of neighboring vertices is at least (|V (G)| − 1)/diam(G), hence the largest
difference is at least this much.
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Similarly to Proposition 4, one may consider not only the set ∂(S), but

∂`(S) := ∂(∂`−1(S))− ∪`
i=1∂

i−1(S),

where ∂0(S) := S. Let σ`(S) := ∪`
i=1∂

i(S), shortly the `-shadow of S. Note that
every vertex of σ`(S) is connected to S by a path of length at most `. As before, fix a
labelling of G, and let S be the set of vertices labelled by the numbers {1, . . . , k}. The
biggest label in σ`(S) is at least k + |σ`(S)|, say this appears on vertex y ∈ σ`(S).
Consider now a shortest path connecting an arbitrary vertex x of S and vertex y.
The average (absolute) difference between the labels of neighboring vertices is at
least |σ`(S)|/`, hence the largest difference is at least this much. This yields the
following result.

Proposition 6. Let G be a graph and k an integer, 0 ≤ k ≤ |V (G)|. Then we have

(5) B(G) ≥ min
S, |S|=k

max
1≤`≤n

|σ`(S)|
`

.

3. The proof of Theorem 1

3.1. The case of grids. We need to prove that 2n−
√

n−1 ≤ B′(Pn⊕Pn) ≤ 2n−1.
Here we have two candidates for optimal labellings that are different from each other,
which perhaps makes finding B′(Pn⊕Pn) harder, see Figure 1. The vertices of Pn⊕Pn

are labelled with (i, j) where 1 ≤ i, j ≤ n.

Labelling 1. Let

η(〈(i, j), (i, j + 1)〉) := (i− 1)(2n− 1) + j

and

η(〈(i, j), (i + 1, j)〉) := i(2n− 1) + j − n.

Labelling 2. We consider the vertices of the grid as the elements of an n×n matrix.
For edges bellow the diagonal (1, n)− (n, 1) let

η(〈(i, j), (i, j + 1)〉) := (i + j − 2)(i + j − 1) + 2i− 1

and

η(〈(i, j), (i + 1, j)〉) := (i + j − 2)(i + j − 1) + 2i.

Otherwise we extend the labels in antisymmetric way:

η(〈(i, j), (i, j + 1)〉) := 2n2 + 1− 2n− η(〈n + 1− i, n + 1− j〉, 〈n + 1− i, n− j〉)

and

η(〈(i, j), (i + 1, j)〉) := 2n2 + 1− 2n− η(〈n + 1− i, n + 1− j〉, 〈n− i, n + 1− j〉).

It is not hard to check that the bandwidth of both labellings is 2n− 1.
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Figure 1

For the proof of the lower bound, we need the following Lemma.

Lemma 7. (i) Let G be the tree consisting of a path of length n − 1 together with
n− 1 additional edges incident with all but the first vertex of the path. (So |V (G)| =
2n− 1 and |E(G)| = 2n− 2.) Let D be a nonempty set of edges in G. Suppose that
|E(G)−D| ≥ 2r − 1 for some r > 0. Then |σr(D)| ≥ 2r − 1.
(ii) Let H be the graph consisting of a cycle of length n, together with n additional
edges incident with all vertices of the cycle. (So |V (H)| = 2n = |E(H)|.) Suppose
that |E(H)−D| ≥ 4r − 2 for some r > 0. Then |σr(D)| ≥ 4r − 2.

Proof. (i) Define the distance d(e, f) between two edges e and f to be one less than
the length of the shortest path starting with e and ending with f . For disjoint sets
of edges P, Q, define the distance d(P, Q) between P and Q to be the minimum, over
all edges e ∈ P and f ∈ Q of d(e, f). Among all edge sets T ⊂ E(G) − D of size
2r − 1, consider the one that minimizes

∑
e∈T d({e}, D). Call this set T0. Note that

T0 exists since by our hypothesis |E(G)−D| ≥ 2r − 1.
We will show that T0 ⊂ σr(D). This suffices to complete the proof, since |T0| =

2r − 1. Suppose, on the contrary, that there exists an edge e ∈ T0 such that
d({e}, D) ≥ r + 1. Let P be a shortest path starting with e and ending in D,
say at edge f ∈ D. Then the length of P is at least r +2. Let X be the set of r edges
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of P − {f} closest to f (note that e 6∈ X). By the definition of G, there is a set Y of
r− 1 edges outside of P , incident to X, and incident to neither e nor f (thus e 6∈ Y ).
Because of the edges of P , one can see that X ∪ Y ⊂ σr(D). By the definition of T0,
X ∪Y ⊂ T0, since otherwise we could replace e by an edge from X ∪Y , contradicting
the minimality of T0. Now |X∪Y | = 2r−1 and e ∈ T0−(X∪Y ) leads to |T0| > 2r−1,
a contradiction.

