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Abstract

A book of size b in a graph is an edge that lies in b triangles. Consider a graph G with n

vertices and ⌊n2/4⌋+1 edges. Rademacher proved that G contains at least ⌊n/2⌋ triangles, and
several authors proved that G contains a book of size at least n/6.

We prove the following “linear combination” of these two results. Suppose that α ∈ (1/2, 1)

and the maximum size of a book in G is less than αn/2. Then G contains at least

α(1− α)
n2

4
− o(n2)

triangles as n → ∞. This is asymptotically sharp. On the other hand, for every α ∈ (1/3, 1/2),

there exists β > 0 such that G contains at least βn3 triangles. It remains an open problem to

determine the largest possible β in terms of α. Our short proof uses the triangle removal lemma,

although there is another approach which avoids this.

1 Introduction

A book in a graph is a collection of triangles sharing a common edge. The size of a book is the

number of triangles. Let b(G) be the size of the largest book in graph G and t(G) be the number

of triangles in G. Throughout this note, unless otherwise specified, we let G be a graph with n

vertices and ⌊n2/4⌋+ 1 edges. All asymptotic notation is to be taken as n grows.

Mantel’s theorem states that G contains a triangle, i.e. t(G) ≥ 1. Rademacher (unpublished)

proved in the 1950’s that in fact t(G) ≥ ⌊n/2⌋ (this work was subsequently generalized by Lovász-

Simonovits [8] and more recently by the current author [10]). Erdös conjectured [3] in 1962 that

b(G) > n/6 and proved the slightly weaker result b(G) ≥ n/6−O(1). Later b(G) ≥ n/6 was proved

independently by Edwards, and Khadźiivanov-Nikiforov [7]. The results on t(G) and b(G) are both

sharp. In the former, t(G) = ⌊n/2⌋ is achieved by adding an edge to one part in the complete
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balanced bipartite graph (note that this also yields b(G) = ⌊n/2⌋). In the latter, every known

construction achieving b(G) = ⌊n/6⌋+ 1 has t(G) = Ω(n3).

In this note, we study the relationship between t(G) and b(G). Intuitively, one would suspect that

as t(G) decreases, so does b(G). However, this naive intuition is false. As t(G) becomes smaller,

this places greater restrictions on G and b(G) becomes larger, approaching n/2. Indeed, when t(G)

is minimized, we saw in the construction above that b(G) = ⌊n/2⌋ which is much larger than n/6.

On the other hand, when b(G) = ⌊n/6⌋+1, which is as small as possible, then t(G) = Ω(n3), which

is much larger than ⌊n/2⌋.

Our first result shows that as b(G) decreases from ⌊n/2⌋ to (1 − γ)n/2, the number of triangles

increases from ⌊n/2⌋ to Ωγ(n
2).

Theorem 1 Fix α ∈ (1/2, 1) and ε > 0. Then there exists an n0 = n0(ε) such that the following

holds for n > n0: Every n vertex graph G with at least ⌊n2/4⌋+ 1 edges and b(G) < αn/2 satisfies

t(G) > (α(1− α)− ε)
n2

4
.

Theorem 1 is asymptotically sharp, as there are examples of graphs with t(G) = α(1−α)n2/4−O(n)

and b(G) < αn/2. Indeed, take the balanced complete bipartite graph (for n even) with one vertex

removed and make this vertex adjacent to ⌊αn/2⌋−1 vertices in one part n/2−⌊αn/2⌋+2 vertices

in the other part.

Our second result shows that if b(G) < (1/2− γ)n/2, then the number of triangles increases from

Θ(n2) to Ωγ(n
3).

Theorem 2 For every α ∈ (1/3, 1/2), there exists β > 0 such that the following holds for all

sufficiently large n: Every n vertex graph G with at least ⌊n2/4⌋+1 edges and b(G) < αn/2 has at

least βn3 triangles.

Note that Theorems 1 and 2 cover all ranges of α except for α = 1+o(1), 1/2+o(1), and 1/3+o(1).

