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Abstract

The triangle covering number of a graph is the minimum number of vertices that
hit all triangles. Given positive integers s,t and an n-vertex graph G with [n?/4] +¢
edges and triangle covering number s, we determine (for large n) sharp bounds on
the minimum number of triangles in G and also describe the extremal constructions.
Similar results are proved for cliques of larger size and color critical graphs.

This extends classical work of Rademacher, Erdds, and Lovasz-Simonovits whose
results apply only to s < t. Our results also address two conjectures of Xiao and
Katona. We prove one of them and give a counterexample and prove a modified
version of the other conjecture.

1 Introduction

A classical result of Mantel [6] states that every graph on n vertices with LnQ / 4J + 1 edges
contains at least one copy of K3. Rademacher showed that there are actually at least
|n/2| copies of K3 in such graphs. Later, Erd6s [2, 3] proved that if ¢ < ¢n for some
small constant ¢ > 0, then every graph on n vertices with Ln2 /4J + t edges contains at
least t |n/2| copies of K3. Erdds also conjectured that the same conclusion holds for all
t < n/2. Later, Lovasz and Simonovits [5] proved Erdés’ conjecture and they also proved
a similar result for Kj with k& > 4. In [7], the second author extended their results by
proving tight bounds on the number of copies of color critical graphs in a graph with a
prescribed number of vertices and edges.

Given a graph G we use V(G) to denote its vertex set and use E(G) to denote its edge set.
Let v(G) = |V(G)| and e(G) = |E(G)|. Sometimes we abuse notation and let G = E(G)
and |G| = e(G). For a fixed graph F' let Np(G) denote the number of copies of F' in G.
The F-covering number 77(G) of G is the minimum size of S C V(G) such that every
copy of F'in G has at least one vertex in S. If F = K}, then we simply use Ni(G) and
7,(G) to denote Nk, (G) and 7x, (G), respectively.

The classical Erdés—-Rademacher problem is to determine the minimum value of Np(G)
for graphs G with fixed number of vertices and edges. Very recently, Xiao and Katona [10]
posed a generalized Erdés—Rademacher problem by putting constraints on 77(G). More
precisely, they asked for the minimum value of Np(G) for graphs G with a fixed number
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of vertices and edges and a fixed F-covering number. In particular, they proved that every
graph G on n vertices with [n?/4] + 1 edges and 735(G) = 2 must contain at least n — 2
copies of K3, which is substantially greater than the bound guaranteed by Rademacher’s
result. This phenomenon motivatedp them to pose the following conjectures for the general
case.

Conjecture 1.1 (Xiao—Katona [10]). Let s >t > 1 be fized integers and let n > ng =
no(s,t) be sufficiently large. Then every graph G on n vertices with Ln2/4J +t edges and
73(G) > s contains at least (s — 1) |n/2] + [n/2] —2(s — t) copies of K.

Let V be a set of size n. Then a partition V = V; U --- U Vi_q is called balanced
if [n/(k—1)] > |Vil] > |n/(k—1)] for all ¢ € [k — 1]. For k > 2 define tx(n) =
[Ti<icj<k [VillVjl, where Vi U--- UV}, = [n] is a balanced partition.

Conjecture 1.2 (Xiao—Katona [10]). Let s > t > 1,k > 4 be fized integers. Then
every graph G on n wvertices with tp_1(n) + 1 edges and 17,(G) > 2 contains at least
(IVi| + [V2| = 2) Hfz_gl |Vi| copies of Ky, where Vi U---UVy_1 is a balanced partition of [n]
with V1| > -+ > [Vg—_1].

Xiao and Katona claimed that there is a common generalization of Conjectures 1.1 and
1.2 without writing it explicitly. They also observed that the case s <t of these questions
is a consequence of the previously mentioned results of Rademacher, Erdés [2, 3] and
Lovész—Simonovits [5]. Indeed, it follows from a result of Lovész and Simonovits [5] that
the graph obtained from the balanced complete (k — 1)-partite n-vertex graph by adding
t pairwise vertex-disjoint edges into a largest part minimizes the number of copies of Kj
among all n-vertex graph with ¢;_q(n) + t edges. Moreover, this graph clearly has Kj-
covering number ¢ > s. It therefore suffices to consider only the case s > t for these
questions.

We show that Conjecture 1.1 is not true in general and give the correct bound on the
number of copies of K3 for all s,¢ and sufficiently large n. On the other hand, we prove
Conjecture 1.2 for sufficiently large n and we also prove several generalizations of Con-
jecture 1.2 for graphs G with t;_1(n) + ¢ edges and 7,(G) > s. Our method also gives a
bound, which is tight up to a smaller order error term, for the number of color critical
graphs F' in a graph with a fixed number of vertices and edges and a fixed F-covering
number.

1.1 Triangles

To motivate the following definitions let us look at a simple construction first. Suppose
that n is an even integer and s — ¢ is a square. Then the graph G obtained from the
complete bipartite graph with part sizes n/2 + (s — t)1/2 and n/2 — (s — t)*/? by adding s
pairwise vertex-disjoint edges to the larger part satisfies 73(G) = s and e(G) = n?/4 + t.
Moreover, N3(G) = s (n/2 — (s — t)l/Q), which is smaller than the bound in Conjecture 1.1
for all ¢t > 2.