(ii) We use a similar strategy to prove this part as in part (i). Fix an edge set D
such that ∅ 6= D ⊂ E(H) and |E(H) − D| ≥ 4r − 2. Define T0 as in (i). Again,
to get a contradiction we have to consider an edge e such that d({e}, D) ≥ r + 1.
Now we may find two edge disjoint “shortest” paths from e to D. Let P 1 denote a
shortest path from e to D not containing e. (This path has length at least 1 since
r > 0.) Deleting the edges of P 1, the edge e is still in a component with some edges
of D, hence there exists a shortest path P 2 connecting them, which is edge disjoint
from P 1. Now repeating the argument for both paths that we did in (i) for P , we
can obtain the statement (ii). �

We consider the vertices of Pn ⊕ Pn as the elements of an n × n matrix, thus
the vertex (i, j) lies in row i and column j. Call an edge horizontal if it is of the
form 〈(i, j), (i, j + 1)〉, and vertical if it is of the form 〈(i, j), (i + 1, j)〉. The left
(right) vertex of 〈(i, j), (i, j + 1)〉 is (i, j) ((i, j + 1)), and the top (bottom) vertex
of 〈(i, j), (i + 1, j)〉 is (i, j) ((i + 1, j)). Define the row ri (column cj) to be the set
of n − 1 horizontal (vertical) edges 〈(i, 1), (i, 2)〉, 〈(i, 2), (i, 3)〉, . . . , 〈(i, n − 1), (i, n)〉
(〈(1, j), (2, j)〉, 〈(2, j), (3, j)〉, . . . , 〈(n − 1, j), (n, j)〉). Define a line to be a row or a
column. Let t be the smallest integer such that edges labelled 1, . . . , t contain a line
`. Assume without loss of generality that ` is a row that is not r1. Let S be the set
of edges labelled by 1, . . . , t. Define R to be the set of rows r for which

1) there is a vertical edge from S whose bottom vertex is on r, or
2) there is a horizontal edge from S in r.

Claim 1. |∂(S)| ≥ n + |R| − 1.
Proof. By the definition of t, ∂(S) contains one vertical edge from each column. By
the definition of R, ∂(S) contains one horizontal edge from each row in R except `.
This gives n vertical edges and |R| − 1 horizontal edges in ∂(S). �

Claim 2. |σn−|R|(S)| ≥ (2n− 1)(n− |R|)− n.
Proof. We begin with by associating to each column cj (for j > 1), a set Ej of
2(n− |R|)− 1 edges, such that Ej ∩ Ej′ = ∅ for j 6= j′.

For each vertex (i, j) for which ri 6∈ R and i > 1, we consider the two edges
e = 〈(i, j − 1), (i, j)〉 and f = 〈(i − 1, j), (i, j)〉. In other words, these edges are the
horizontal edge with right endpoint (i, j) and the vertical edge with bottom endpoint
(i, j). By definition of R, neither e nor f are in S.
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This way we get at least 2(n − |R|) − 1 edges outside S (we get one more edge if
r1 ∈ R). Now consider the graph Gj consisting of all n−1 vertical edges of the column
cj for a fixed j = 1, . . . , n, and the n−1 horizontal edges 〈(i, j−1), (i, j)〉, where i > 1.
Let D = S∩E(G). Then Gj satisfies the hypothesis of Lemma 7 with r = n−|R|, (note
that D 6= ∅ because of the row `) and we conclude that 2(n− |R|)− 1 of the edges of
Gj lie in σn−|R|(D). For the column c1 a similar argument produces n−|R|−1 vertical
edges in σn−|R|(S). Altogether we have produced (n−1)(2(n−|R|)−1)+n−|R|−1 =
(2n− 1)(n− |R|)− n different edges in σn−|R|(S). �

Now if |R| ≥ n−
√

n, then Claim 1 and Proposition 4 apply, while if |R| ≤ n−
√

n,
then Claim 2 and Proposition 6 apply. Putting these together, we get

B′(Pn ⊕ Pn) ≥ min
|R|

max

{
n + |R| − 1,

(2n− 1)(n− |R|)− n

n− |R|

}
≥ 2n−

√
n− 1.