In particular, α < 1/3 is impossible due to the fact that we always have b(G) ≥ n/6. It seems

likely that Theorem 2 can be strengthened by replacing β by an explicitly defined number (in

terms of α) that is optimal, but this seems very hard. We do not even offer a conjecture here. The

related problem of finding books of large size in graphs with large minimum degree was addressed

by Erdős-Faudree-Györi [5].

One could view our contribution as a very special case of a large body of work that studies the

extreme values of various linear combinations of graph parameters over an appropriate class of

graphs. Early work in this area is due to Erdős-Lovász-Spencer [4]. More recently, problems

related to counting homomorphisms in a graph have been studied by many researchers (see e.g.

the papers of Razborov [6] and Lovász-Szegedy [9]).
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2 Tools

We need the following two results in our proof. The first is a very special case of the Erdős-

Simonovits stability theorem [13]. The proof, which we include here for convenience, is inspired by

a recent approach of Füredi. We write e(G) for the number of edges in graph G.

Lemma 3 (Triangle Stability Lemma) Let G be a triangle-free graph with n vertices and at

least ⌊n2/4⌋ − k edges. Then G has a vertex partition X ∪ Y such that e(G[X]) + e(G[Y ]) ≤ k.

Proof: Let v be a vertex of maximum degree. Since G is triangle-free, there are no edges in

Y := N(v). Let X = V (G) − N(v) and consider the partition X ∪ Y of V (G). Let us change G

as follows: for each vertex w ∈ X, delete all s edges incident to w contained in X and add s edges

from w to Y that were not previously in G. Since d(w) ≤ d(v) = |Y | this is always possible. Let

G′ be the graph that results. Now suppose that G has t edges within X. Then e(G′) = e(G) + t as

for every deleted edge within X, we add two new edges between X and Y . Since G′ is bipartite,

we have

⌊n2/4⌋ − k + t = e(G) + t = e(G′) ≤ ⌊n2/4⌋.

Consequently, t ≤ k as desired.

Our second tool is the triangle removal lemma, of Ruzsa and Szemerédi [12]. It is an easy conse-

quence of the Regularity Lemma.

Lemma 4 (Triangle Removal Lemma [12]) For every δ > 0 there exist a β > 0 and an n0

such that the following holds for all n > n0: Every n vertex graph with at most βn3 triangles can

be made triangle-free by deleting a set of at most δn2 edges.

3 Proofs

In this section we prove Theorems 1 and 2. Crucial to our proof of Theorem 1 is an assumption on

minimum degree, so the theorem that we actually prove is the following:

Theorem 5 Let α′ ∈ (1/2, 1). For every ε′ ∈ (0, (1− α′)/3)), there exists a δ > 0 and an n′
0 such

that the following holds for all n > n′
0: Every n vertex graph G with at least ⌊n2/4⌋ + 1 edges,

minimum degree at least (1− δ)n/2 and b(G) < α′n/2 satisfies t(G) > (α′(1− α′)− 4ε′)n2/4.

Before proceeding to the proof of Theorem 5 let us argue that it implies Theorem 1. We will need

the following consequence of an inequality of Nordhaus and Stewart [11]:
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(*) for every γ > 0 there exists a δ′ > 0 and an n1 such that every graph with n > n1 vertices and

at least n2/4 + γn2 edges contains at least δ′n3 triangles.

Proof of (Theorem 5 → Theorem 1). Let us take inputs α ∈ (1/2, 1) and ε > 0 from Theorem

1. Now choose an

ε′ < min

{
ε

10
,
1− α

4

}
.

Let α′ = α + ε′. The choice of ε′ ensures that α′ ∈ (1/2, 1) and ε′ < (1 − α′)/3. Let δ, n′
0 be the

outputs of Theorem 5 with inputs α′, ε′. We may assume that δ < ε′/2. Let δ′ and n1 be the

outputs of (*) with input γ = δ2/3. Let n2 be sufficiently large so that δ′n3 > 4n2 for all n > n2.

Finally, let n0 > 2max{n′
0, n1, n2, 100/δ}.