Now let us present the definitions we need in this section. Let N = {0,1,...} be the set
of nonnegative integers. For s >t > 1 and n € N let e(n) = n? — 4ty(n) = n? —4|n?/4] €
{0,1} and

) )

Mgy = Mgy(n) = {mEN:(45—4t—4m+e(n))1/26N}.



Note that M, # 0 since s —t € M. Let
mst = ms,t(n) = min Ms,ta
and let

Ry(n,s,t) = (4s — 4t — 4my, + e(n))/? € N.

Define

1 n — R3(n,s,t)).

1
:,t §(n+R3(n,s,t)) and ng, = 2(

n

Let B, (n) be the complete bipartite graph on n vertices with two parts V; and V, such
that |V4| = n;t and [Va| = ng,.

Let BM,(n) consist of all graphs obtained from B;;(n) as follows: take distinct vertices

ULy ..y Us, V1, ...,V in V7, add the edges uivi,...,usvs and remove m,; distinct edges
€1,-..,em,, such that every e; has one endpoint in {us,...,us,v1,...,vs} and the other
endpoint in V3, and there is no triangle with three edges in {e1,...,em,,,u1v1,...,usvs}

(see Figure 1 (a) and (b)).

Let BS;+(n) consists of all graphs obtained from Bg:(n) as follows: take distinct ver-

tices uj,...,ul_1,v],...,v,_; in V; and distinct vertices u}, v, in Vs, add the edges

vy, ..., ulv, and remove mgy distlnct edges €f,... ey, . such that every e; has one

endpoint in {u},...,ul_;,v},...,v._;} and the other endpomt in {ul,v.} and there is no
. : A ;

triangle with three edges in {e},... €5, ,,ujvy, ... ujv} (see Figure 1 (c) and (d)).

We abuse notation by letting BM, ;(n) and BS,;(n) denote a generic member of BM +(n)
and BS; ¢(n) respectively.

Remark. To compare with the original Erdés-Rademacher problem, i.e. without the
73(G) > s constraint, recall that the extremal graphs for that problem are graphs obtained
from the balanced complete bipartite graph by adding a triangle-free graph with ¢ edges
into the larger part.

Fact 1.3. The following holds.

e(BM;(n)) =e(BSsi(n)) =ta(n) +t.
o 73 (BM;(n)) =13 (BSst(n)) =s.

N3 (BMg¢(n)) =s - Mgt — Mt

N3 (BSst(n)) = (s — 1)n;t + n;t —2msp =8 -ng — Mgt + (nf, —nj st — Msy).

By Lemma 2.11, if for some p € N

L p? if n is even,
st —

pp+1 )—1, ifnisodd,
then N3 (BM&t(n)) = N3 (BSS t( ) mst

Our first result shows that BM,(n) (and also BSs(n) for some special values of s,t)
contains the least number of copies of K3 among all n-vertex graphs with t2(n) + ¢ edges
and Kj3-covering number at least s.



(b) BMs+(n).

Va
(c) BSs(n). (d) BSs.(n).
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Figure 1: Several examples of graphs in BM; (n) and BSs(n).

Theorem 1.4. Let s >t > 1. Then there exists ng = no(s,t) such that the following
holds for all n > ngy. Let G be a graph on n vertices with to(n) + t edges. If 73(G) = s,
then

Ng(G) >s5-n,

=z st Mst

Moreover, equality holds only if G = BMg(n) or G = BSs:(n) except when (s,t) €
{(2,1),(3,1),(4,1)} and n is even, or (s,t) € {(3,2),(4,1),(5,1),(6,1)} and n is odd. For
these exceptional cases there are other examples showing that the bound is best possible.

Note that Theorem 1.4 shows that Conjecture 1.1 is not true in general. For example, let
n be even, (s —t)/2 € Nand s — t > 4. Then

3 _ sn
N3 (BMst(n)) =8 ng, —mst =8 ng, = o (s — t)1/287

which is strictly less that sn/2 — 2(s — t).

1.2 k-cliques for s =t +1

Let Vi U---UVj_; be a partition of [n] with |Vi| > --- > |Vi_1|. Let K[V1,...,Vi_1] be
the complete (k — 1)-partite graph on [n] with parts Vi,...,Vp—q. V1 U---UVi_; is a
balanced partition, then K[Vi,...,Vj_1] is called the Turdn graph Tj;_1(n). Notice that
ti—1(n) = |Tk—1(n)|. The celebrated Turén theorem [9] states that the maximum number
of edges of an n-vertex Kj-free graph is uniquely achieved by Ty_1(n).



For s >m >0 and & = (z1,...,25_1) € N*! with Zi':ffﬂi =nlet VU---UV,_1 be a
partition of [n] with |V;| = z; for i € [k — 1]. Let KM, s(Z) consist of all graphs that are

obtained from K[Vi,...,Vi_1] as follows: take distinct vertices uq, ..., us, v1,...,vs in V7,
add the edges uqv1,...,usvs and remove m distinct edges ey, ..., e, such that every e;
contains one vertex from {u1,...,us, v1,...,vs} and one vertex from Vj_; and there is no

triangle with edges in {e1, ..., em, uiv1, ..., usvs}. We abuse notation by letting K M, (&)
denote a generic member in KM, 4(Z). It is easy to see that

k—1 k—2
e (KM, s(Z)) = Z zixj+s—m and Ny (KMp, (%)) =s H Ti—m H x;.