�

3.2. The case of tori. We leave the easy construction for the upper bound to the
reader. The proof of the lower bound is very similar to the proof of (1). Consider
an edge labelling of Cn ⊕Cn. Let t be the smallest integer such that the set of edges
labelled by 1, 2, . . . , t contains all but one edges of a line `. Without loss of generality,
` is a row. Let again R be the set of rows r for which there is a vertical edge from S
whose bottom vertex is on r, or there is a horizontal edge from S in r.

Claim 1∗. |∂(S)| ≥ 2n + 2|R| − 1.
Proof. By definition of t, ∂(S) contains at least two vertical edges from each of the
columns and from each row in R except `, and 1 from `. �

Claim 2∗. |σd(n−|R|)/2e(S)| ≥ 2n(n− |R|).
Proof. We begin with by associating to each column cj a graph Hj (isomorphic to the
one of Lemma 7 (ii)), and let D := S∩E(Hj). Then |E(Hj)−D| ≥ 2(n−|R|), by the
definition of R. This means that Lemma 7 (ii) can be applied, with r = d(n−|R|)/2e,
proving the statement. (Note that we can always assume that the intersection of the
row ` and Hj is in S, providing that D is not empty.) �

Now if |R| ≥ n−
√

2n, then Claim 1∗ and Proposition 4 apply, and if |R| < n−
√

2n,
then Claim 2∗ and Proposition 6 apply. �

4. Product of two cliques

First we demonstrate that B′(Kn ⊕ Kn) ≤ 3n3/8 + 29n2/8. To simplify the con-
struction, we give a mapping η : E(Kn ⊕ Kn) 7→ [1, . . . , n3] instead of mapping the
edges onto [1, . . . , 2n

(
n
2

)
]. A further simplification is that we shall not bother with the

error terms of quadratic sizes, divisibility or the exact endpoints of the subintervals
of [1, . . . , n3].

Before getting into the quite painful details, let us outline the ideas behind the
construction. We consider the vertices of Kn ⊕ Kn as cells of an n × n matrix, and
the edges are among the cells of a row or column. Obviously, if we put the “smallest”
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numbers to the upper left part, then the “biggest” numbers have to be placed to the
lower right part. So the first idea one may think is to divide the matrix into four equal
sub-matrices (upper, lower, left and right), and use up the numbers for the edges in
the following order. Fill first the upper left sub-matrix, then the edges between the
upper and lower left sub-matrices, then the lower sub-matrix and so on.

However, one runs into great difficulties when trying to decide about the labels of
edges going between the left and right side. To overcome these difficulties we use a
trickier division of the matrix, and using the numbers for labelling more economically.
This means to save some of the smaller numbers, and use those up only later, where
the naive construction would result in too big differences. We also have to maintain
a symmetry in order to keep the number of appearing cases reasonably small.

We start with explaining this symmetry first, then the labelling of edges inside a
sub-matrix, finally the division and the labels among those matrices. The construc-
tion involves some optimization, that is why we had to define some strange looking
numbers.

Cutting up this matrix into rectangles, the function η shall be defined on the edges
inside rectangles and between two rectangles. A rectangle will be specified by its
upper left and lower right corner.

The function η will be “antisymmetric” with respect to the center of the matrix,
that is

η(〈(n− i + 1, n− j + 1), (n− k + 1, n− j + 1)〉) = n3 − η(〈(i, k), (i, j)〉)
and

η(〈(n− i + 1, n− j + 1), (n− i + 1, n− k + 1)〉) = n3 − η(〈(i, j), (i, k)〉).
This way it suffices to define η for only half of the edges.
The first method is to assign labels from a given set of numbers I to all edges of

an ` by k rectangle T called the simple block. The elements of I are used in order,
starting from the smallest to fill T row by row. That is for every i, assuming that the
edges (inside) of an i by k sub-rectangle Ti are labelled, then the edges connecting
the vertices of the (i + 1)st row with the vertices of Ti are labelled, finally the edges
inside the (i + 1)st line get their label. In the first case we proceed row by row, like
reading a text, and order the edges connected to (i + 1, j) by the first coordinate of
their other endpoint. The second one is done in a lexical way according to the second
coordinates of the endpoints, i. e. the order of the labelling is 〈(i + 1, 1), (i + 1, 2)〉,
〈(i + 1, 1), (i + 1, 3)〉, 〈(i + 1, 2), (i + 1, 3)〉, and so on.