Now suppose that n > n0 and G is an n vertex graph with e(G) ≥ ⌊n2/4⌋ + 1 and b(G) < αn/2.

Our goal is to show that t(G) > (α(1− α)− ε)n2/4.

Note that our constants satisfy the hierarchy 1/n0 < δ < ε′ < ε, 1− α.

If G has minimum degree d < (1 − δ)n/2, then remove a vertex of degree less than d to form the

graph G1 with n− 1 vertices. Continue removing a vertex of degree less than di = (1− δ)(n− i)/2

in Gi to form the graph Gi+1 if such a vertex exists. Then

e(Gk) ≥
⌊
n2

4

⌋
+ 1− (1− δ)

2

k−1∑
i=0

(n− i) ≥ n2

4
− (1− δ)

2

k−1∑
i=0

(n− i). (1)

Suppose that this procedure continues until k = ⌈δn⌉ < n/2. Then by (1) and n > n0 we have

e(Gk) ≥
(n− k)2

4
+

(
δkn

2
+

δk

4

)
−
(
k

4
+

δk2

4

)
>

(n− k)2

4
+

δkn

2
− δk2

3
>

(n− k)2

4
+

δ2(n− k)2

3
.

By (*), Gk (and therefore G) has at least δ′(n−k)3 triangles and by the choice of n0, this is greater

than 4(n−k)2 > n2 and we are done. Consequently, k < δn and we may assume that this procedure

stops at graph Gl with n−l > (1−δ)n vertices and at least (n−l)2/4+1 edges (since the expression

in (1) with k = l is always at least this large). Since δ < 1/2, we have n− l > n0/2 = n′
0, and the

minimum degree of Gl is at least (1 − δ)(n − l)/2, we may try and apply Theorem 5 to Gl. The

inputs of Theorem 5 are α′ and ε′. Now

b(Gl) ≤ b(G) <
αn

2
<

(α+ ε′)(1− δ)n

2
<

α′(n− l)

2
.

Since ε′, δ < ε/10,

(α′(1− α′)− 4ε′)(1− 2δ + δ2) > (α(1− α)− 5ε′)(1− 3δ) > α(1− α)− ε.

Therefore Theorem 5 implies that

t(G) ≥ t(Gl) ≥ (α′(1− α′)− 4ε′)
(n− l)2

4
> (α(1− α)− ε)

n2

4
.
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This completes the proof.

Proof of Theorem 5. For notational simplicity, let us replace α′, ε′, n′
0 in Theorem 5 by α, ε, n0.

So we suppose that α ∈ (1/2, 1) and ε ∈ (0, (1−α)/3) are given. Let δ = ε2/50 and n0 be sufficiently

large for all inequalities needed in the proof and for an application of Lemma 4. Let n > n0.

Suppose for contradiction that G is a graph with n vertices, at least ⌊n2/4⌋ + 1 edges, minimum

degree at least (1−δ)n, b(G) < αn/2 and t(G) ≤ (α(1−α)−4ε)n2/4. Since t(G) < n2 and n > n0,

by Lemma 4 we may remove less than δn2 edges from G to make it triangle-free. The resulting

graph G′ has more than n2/4 − δn2 edges, so by Lemma 3, G′ has a vertex partition A,B where

e(G[A])+e(G[B]) < δn2. Now consider a vertex partition ofG intoX,Y that maximizes the number

of X,Y -edges. Since one possibility is A,B, we are guaranteed that the number of X,Y -edges is

at least n2/4− δn2. Suppose that |X| < (1− 3
√
δ)n/2. Then we obtain the contradiction

n2

4
< e(G) ≤ |X||Y |+ δn2 < (1− 3

√
δ)(1 + 3

√
δ)
n2

4
+ δn2 = (1− 9δ)

n2

4
+ δn2 <

n2

4
.

We may therefore assume that both |X| and |Y | lie in ((1− 3
√
δ)n/2, (1 + 3

√
δ)n/2).