1<i<j<k i=2 i=2
Let us now consider some special cases of KM, s(Z) in more detail.

For n € N, write
n=qnrlk—1)+rnk where 0<rpr<k-—1

Writing r = r,, ; and ¢ = g, let 4, € Nf=1 be defined as follows:

(Q+17q77q7q_1) ifr=0
= (q+1aQa7Q) lfT’:]_
=

(g+2,q+1,....,q+1,q,...,q) ifr>2.

—_— Y——
r—2 times k—r times

Define

s-¢" 3 (g —1) if r =0,
Ni(n,s) =< s-¢*2 —¢+3 ifr=1,
s-(q+ 1) 2T ifr>2.

Observe that
e (KMos(Jr)) = e (KM s(41)) = tp—1(n) +s—1 for r#1
and
Nie (KM s(3r)) = Ni(n, s)
form=0,r#1land m=1,r=1.

Our next result shows that the constructions defined above contain the least number of
copies of K, in an n-vertex graph G with t;_1(n) + s — 1 edges and 7%(G) = s.

Theorem 1.5. Let k > 4 and s > 2 be fized integers. Then there exists ny = ny(k, s) such
that the following holds for allm > ny. Let G be a graph on n vertices with tx_1(n)+s—1
edges. If 1,(G) = s, then Ni(G) > Ni(n,s). Moreover, for s > 3 equality holds iff
G= KMOWS(:&’T?'L,IC) if Tn,k 7é 1 and G = KM1,5(,7]1) if Tnk = 1.

For s > 2, the following construction which was defined in [10] also achieves the bound
Ni(n,2). Let Vi U---UVi_1 be a balanced partition of [n| with [Vi| > -+ > |Vj_1|. Let
T/,CE_1 be obtained from K[Vi,...,Vi_1] as follows: take two distinct vertices ui,v; € Vi
and two distinct vertices wuo,vo € Vo, add edges ujvy,usve and remove the edge vivs.
One can easily check that Ni(T- ;) = (|[Vi| + V2| — 2) 155 |Vi| = Ni(n,s). Therefore,
Theorem 1.5 shows that Conjecture 1.2 is true for large n.



1.3 k-cliques for large s

Recall that for given n and k, ¢, = |n/(k—1)| and 7, = n — (k — 1)gn k. Given
s>t>1andk > 3, let

20k —1)(s —t) + (k — 1 = rpp)ra | 2
Ri(n,s,t) = < P > .

We note that while Ry (n,s,t) depends on n it is bounded from above by a function of
only k,s,t. Let

v n+(k—2)Rk(n,s,t) __ n— Rg(n,s,t)

Mg gt = - and Np st = — %1
Suppose that n, ,, € N. Then let Vi U---U Vj_; be a partition of [n] with |Vi| = n]_,
and |V;| =n, ,, for 2 <i < k—1. Let KM(n,k,s,t) be obtained from K[Vi,...,V;_1] by
taking distinct vertices uy,...,us,v1,...,vs in V1 and then adding ujv1,...,usvs. Using

Lemma 2.2 one can easily check that

e(KM(n,k,s,t)) =tg—1(n)+t and Ni(KM(n,k,s,t))=s-" (n,;&t)k_z.

The following result shows that if s is large, then KM (n, k, s,t) minimizes the number of
copies of K} among all n-vertex graphs G with tx_1(n) + t edges and 7 (G) = s.

Theorem 1.6. Let s >t > 1 and k > 4 be fized integers. There exists na = na(k, s,t)
such that the following holds for all n > ng and s > 2Ry(n,s,t). If G is a graph on n
vertices with ti_1(n) +t edges and 7,(G) = s, then

Ni(G) > s+ (ny, )2

Moreover, if n, ., € N, then equality holds iff G = KM (n,k,s,t).

Note that we are not able to determine the exact minimum value of Ni(G) for small s
because, similar to the situation in Theorem 1.4, when s is small there could be many
constructions that achieve the minimum value of N;(G). On the other hand, for the case
Npst ¢ N our bound might be not tight and actually, we think there might be a better
bound for N (G) in this case.

Let Ry(s,t) = (2(k — 1)(s — t)/(k — 2))"/2. If 7, = 0, then Ry(n,s,t) = Ry(s,t). Since
k>4andt > 1, s > 2Ri(s,t) holds for all s > 11. Therefore, Theorem 1.6 gives the
following corollary.

Corollary 1.7. Let s >t > 1 and k > 4 be fized integers. Suppose that s > 11. Then there
exists n3 = ns(k, s, t) such that the following holds for alln > ng andn =0 mod k—1. If G
is a graph on n vertices with ty_1(n)+t edges and 7,(G) = s, then Ni(G) > s- (n,;s,t)k_?
Moreover, if ny_, € N, then equality holds iff G = KM(n,k,s,t).

After this work was done we found that similar results as in Theorems 1.4, 1.5, and 1.6
were recently proved by Balogh and Clemen [1].