Let a := d(
√

2− 1)n/4e. We shall refer to the following sub-rectangles:

• T (1) with corners (1, 1) and (n− a, n/2),
• T (2) with corners (n− a + 1, 1) and (n, n/2),
• T (3) with corners (1, 1) and (n/4, n/2),
• T (4) with corners (n/4 + 1, 1) and (n/2, n/2),
• T (5) with corners (n/2 + 1, 1) and (3n/4, n/2)
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• T (6) with corners (3n/4 + 1, 1) and (n, n/2).
• Let furthermore T ′(i) be the centrally symmetric image of T (i) for i = 1, . . . , 6.

T(1)

T(3)

T(4)

T(5)

T(6)

T(2)

T’(1)

T’(3)

T’(4)

T’(5)

T’(6)

T’(2)

The rectangles

Figure 2

First we use the interval [1, . . . , n(n− a)(3n/2− a)/4] to make a simple block out
of T (1).

Next we use the interval [n(n − a)(3n/2 − a)/4 + 1, 23n3/64] to label the edges
between T (1) and T (2). The order is the same that we used in building the simple
block, but there are no edge labels inside the rows now.

The interval [23n3/64, 27n3/64] is used to label the edges between T (3) and T ′(6).
It is done similarly as before (going through the rows of T ′(6), and order the edges
by the second coordinate of their other endpoint).

The most subtle part is the labelling of the edges between T (4) and T ′(5). Now
the labels are from the interval [27n3/64 + 1, 32n3/64]. There are 4n3/64 edges to be
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labelled, that is n3/64 numbers will be saved for later use. For an edge 〈(i, j), (i, k)〉
connecting these rectangles, let us denote the smallest label occurring in (i, j) by ηi,j.
Let η(〈(i, j), (i, k)〉) := 3n3/8 + (i − 1)n(n/2 + i)/4 + (k − n/2) + (j − 1)n/2. To
see that this part of the labelling is well-defined, three observations are needed for
n/4 < i ≤ n/2, 1 ≤ j ≤ n/2 < k ≤ n:

• ηi,j+1 − ηi,j > n/4,
• ηi+1,i − ηi,n/2 ≥ n2/4 + n/4
• ηi+1,j − ηi,j > n2/4.

To label the edges of the rectangle T (2), we use up the leftover n3/64 numbers of
[27n3/64 + 1, 32n3/64] as a simple block.

This completes the definition of the function η, as by the symmetry it was enough to
define the labelling up to n3/2. We need to show that the bandwidth of the labelling
η is indeed less than 3n3/8 + 19n2/8:

The largest differences between the labels of two edges e and f having common
endpoints, up to the central symmetry, are contained in the following list:
(i) The edge e is between rectangles T (1) and T (2), and f is in T (2). By definition,
η(e) ≥ n(n− a)(3n/2− a)/4 and η(f) ≤ n2/2, implying that η(f)− η(e) < 3n3/8.
(ii) The edge e is inside of T (3) and f is between T (3) and T ′(6), having there
common endpoint in the t-th row. Then η(e) ≥ (t − 1)n(n/2 + t − 3)/4 and η(f) ≤
23n3/64 + tn2/4. These bounds and an optimization in the variable t shows that
η(f)− η(e) ≤ 23n3/64 + tn2/8− t2n/4 + n2/8 + nt− 3n/4 ≤ 3n3/8 + n2/2.
(iii) The edge e is in the rectangle T (4) and f is between T (4) and T ′(5), with their
common endpoint in the t-th row, where n/4 < t ≤ n/2. Then η(e) ≥ (t− 1)n(n/2 +
t− 3)/4 and η(f) ≤ (t− 1)n(n/2 + t)/4 + 3n3/8 + n/2 + (n/2− 1)n/2. It is easy to
check that
η(f)− η(e) ≤ 3(t− 1)n/4 + 3n3/8 + n/2 + n2/4− n/2 ≤ 3n3/8 + 7n2/8.
(iv) The edge e is between T (3) and T ′(2), and f is between T ′(2) and T ′(1), with
their common endpoint in the t-th row, where 1 ≤ t ≤ a. Then η(e) ≥ 23n3/64 and
η(f) ≤ n3−n(n−a)(3n/2−a)/4 < n3−n ·7n/8 ·11n/8 · (1/4) = 179n3/256 implying
η(f)− η(e) ≤ 3n3/8.
(v) The edge e is between T (3)∪T (4) and T ′(1), and f is in T ′(1), with their common
endpoint in the t-th row, where a < t ≤ n/2. Then η(e) ≥ (t−1)n(n/2+ t)/4+3n3/8
and η(f) ≤ n3 − (n− t− 1)n(n/2 + n− t− 3)/4, implying