Now let B be the set of edges of G contained within X or contained within Y , i.e., B = E(G[X])∪
E(G[Y ]). Let M be the set of pairs in X × Y that are not edges of G. Then E(G) − B ∪ M is

bipartite, so it has at most n2/4 edges. As e(G) ≥ ⌊n2/4⌋+ 1, we conclude that

|M | < |B| < δn2.

In particular, B ̸= ∅. Next, let M ′ ⊂ M be the set of those pairs {x, y} ∈ M , such that x and y are

each incident with at least εn edges of B (of course x and y are on opposite sides of the partition).

Claim. |M ′| < c := ⌈α2(1− α)2/ε4⌉.

Proof of Claim. Otherwise, by the König-Hall theorem, there is either a matching or a star of

size at least s = ⌊α(1− α)/ε2⌋ in M ′. In the case of a matching, each pair f = uv of the matching

is incident with ⌈εn⌉ edges of B in both X and Y . Consider any set of ⌈εn⌉ edges of B incident to

u ∈ X. By the choice of X,Y , each vertex has at least as many neighbors on the opposite side of

the partition as its own side, hence u has at least εn neighbors in Y . Each edge between these two

sets of neighbors of u forms a triangle, and the number of such edges is at least

ε2n2 − |M | > ε2n2 − δn2 >
ε2

2
n2.

Every two such pairs uv, u′v′ in the matching of M ′ count at most 4n common triangles, so by

Inclusion/Exclusion, we obtain the contradiction

t(G) > 2s
ε2

2
n2 −

(
2s

2

)
4n > sε2n2 − 8s2n ≥ α(1− α)n2 − ε2n2 − 8

ε4
n > (α(1− α)− ε)

n2

4
.
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In the case of a star, the same argument works, since we count triangles starting from a ver-

tex in the part corresponding to the leaf set of this star of M ′. Indeed, suppose we have pairs

xy1, . . . , xys ∈ M ′. Then for each i, consider ⌈εn⌉ edges of B incident with yi. Since yi can be

moved to the other part, there are at least εn edges of E(G)−B incident with yi. Now proceed to

find many triangles as in the previous case.

Form the bipartite graph H with parts B and M , where e ∈ B is adjacent to f ∈ M if edge e is

incident with the pair f . Since b(G) ≤ αn/2, every e ∈ B is adjacent (in H) to at least

min{|X|, |Y |} − αn

2
> (1− 3

√
δ − α)

n

2

vertices f ∈ M . Consequently

e(H) ≥ |B|(1− 3
√
δ − α)

n

2
.

The number of edges of H incident to M ′ is at most |M ′||B| < c|B| so the number of edges in H

incident to some pair of M −M ′ is at least

|B|(1− α− 3
√
δ)
n

2
− c|B| > |B|(1− α+ ε)

n

2
.

Since |M | < |B|, we conclude that there is an f = uv ∈ M − M ′ that is incident (in G) with at

least (1− α− ε)n/2 > εn distinct e ∈ B. Since f ̸∈ M ′, we may assume (wlog) that at least

(1− α− ε)
n

2
− εn > (1− α− 3ε)

n

2

of these edges e lie in X, say they form a star in G with center u and leaf set LX = N(u) ∩X. So

we have |LX | > (1− α− 3ε)n/2. Let LY = N(u) ∩ Y .

If |LY | < |LX |, then we could move u to Y and increase the number of edges between X and Y ,

thereby contradicting the choice of the partition X ∪ Y . We therefore have |LY | ≥ |LX |. As G has

minimum degree at least (1− δ)n/2, we have d(u) = |LX |+ |LY | ≥ (1− δ)n/2. Consequently,

|LY | ≥ max

{
|LX |, (1− δ)n

2
− |LX |

}
.

Let |LX | = an/2 and |LY | = bn/2. The number of edges in G between LX and LY is at least

|LX ||LY | − |M | ≥ ab
n2

4
− δn2 = (ab− 4δ)

n2

4
,

where

b ≥ a ≥ 1− α− 3ε and a+ b ≥ 1− δ.