1.4 Color critical graphs

Given a graph G let x(G) denote the chromatic number of G. Let H be a subgraph of G.
Then the graph G — H is obtained from G by removing all edges that are contained in H.
In particular, if e € E(G), then G — e is obtained from G by removing e.

Definition 1.8. Let k > 3. A graph F is k-critical if x(F') = k and there exists e € E(F)
such that x(F —e) < k.

Let k > 3 and let F' be a k-critical graph. Let ¢(n, F') denote the minimum number of
copies of F in the graph obtained from T} _1(n) by adding one edge. The number c¢(n, F')
can be calculated using a formula in [7] and in particular there exists a constant ar > 0
depending only on F such that c(n, F) = apn/=2 + ©(nf3).

The second author proved [7] that for any k-critical graph F' there exists a constant
d = 0 > 0 such that for every 1 <t < dn every n-vertex graph G with t;_1(n) + ¢ edges
contains at least t - ¢(n, F') copies of F'. We prove the analogous theorem for 7p(G) = s.

Theorem 1.9. Let s >t > 1 and k > 3 be fixed integers. Let F' be a fized k-critical graph
on [ vertices. Then there exists constants C = C(F,s,t) and ny = ny(F,s,t) such that

the following holds for alln > ny. If G is a graph on n vertices with ty_1(n) +1t edges and
7(G) = s, then Np(G) > s-c¢(n, F) — Cn/ 3.

Remark. For graphs that are not color critical it remains open in general to determine
even their Turdn numbers exactly. Therefore, one could expect that a Erdés-Rademacher-
type result (or result as Theorem 1.9) for these graphs can be very hard in general.

This bound is tight up to an error term since the graph obtained from Tj_;(n) by adding
s pairwise disjoint edges into one part of Tj_;(n) contains at most s - ¢(n, F) + C'nf=3
copies of F for some constant C’ > 0.

2 Proofs

2.1 Lemmas

In this section we prove several lemmas that will be used in our proofs.

Definition 2.1. Let k > 3 and let F' be a k-critical graph. Let c(x1,...,xx_1,F) be the
number of copies of F in the graph obtained from the complete (k — 1)-partite graph with
parts of sizes x1,...,Tr_1 by adding one edge to the part of size xy.

The following explicit expression for t;_1(n) is very useful in our calculations.

Lemma 2.2 (e.g. see [5]). Let k > 3 and suppose that n = r mod (k — 1) for some
0<r<k-—2. Then

_ (k-2) (k—1—r)r
fea(n) = 55— 1)”2 T 2(k-1)

The following lemma gives a relation between ¢(z1,...,zx_1, F') and ¢(n, F).



Lemma 2.3 ([7]). Let k > 3 and F be a k-critical graph. Then there exists a constant
vr > 0 depending only on F such that the following holds for all sufficiently large n. If
Stta;=nand |n/(k—1)| —d < z; < [n/(k—1)] +d for alli € [k —1]and d < Ty
then

(1, w51, F) > c(n, F) — ypn? =2,

The following lemma, which can be found in several places (e.g. see [7]), gives a bound on
the size of each part for a (k — 1)-partite graph whose number of edges is close to tx_1(n).

Lemma 2.4 (e.g. see [7]). Suppose that k > 3 is fized, n is sufficiently large, d < n and
Z;:ll ;i =mn. If

Z TiTj > tk_l(n) — d,

1<i<j<k—1

then |n/(k—1)| —d <z; < [n/(k—1)] +d for alli e [k —1].

The following two results will be key in our proofs.

Theorem 2.5 (Graph removal lemma, e.g. see [4]). Let F be a graph with f wvertices.
Suppose that G is a graph on n vertices with Np(G) = o(nf). Then one can remove o(n?)
edges from G such that the resulting graph is F'-free.

Theorem 2.6 (Erdds-Simonovits stability theorem [8]). Let k > 3 and F be a k-critical
graph. Suppose that G is an F-free graph on n vertices with ty_1(n) — o(n?) edges. Then
G can be made (k — 1)-partite by removing o(n?) edges.

Now we use the results above to obtain a rough structure of a graph with a fixed number
of vertices and edges and a fixed F-covering number that contains not many copies of F.

Given a graph G and v € V(G) we use Ng(v) to denote the neighbors of v in G and let
da(v) = |Ng(v)|. For a partition Vi U---UVj_1 of V(G) we use G[Vi, ..., Vi_1] to denote
the induced (k — 1)-partite subgraph of G on V43 U--- U Vi_1. We use Bg(Vi,...,Vi_1)
to denote the set of edges in G that are contained inside V; for some i € [k — 1], i.e.
Bec(Vi,..., V1) = G — G[V1,...,Vk—1]. We use Mg(Vi,...,Vi_1) to denote the set
of pairs which intersect two parts that are not edges in G, i.e. Mg(Vi,...,Vk_1) =
KVi,...,Vi_1] = G[V1,...,Vik_1]. If it is clear from the context we will use B and M to
represent Bg(Vi, ..., Vi_1) and Mg(Vi,...,Vk_1), respectively.