η(f)− η(e) ≤ n3/4 + tn2/2− t2n/2 + 19n2/8 ≤ 3n3/8 + 19n2/8.

Proof of the lower bound.
Fix a labelling η. Consider S := Sn2(n−1)/8(η), defined as the set of edges receiving
labels from [n2(n−1)/8]. Let C denote the collection of columns and R the collection
of rows, containing an endpoint of an edge from S. We shall give a lower bound on
the cardinality of the 2-shadow of S:
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An edge of S is determined by its two endpoints. The first can be chosen from the
set R× C, the second either from the leftover rows or columns, that is |R|+ |C| − 2
ways. Since we have counted all edges twice and |S| = n2(n− 1)/8, we have

1

2
|R||C|(|C|+ |R| − 2) ≥ n2(n− 1)

8
= |S|.

This yields (|R|+ |C|)2(|C|+ |R|− 2) ≥ n2(n− 1) by the arithmetic-geometric means
inequality, which implies that |C| + |R| > n, or |C| + |R| ≥ n + 1, because of the
integrality of the left hand side.

A similar counting argument gives a lower bound on the 2-shadow σ2(S). From
the set of all edges of Kn ⊕Kn, we leave out the set S and those edges having both
endpoints outside of C and R.

(6) |σ2(S)| ≥ n2(n− 1)− n2(n− 1)

8
− (n− |C|)

(
n− |R|

2

)
− (n− |R|)

(
n− |C|

2

)
.

Note, that also by the arithmetic-geometric means inequality

(n−|C|)
(

n− |R|
2

)
+(n−|R|)

(
n− |C|

2

)
≤ 1

2

(2n− |C| − |R|
2

)2

(2n−|C|− |R|−2).

Since |C|+ |R| ≥ n + 1, we also have

1

2

(2n− |C| − |R|
2

)2

(2n− |C| − |R| − 2) ≤ (n− 1)2(n− 3)

8
.

Developing (6), and plugging in the inequalities above, one gets

|σ2(S)| ≥ 3n3

4
− n2

8
− 7n

8
+

3

8
,

that is

B′(Kn ⊕Kn) ≥ |σ2(S)|
2

≥ 3n3

8
− n2

16
− 7n

16
+

3

16
by Proposition 6. �

5. The hypercube

In this section we shall prove Theorem 3. Let us start with the upper bound. First
we need the following technical estimate.

Lemma 8. Let k ≤ n be two integers, and fix 1 ≤ i1 < . . . < ik ≤ n integers. Then

(7) (n− k)
k∑

j=1

(
n− ij

k + 1− j

)
− (n− k − 1)

k∑
j=1

(
n− ij

k + 2− j

)
= o(n)

(
n

bn/2c

)
.
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Proof. First we rewrite the left hand side of (7):

(n− k)
k∑

j=1

(
n− ij

k + 1− j

)
− (n− k − 1)

k∑
j=1

(
n− ij

k + 2− j

)
=

(n− k − 1)
k∑

j=1

{(
n− ij

k + 1− j

)
−

(
n− ij

k + 2− j

)}
+

k∑
j=1

(
n− ij

k + 1− j

)
.

We need some case analysis to handle the terms
(

n−ij
k+1−j

)
−

(
n−ij

k+2−j

)
, j = 1, . . . k.

First assume that ij ≥ 3 log n. Then(
n− ij

k + 1− j

)
< 2n−ij <

2n

n3
<

1

n2

(
n

dn
2
e

)
.