Now ab − 4δ is minimized by minimizing a + b and then maximizing b − a. Since ε < (1 − α)/3,

the minimum occurs at

a = 1− α− 3ε > 0 and b = 1− δ − a = α− δ + 3ε
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where it equals

(1− α− 3ε)(α− δ + 3ε)− 4δ > α(1− α)− 4ε.

Since each of these edges gives rise to a unique triangle, we conclude that t(G) > (α(1−α)−4ε)n2/4,

a contradiction.

Proof of Theorem 2. We use the notation from Theorem 5’s proof. Let α ∈ (1/3, 1/2) be given

and choose

ε = min

{
1

10
,
1− 2α

4

}
.

Note that α < 1/2 implies that ε > 0. Let δ = ε2/50 and let β be sufficiently small so that we can

apply Lemma 4 with input δ and output β. Our hierarchy of constants is

1/n0 < β < δ < ε < α.

We do not need the minimum degree assumption on G. Suppose for contradiction that b(G) < αn/2

and t(G) < βn3. By Lemma 4 we can make G triangle-free by removing a set of at most δn2 edges.

Now follow the proof of Theorem 5 precisely to obtain the partition X,Y with the same properties

and also |M | < |B| < δn2. We may also assume the Claim from Theorem 5’s proof holds. Then we

find a pair f = uv ∈ M −M ′ incident with at least (1− α− ε)n/2 distinct e ∈ B. Again form the

sets LX and LY whose vertices are neighbors of u ∈ X. By optimality of the partition, we have

|LY | ≥ |LX | ≥ (1− α− 3ε)
n

2
>

n

4
.

Consider the subgraph K of edges of G between LX and LY . Then

e(K) ≥ |LX ||LY | − |M |

so there exists a vertex w ∈ LX with

dK(w) ≥ e(K)

|LX |
≥ |LY | −

|M |
|LX |

≥ (1− α− 3ε)
n

2
− δn2

n/4
> (1− α− 4ε)

n

2
.

Since α < 1/2 and ε < (1 − 2α)/4, this is at least αn/2. Therefore the edge uw lies in at least

dK(w) ≥ αn/2 triangles, contradicting the hypothesis b(G) < αn/2.

4 Concluding Remarks

• A referee pointed out that an alternative proof of our result could be given by replacing the

removal lemma and the Erdős-Simonovits stability theorem (for triangles) by a recent stability
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result of Bollobás and Nikiforov [1]. This approach has the advantage of giving better bounds on

n than our approach using the removal lemma.

• We observed that as α decreases from 1 to 1/3, the number of triangles increases from ⌊n/2⌋ to

Ω(n3). Theorem 1 shows that for α < 1 we always have t(G) = Ω(n2), Similarly, as α changes

from 1/2 + η to 1/2− η (for very small η > 0), the number of triangles changes from quadratic to

cubic in n. There appear to be two phase transitions here, α = 1 and α = 1/2. It would be very

interesting to understand the scaling window in these two ranges, namely, the rate at which t(G)

changes from linear to quadratic and from quadratic to cubic.

• One could also ask the same questions for graphs with ⌊n2/4⌋ + q edges for q > 1. Results of

Erdös [3] and Lovász-Simonovits [8] determine the minimum number of triangles and Bollobás and

Nikiforov [1] determine the minimum value of b(G). Theorems 1 and 2 apply to this case, since the

hypothesis is simply e(G) ≥ ⌊n2/4⌋ + 1. Moreover, when q = o(n), the results are asymptotically

sharp, as evidenced by easy modifications of the constructions shown earlier. The situation when

q = Ω(n) appears to be more complicated and our methods do not seem to apply.

• One could consider cliques of larger size and the appropriately defined books (collection of cliques

that share an edge). Our proofs appear to be robust enough to address this situation in a similar

fashion, in particular, the tools we need (removal lemmas, stability results, results for generalized

books) are available. Nevertheless, the technical details would probably be quite complicated, and

since the situation for triangles is not yet well understood, we have chosen not to address this. This

project was also laid out by Bollobás and Nikiforov in [2].
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