For a k-critical graph F' a potential copy of F' in G (with respect to the partition V(G) =
ViU---UVg_q)is acopy of F'in G U M that uses exactly one edge of B (so every other
edge is between parts).

Lemma 2.7. Let s > 1,f > k > 3 be fixed integers and F be a fixed k-critical graph
on f wertices. Then the following holds for sufficiently large n. If G is a graph on n
vertices with at least ty_1(n) + 1 edges and Np(G) < (s +1/2) - ¢(n, F'), then G contains
a (k — 1)-partite subgraph H such that e(H) > e(G) — s.

Proof. Let 61,09, 03,04, €, €1, €5 be constants such that

0< 8] K03y <erKep<egs

Let n be sufficiently large and in particular n > s/es.



Since Np(G) < (s +1/2)-¢(n, F) < 2sapn!/ =2 = o(n/), by the Graph removal lemma, we
can remove at most d1n? edges from G such that the resulting graph G is F-free. Since
e(G1) > e(G) — 61m? > t_1(n) — d1n?, by the Erdds-Simonovits stability theorem, G
contains a (k — 1)-partite subgraph Go such that e(Gg) > tr_1(n) — dan?.

Now let H be a (k — 1)-partite subgraph of G with the maximum number of edges. Then
by the previous argument, e(H) > e(Ga) > ty_1(n) — 6an?. Let V1 U--- U V4_1 be a
partition of V(G) such that H = G[Vi,...,Vi_1] and let ; = |V;| for i € [k — 1]. An easy
calculation shows that |z; — n/(k —1)| < d3n for all i € [k — 1].

Suppose that |H| = tx_1(n) — ¢ for some ¢ > 0. Then |M| < /¢ and |B| > ¢+ 1. For every
e € B let F(e) denote the number of copies of F' in G containing the unique edge e from
B. Let

Bi={e€B:F(e)>(1—¢€)c(n,F)}
and BQZB\Bl

Claim 2.8. |By| > (1 - ¢)|B].

Proof of Claim 2.8. Suppose that |Ba| > €|B|. Let e € By and without loss of generality
we may assume that e C V. Then by Lemma 2.3 the number of potential copies of F
containing e is

C($1, s 7$k717F) > C(n7 F) - 7F(53n)nf_3 > (1 - 54)0(”, F)

At least € - c¢(n, F')/2 of these potential copies of F' have a pair from M, since otherwise
F(e) 2 (1= 81)e(n, F) = Ze(n, F) > (L= e)e(n, F),

a contradiction. Now suppose that at least - c(n, F')/4 of these potential copies of F' have
a pair from M that does not intersect e. For every ¢/ € M with eN e’ = () the number
of potential copies of F in G that contains both e and ¢’ is at most nf=*. On the other
hand, every potential copy of F' contains at most f2 pairs from M. Therefore,

Ze(n, F) > |M|fn! ",

which implies that

9 c(n, F) _eap ,
52” Z ’M‘ Z 2nf_4 8f2n )

a contradiction. Here we used |M| < t;_1(n) — e(H) < 6an?. Therefore, we may assume
that at least € - c(n, F')/4 of these potential copies of F' have a pair from M which has
nonempty intersection with e. Similarly, since every e’ € M with €’ Ne # ) is contained
in at most n/ =3 members in F(e) and every potential copy of F' contains at most f2 pairs
from M, the number of pairs from M that has nonempty intersection with e is at least

fc(n, F) _ eap
F2pk—3 = gf2 n.

Therefore, there exists « € e such that dps(x) > To 2"



Let A= {v e V(G) :dy(v) > fgjg n} Since every e € B contains a vertex in A,
6 ap
> dp,(v) > |Ba| > €|B| > e|M| > - ZdM > 32f2 n|Al.

veEA UEA

Therefore, there exists v € A such that dp,(v) > Car and without loss of generality we

5217
may assume that v € V}. Let V/ = Ng(v) NV, for i € [k — 1]. Then by the maximality of
H we have |V/| > |V{| > 32‘}571 for all 2 <7 < k—1. Let u € V/. Then by Lemma 2.3,

the number of potential copies of F' containing wv in the complete (k — 1)-partite graph
K[V{,...,V/_,] is at least

1 Eap k=2
c(IVils-o s Vil F) > 7 F<32f2n> > enf 2

Summing over all u € V/, there are at least

€2a

32f2n><61nf 2> enf 1 > 35 ¢(n, F)

potential copies of F' containing v. By the assumption that Np(G) < (s+1/2)-¢(n, F), at
least half of these potential copies of F' must contain a pair from M, and this pair cannot

be incident with v, since v is adjacent to all vertices in Ufz_ll V!. Since the number of

potential copies of F' that contain both v and a pair from M that is disjoint from v is at
most n/ 3 and each potential copy of F contains at most f2 pairs from M, we obtain

en/71/2 e 2

2
(52’!7, 2|M’>W,2f2 )

a contradiction. |

Claim 2.9. |B| <s.

Proof of Claim 2.9. Suppose that |B| > s+ 1. Then by Claim 2.8,

Ne(G)> Y F(e)> > (1-e)c(n, F) > (1-¢€)?Ble(n, F)

e€B; e€B;
> (1—€)?(s+1De(n, F) > (s+1/2) - ¢(n, F),

a contradiction. |

Therefore, by Claim 2.9, e(H) = e(G) — |B| > e(G) — s. This completes the proof of
Lemma 2.7. i

Now we use Lemma 2.7 to obtain a fine structure for graphs with a fixed F-covering
number and not many copies of F.