This means that in this case these terms contribute very little to the total sum.
Now we can assume that j ≤ ij < 3 log n. We shall use the following identity:

(8)

(
a

b

)
−

(
a

b + 1

)
=

2b + 1− a

b + 1

(
a

b

)
=

2b + 1− a

a + 1

(
a + 1

b + 1

)
.

If |2k − n| < n/ log2 n then using (8) we obtain

(n−k−1)
{(

n− ij
k + 1− j

)
−

(
n− ij

k + 2− j

)}
= (n−k−1)

2k + 2− 2j − n + ij
k + 2− j

(
n− ij

k + 1− j

)
<

(n− k − 1)

(
n− ij

k + 1− j

)
2k + 3 log n− n

k + 2− 3 log n
< O

( n

log2 n

)(
n

dn
2
e

)
.

There are at most 3 log n of these terms, so their contribution to the final sum is
negligible. If |2k − n| ≥ n/ log2 n, we can use the following inequalities for t =
bn/(2 log2 n)c,(

n
dn/2e+t

)(
n

dn/2e

) =
(n− dn/2e − t + 1) · . . . · (n− dn/2e)

(dn/2e+ 1) · . . . · (dn/2e+ t)
<

(n− bn/2c
dn/2e+ t

)t

=

(
1− t

dn/2e+ t

)t

< exp(−n/(2 log3 n)) <
1

n3
.

�
Now we give a labelling of the edges of P n

2 with bandwidth (n
2

+ o(n))
(

n
bn/2c

)
.

We can associate a set Ax ⊂ {1, . . . , n} to any vertex x of P n
2 such that i ∈ Ax

iff the ith coordinate of x is 1. An edge can be identified with its two endpoints as
(A, A + e), where A is a subset, and e ∈ {1, . . . , n} − A. The labelling is done by
a variant of lexicographic order, defined as follows. The first edge gets label 1, the
second gets label 2 and so on. The order is:

(A, A + e) < (B, B + f)



EDGE BANDWIDTH 13

iff one of these three conditions holds:

• |A| < |B|
• |A| = |B| and min{A∆B} ∈ A
• A = B and e < f .

Remark. Indeed, this is nothing else than an appropriate breadth-first search la-
belling of the edges of the n dimensional cube starting from the origin. The following
picture will show the details of this procedure for the three dimensional cube.

�
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�

�
�

�
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�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

�
�

�
�

�
�

�

∅ {1}

{3}

{2}

{1, 3}

{2, 3}

{1, 2}

{1, 2, 3}

1

23

4

5

6

7

8

9

10

11

12

Labelling of P 3
2

Figure 3

In order to estimate the differences arising in meeting edges, we have to check the
three different possibilities for the edges to meet.

(i) If the two edges are of type (A, A + e) and (A, A + f), then clearly there are
at most n− 1 edges between them, hence the difference of their labels is at most n.

(ii) Suppose edges of the form (A + e, A + e + f) and (A + f, A + e + f) meet.
Without loss of generality we may assume that e < f . Let us estimate the number
of edges of the form (B, B + g), such that

(A + e, A + e + f) < (B, B + g) < (A + f, A + e + f).

The conditions above mean that |A + e| ≤ |B| ≤ |A + f |, from which |A + e| =
|B| = |A + f |. For fixed A, e, f , the set B can be chosen at most

(
n
|B|

)
ways, and

when B is fixed, g can be chosen at most n− |B| ways. Altogether the difference of
the labels of (A + e, A + e + f) and (A + f, A + e + f) is at most

(n− |B|)
(

n

|B|

)
≤

⌈n

2

⌉(
n

dn
2
e

)
.
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(iii) Finally we consider edges of the form (A, A+e) and (A+e, A+e+f). Again,
we need to estimate the number of edges between these two edges in the given order.

Let (A, A+ e) < (B, B +h) < (A+ e, A+ e+ f), where A = {i1, . . . , ik}. Observe
that the vertex A + e has k + 1 neighbors of size k, and the first one among them in
our ordering is {A+e}−min{A+e}. Hence the difference of the labels of the vertices
A + e and A is the largest (i.e. the number of edges (B, B + h) between (A, A + e)
and (A + e, A + e + f) satisfying |B| = k is maximized) when e is maximal possible,
therefore we may assume ik < e. If |B| = k, then min{A∆B} ∈ A and the number
of such edges is

(n− k)
k∑

j=1

(
n− ij

k + 1− j

)
.