Lemma 2.10. Let f > k> 3,s >t > 1 be fixzed integers and F be a fixed k-critical graph
on f wertices. Then the following holds for sufficiently large n. Let G be a graph on n
vertices with ty—1(n) +t edges. If Tr(G) = s and Np(G) < (s +1/2) - ¢(n, F), then there
exists a partition V(G) = V1 U---UVi_1 such that G — G[V1, ..., Vik_1] is a matching with
s edges.

10



Proof. Let H be a (k — 1)-partite subgraph of G with the maximum number of edges and
let B=G — H. Since Np(G) < (s+1/2) - ¢(n, F), by Lemma 2.7, |B| < s. So it suffices
to show that |B| > s and B is a matching.

Let 7(B) = min{|S|: S C V(G),en S # () for all e € B}. Since every copy of F in G must
contain at least one edge in B, 7p(G) < 7(B). Therefore, 7(B) > s. Since |B| < s, the
only possibility is that B is a matching of size s. |

2.2 Proof of Theorem 1.4
In this section we prove Theorem 1.4. Recall that for s >¢t>1and n € N

1 1
n;tt = 5 (n —+ Rg(n, S,t)) and n;t = 5 (n - Rg(n, S,t)),

where R3(n,s,t) = (43 — 4t — Amgy +n? — 4t2(n))1/2 and
Mg = Min {m eN: (48 — 4t —Adm +n® — 4t2(n))1/2 c N} )

We will use the following lemma in our proof.

Lemma 2.11. Let s >t > 1 and n € N. Then

0 if n is even and s —t = p* — 1 for some p € N,
st~ Mgp—Mst =140 if n is odd and s —t =p(p+1) — 1 for some p € N,

>0 otherwise.

Proof. First, notice that n;r,t — Mgy~ Mst = (45 — 4t —4dmg, + n? — 4t2(n))1/2 — Mgy

If n is even, then n? —4ty(n) = 0. Let p € N be the largest integer such that s —t = p® +¢
for some ¢ € N. Note that ¢ < 2p since otherwise we would have p? +¢ > (p + 1)?, a
contradiction. Then m,; = ¢ and hence

(43 — 4t —4dmg + n? — 4t2(n))1/2 — Mgy =2p—mg; >0
and equality holds iff ¢ = 2p.

If n is odd, then n? — 4t5(n) = 1. Let p € N be the largest integer such that s —t =
p(p + 1) + ¢ for some ¢ € N. Note that ¢ < 2p + 1 since otherwise we would have
p(p+1)+¢>(p+1)(p+2), a contradiction. Then m,; = ¢ and hence

1/2

(45 — 4t —4dmgy + n? — 4t2(n)) —Mmer=2p+1—mg; >0

and equality holds iff ¢ = 2p + 1. |
Now we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. Let s > t > 1 be fixed and let n be sufficiently large. Let G
be a graph on n vertices with t2(n) +t edges and 73(G) = s. Since s -ngy — msp <
(s+1/2)-c(n, K3), we may assume that N3(G) < (s+1/2)-¢(n, K3). So, by Lemma 2.10,
there exists a partition V(G) = Vi1 UV, such that B := G — G[V1, V3] is a matching of size
s.

11



Let z = |Vi] and y = |Va| and note that = +y = n. Without loss of generality we
may assume that z > y. Let H = G[V1, V3], M = K[V1,V5] — H, and m = |M]|. Since
G—B = H = K[Vi,V5] — M, we obtain ta(n) +t — s = zy —m = (n—y)y — m. Therefore,
m € Ms,t and

v=75 (n— (43—4t—4m+n2—4t2(n))1/2>.

Let s; = |BN (‘g)| for ¢ = 1,2 and note that s; 4+ so = s. It is easy to see that the number
of potential copies of K3 is s1y + sox. We will consider two cases: either s; = s for some
i€ {1,2} or sy >1and sp > 1.

Case 1: s; = s for some i € {1,2}.

We may assume that s = 0 and the case s; = 0 can be solved using a similar argument.
Notice that for every e € M there is at most one potential copy of K3 containing e.
Therefore,

N3(G) > sy —m = % - ; (4s — 4t — 4m + n? — 4ty(n)) /> = m = f(m).

Then

df(m) _ 5 1.

dm (45— 4t — dm + n2 — dty(n))/?

First let us assume that s > 3. Then

s> 4s — 441> 4s — 4t — 4m + n? — 4ty(n).

Therefore, dfl(::) > 0 for all m > 0, which implies that f(m) is increasing in m. Therefore,
for s >3
sn s
N3(G) = T = o (4 — 4t — dmyy + n? —dta(n))"? —mg, = sy, —mey.

For the case s = 2, one could easily check that the minimum of f(m) is uniquely attained
at m = ms;. Therefore, if s; = s for some 7 € {1,2}, then N3(G) > s-ng, —msg, for all
s>t>1.

If N3(G) = s-ngy — msy, then the argument above shows that we must have [Vi| =
n—ng, =ng; and |[Vo| = ng,, all edges in B are contained in V1, all pairs in M must
be contained in one potential copy of K3, and no two pairs in the same potential copy.
Therefore, G = BM(n).

Case 2: s; > 1 and sy > 1.

Notice that for every e € M there are at most two potential copies of K3 containing e.
Since z > y, this gives
N3(G) > s1y+ sox —2m > (s — D)y +x — 2m
=(s—2)y+n—2m
-2
= % _ 2 5 (4s — 4t — 4m + n? — 4t2(n))1/2 —2m =: g(m).

Let us first assume that s > 20. Since

dg(m) _ s—2 _5
dm (45 — 4t — dm + n? — 4ty (n))"/?
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and

s—2>2(4s — 4+ 1)2 > 2 (4s — 4t — dm + n® — 4ty(n))/?

d9(m) 0 for m > 0. Therefore, by Lemma 2.11,

dm
N3(G) > g(msy) = f(msy) + (4s — 4t — dmgy +n® — 4t2(n))1/2 —mgt > f(msy),

and equality holds iff for some p € N

21 if n = d?2
s—t:{p , itn=0 mod 2, <*)

plp+1)—1, ifn=1 mod 2.

For s < 19 a computer-aided calculation shows that f(ms;) < min,,{g(m)} always holds!.
Moreover, the minimum of g(m) is uniquely achieved at m = my; except for when (s,t) €
{(2,1),(3,1),(4,1)} and n even, or (s,t) € {(3,2),(4,1),(5,1),(6,1)} and n odd.

If N3(G) = s'ng;—ms ¢, then the argument above shows that (x) holds, [V1| = n—n_, = nIt
and |Va| = ngy, exactly one edge e € B is contained in V3, all other edges in B are

contained in Vi, and all pairs in M must be contained in two potential copies of Kj.
Therefore, G = BS;+(n).

For (s,t) € {(2,1),(3,1),(4,1)} and n even, or (s,t) € {(3,2),(4,1),(5,1),(6,1)} and n
odd, our bound s - ng, — ms: in Theorem 1.4 is also tight, but there are more construc-
tions that achieve this bound. One could easily recover all these constructions using our
calculation file. (]

2.3 Proof of Theorem 1.5

In this section we prove Theorem 1.5. Recall that for n,k € N, ¢, = [n/(k—1)] and
Tk =1 — (k= 1)qnk.

Proof of Theorem 1.5. Let s > 2,k > 4 be fixed integers and n be sufficiently large. Let
q¢ = qnand r = ry, ;. Let G be a graph on n vertices with ¢_1(n)+s—1 edges and 7,(G) =

k—2
s. Notice that Ng(n,s) = (1 +0(1))s (ﬁ) while ¢(n, Kx) = (14 o(1)) <ﬁ> , SO
Ni(n,s) < (s+1/2)-c¢(n, Ki). Therefore, we may assume that Ni(G) < (s+1/2)-¢(n, K}).
So by Lemma 2.10, there exists a partition V(G) = V4 U--- U Vi1 such that B :=
G — G[V1,...,Vi_1] is a matching of size s.

Let x; = |Vi| for i € [k — 1] and without loss of generality we may assume that z; >
<o > xpq. Let H =GWi,..., Vi), M = K[WV1,...,Vk_1] — H, and m = |M|. Since
tk—1(n) —1=|H| = |K[V1,...,Vk_1]| — m, we obtain m € {0,1} and

Z XTilj = tk_l(n) —1+m.
1<i<j<k—1

Suppose that m = 1. Then Zl<i<j<k71 zix; = tp_1(n), so x1 = -+ =z, = ¢+ 1 and
Tyl =" =Tkp-1=4(.

A simple Mathematica worksheet verifying this fact can be found at the web page
http://homepages.math.uic.edu/ "mubayi/papers/ErdosRademacher.pdf.
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Let s; = [BN ()| forie[k—1]and S={i € [k—1]:s >1}.
Case 1: |S| = 1.

Let ip € [k — 1] such that s;, = s. Then there are s - [[,,; ; potential copies of Kj.
Let uv € M. If uv has empty intersection with all edges in B, then there are at most
s -nF~* = o(nF3) potential copies of K}, containing uv. If uv has nonempty intersection
with some e € B, then every potential copy of K that contains wv must contain e as well.
So in this case there are at most Hz‘g{io} :v,) /x_1 potential copies of K} containing uv.

Therefore,
i{io} 1 igio}
1T e <t
B Tk—1) ;5 ' s — % (q+ 1)t if2<r<k-—2

> Ny (na 5)7
and equality holds only if r = 1.

Case 2: |S| > 2.