If |B| = k + 1, then min{{A + e}∆B} ∈ B and the number of such edges is

(n− k − 1)

(
n

k + 1

)
− (n− k − 1)

{ k∑
j=1

(
n− ij

k + 2− j

)
+

(
n− e

e

)}
.

Consequently, the number of edges between (A, A + e) and (A, A + f) is

(n−k−1)

(
n

k + 1

)
+(n−k)

k∑
j=1

(
n− ij

k + 1− j

)
−(n−k−1)

{ k∑
j=1

(
n− ij

k + 2− j

)
+

(
n− e

e

)}
.

Now, by Lemma 8,

(n− k)
k∑

j=1

(
n− ij

k + 1− j

)
− (n− k − 1)

k∑
j=1

(
n− ij

k + 2− j

)
= o(n)

(
n

dn/2e

)
and by the inequality (which could be easily checked)

(n− k − 1)

(
n

k + 1

)
≤ (n/2)

(
n

dn/2e

)
.

the upper bound is proved.
The proof of the other direction is a refinement of the proof of Calamoneri, Massini

and Vrťo [3]. As we shall follow their proof and notation also, first we give the sketch
of their ideas, too.

They picked an arbitrary edge set S of size n2n−2 from E(P n
2 ), and showed that

either |∂(S)| or |∂(E(P n
2 )−S)| is at least of size n

4

(
n

dn/2e

)
, then applied Proposition 4.

(Note that n2n−2 = |E(P n
2 )|/2.) We make a more subtle case analysis: if say |∂(S)|

is greater than n
2

(
n

dn/2e

)
, then we are done by Proposition 4, while in the other case

we take ∂2(S), ∂3(S) and so on, and use Proposition 6.
So let us fix an edge labelling of P n

2 . Let S denote the set of edges labelled by
{1, 2, . . . , n2n−2}, and color the edges in S by red, and rest of the edges by white. For
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a vertex x ∈ V (P n
2 ), let E(x) denote the set of edges incident to x. Call a vertex x

red if every edge in E(x) is red, white if every edge in E(x) is white, and the rest is
mixed. Let R, W and M denote the set of red, white and mixed vertices, respectively.
Certainly,

(9) |R|+ |W |+ |M | = 2n.

For x ∈ M , let r(x) denote the number of red edges in E(x), that is 1 ≤ r(x) ≤ n−1.
Furthermore, by (double) counting the red edges we have that

(10) |R| · n +
∑
x∈M

r(x) = n · 2n−1 = |W | · n +
∑
x∈M

(n− r(x)).

From the definition of mixed vertices we can conclude the following two inequalities:

(11)
1

2

∑
x∈M

(n− r(x)) ≤ |∂(S)| and
1

2

∑
x∈M

r(x) ≤ |∂(E(P n
2 )− S)|.

Combining these two inequalities we obtain

|M | · n
4

≤ |∂(S)|+ |∂(E(P n
2 )− S)|

2
≤ max{|∂(S)|, |∂(E(P n

2 )− S)|}.

If 2
(

n
dn/2e

)
≤ |M |, then by Proposition 4 we prove the required lower bound. From

now on we therefore assume

(12) |M | < 2

(
n

dn
2
e

)
.

Either ∑
x∈M

r(x) ≤ |M |n/2 or
∑
x∈M

(n− r(x)) ≤ |M |n/2;

let us assume that the first inequality holds, since otherwise we could switch the role
of the red and white vertices. Combining this with (10) and (12) we obtain that

n · 2n−1 ≤ |R| · n +
1

2
|M | · n < |R| · n + n ·

(
n

dn
2
e

)
,

implying the lower bound

(13) 2n−1 −
(

n

dn
2
e

)
< |R| < 2n−1.

Note that the upper bound on |R| in (13) follows from (10).
Combining (12) and (13) we obtain an upper bound for |R∪M |. The lower bound

given below follows from |W | < 2n−1.

(14) 2n−1 < |R ∪M | ≤ 2n−1 + 2 ·
(

n

dn
2
e

)
.
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We need the following easy observation on the `-shadows:

(15) ∪x∈σ`(R∪M)E(x) ⊂ σ`+1(S).

To estimate |∪x∈σ`(R∪M) E(x)| we need a classical result of Harper [6] (see also a proof
of it by Katona [11]).

Lemma 9. Let A ⊂ V (P n
2 ), 0 ≤ y < n and r be an integer such that 1

|A| =
(

n

n

)
+

(
n

n− 1

)
+ . . . +

(
n

r + 1

)
+

(
y

r

)
.

Then

|∂(A)| ≥
(

n

r

)
+

(
y

r − 1

)
−

(
y

r

)
≥

(
n

r − 1

)
.

First, for some 0 ≤ y0 < n and an integer r0 we have

|R ∪M | =
(

n

n

)
+

(
n

n− 1

)
+ . . . +

(
n

r0 + 1

)
+

(
y0

r0

)
.

By (14) we have that dn/2e − 4 ≤ r0 ≤ n/2. We shall apply Lemma 9 first to the set
R ∪M then repeatedly to

R ∪M ∪ σ(R ∪M), R ∪M ∪ σ2(R ∪M), . . . , R ∪M ∪ σ`−1(R ∪M)

for ` = dn1/3e − 4. To do so, for 1 ≤ t ≤ `− 1 write

(16) |R ∪M ∪ σt(R ∪M)| =
(

n

n

)
+

(
n

n− 1

)
+ . . . +

(
n

rt + 1

)
+

(
yt

rt

)
,

where yt ≤ n and rt is an integer.
By Lemma 9,

(17) |σ
(
R ∪M ∪ σt(R ∪M)

)
| ≥

(
n

rt − 1

)
.

Note that the sequence {rt} is monotone decreasing, and as r ≤ n/2 it means that
the sequence

(
n

rt−1

)
is monotone decreasing also. If r`−1 ≥ dn/2e− `− 3 then by (17)

|σ`(R ∪M)| ≥
`−1∑
t=0

(
n

rt − 1

)
≥ ` ·

(
n

dn
2
e − `− 4

)
.

If r` < dn/2e − ` − 3, then taking the difference of (14) and (16) (these are disjoint
sets) we have

|σ`(R∪M)| ≥
(

n

dn/2e − 1

)
+. . .+

(
n

r` + 1

)
−2

(
n

dn/2e

)
>

(
n

dn/2e − 4

)
+. . .+

(
n

r` + 1

)
1Note that for a real y,

(
y
r

)
is defined as y · (y − 1) · . . . · (y − r + 1)/r!.
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and we can conclude that

(18) |σ`(R ∪M)| ≥ ` ·
(

n

dn
2
e − `− 3

)
.

(Note that we assume that n is large.)
That is by Proposition 6, (18) and (15) we have

B′(P n
2 ) ≥ n · |σ`(R ∪M)|

2(` + 1)
≥ n

2

(
1− 1

` + 1

)(
n

dn
2
e − `− 4

)
.

We estimate the rightmost expression of the inequality above with ` = dn1/3e − 4 =
t− 4:(

n
dn/2e−t

)(
n

dn/2e

) =
(n− dn/2e − t + 1) · . . . · (n− dn/2e)

(dn/2e+ 1) · . . . · (dn/2e+ t)
>

(n− dn/2− t + 1e
dn/2 + 1e

)t

≥

(
1− t

n/2 + 1

)t

≈ 1− 2n−1/3.

This proves the lower bound of the theorem. �

6. Remarks

We believe that in Theorem 1 the upper bounds are the real values of the edge-
bandwidths. Alas, it is hard even to conjecture the exact value of B′(Kn ⊕ Kn); we
have no good candidate for this.

On the other hand, it is reasonable to think that the upper bound, and the labelling
given in the proof of Theorem 3 is optimal. Still, to show this will require more refined
methods.

Finally, let T` be the graph whose vertices are the triples of non-negative integers
summing to `, with an edge connecting two triples if they agree in one coordinate and
differ by 1 in the other two coordinates. Hochberg, McDiarmid and Saks [8] showed
in a beautiful paper that B(T`) = ` + 1. It is natural to raise the following question.

Problem 10. What is the value of B′(T`)?

Acknowledgment. We would like to thank the useful advices of the unknown
referees.

References

[1] J. Balogh, J. A. Csirik, Index assignment for two-channel quantization, IEEE Trans. Inform.
Theory 11 (2004) 2737–2751.

[2] S. Bezrukov, N. Grünwald and K. Weber, On edge numberings of the n-cube graph, Discrete
Appl. Math. 46 (1993) 99–116.
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