The number of potential copies of K}, is Zf:_ll <si . H#i :(:j>. Suppose that the pair in M
has nonempty intersection with V;, and V;, for some 9,41 € [k — 1]. If s;, = 0, then there
are at most (Hl Lio l’l) /xp_1 potential copies of Kj containing the pair in M. If both
sip > 1 and s;, > 1, then there are most 2 ][, ; .

pair in M. Therefore,

x; potential copies of K}, containing the

Since

1 1 2 1 (1 1 > <1 1 >
_t — — ) — -
-’Eio l‘il xioxil 2 2 a:io 2 l‘il

is decreasing in z;, and z;,,

1 1 2 S 1 1 2
T, T4y TigXiy T T2 T1T2
Therefore,
_2) k-2 T
L ' , 1 s—2)a 7 if r =0,
Ni(G) = — - =S (s—1)d" 2 if r =1,
k( )_< =t -1'11'2>ij s—a)a if r

s — q%) (q+ 1) 1gk—m1 if2<r<k-—2
> Nk(nv S)'

Note that if s > 3, then the first inequality above is strict since there are copies of K} in
G containing at least two edges in B.
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Now we may assume that m = 0. Then every e € B is contained in at least Hi:zl x; copies
of K} and hence

k—1
G)>s- HCCZ

So we just need to find the minimum of H "5 x; subject to the constraint that H =
tp—1(n) — 1.
k—1

If r=0, then 1 = ¢+ 1,20 = --- = 232 = ¢, and x4 = ¢ — 1. Therefore, [[;5 z; =
¢"3(q—1).
If r=1,then z1 = 29 = q+ 1,23 = --- = xp_9 = ¢q, and z_1 = q — 1. Therefore,
15 @i = ¢" (g + (g - 1).
If r > 2, then
either 1= =z,p1=q¢+ 1L, z4p2=" =2 2=¢qr1=¢q—1
or r1=q+2x3=-=x,1=q+1,x, = =x8_1=4q.

The later one gives a smaller Hk 5 i, which is (g + 1)"2pk=r.
Therefore, for the case m =0

s-q"3(g - 1), if r =0,

Ni(G) = 4 s-¢" g+ 1)(g-1), ifr=1,
s-(q+1)"2gk, if2<r<k-2.
> Nk(na S)a

and equality only if r # 1. |

2.4 Proof of Theorem 1.6

In this section we prove Theorem 1.6. Recall that for n,k € N, ¢, = [n/(k—1)] and
Tk =1 —(k—1)gng. For s >t>1k >3,

—1)(s - 1 )\ M2
Rk(n,s,t):(2(k kl)( ), (k=1-ru) nk) |

-2 k—2
+ — n+(k_2)Rk‘(nvsvt) - — n—Rk(n,s,t)
nk,s,t - k—1 ’ and nk,s,t - k—1 :

Proof of Theorem 1.6. Let k > 4, s >t > 2 be fixed integers and n be sufficiently large.
Suppose that s > 2Ry (n, s,t). Let ¢ = ¢, 5, r = rn i, and R = Ry(n, s,t). Let G be a graph
on n vertices with t;_1(n)+t edges and 74,(G) = s. Since s- (nI;s,t> < (s+1/2)-¢(n, Ky),
we may assume that Ni(G) < (s 4 1/2) - ¢(n, K;). So by Lemma 2.10, there exists a
partition V(G) = V3 U---UVj_q such that B := G — G[V1,...,Vi_1] is a matching of size
s.

Let x; = |Vi| for i € [k — 1] and without loss of generality we may assume that x; >
- > xp—1. Let H =GW,...,Vjp_1], M = K[W,...,Vi_1] — H, and m = |M]|. Since
tp1(n)+t—s=|H|=|K[Vi,...,Vi_1]| —m

Z TiZ g :tk_l(n)+t—s—|—m,
1<i<j<k—1

15



which is equivalent to
E—1
Zazf =n?—2t,_1(n) + 25 — 2t — 2m.
i=1

Letsiz\Bﬂ(‘gi)]forie[k—l] and S={iek—1]:s > 1}
Case 1: |S| =1.

Without loss of generality we may assume that s; = s since the other cases can be solved
using a similar argument. Notice that there are s- Hfz_zl x; potential copies of K, and for
every e € M there are at most H,’L:; x; potential copies of K} containing e. Therefore,

k-1 k=2 N
Nk(G)ZS-Hxi—m-Hxi:<s— )H:ch
i=2 i=2 i=2

Tk—1

Fix 0 <m < s —t. Let R>g be the collection of all nonnegative real numbers. Define
Cpm (N) = {(xl,...,xk_l) e NF-1 . T =mn, :L‘?:n2—2tk_1(n)+2s—2t—2m},
and

k—1 k—1
Cm (R) = {($1,.--,$k—1) € R’;Bl : le = n,Zx? =n?—2_1(n) + 25 — 2t — Qm} .

Note that Cy, (N) C Cp, (R). In order to get a lower bound for N;(G) we need to solve
the following optimization problem.

OPTA . Minimize <s - %) HZ:; x;
subject to (x1,...,xp—1) € Cppy (N).

However, it is not easy to get an optimal solution for OPT%,. So we are going to consider
the following two auxiliary optimization problems. Let

OPTE Minimize <s - ﬁ) Hf:_zl x;
™
subject to (1,...,25-1) € Cpy (R),

and

OPTC - Minimize Hf:_; X
"] subject to (1,...,25-1) € Cpy (R).

Let opt?,, opt%, and opt;, denote the optimal value of the optimization problems OPT‘%,
OPTE | OPTY, respectively. It is easy to see that opt?, > opt?,. Moreover, if OPTE has
an optimal solution x1,...,z;_; such that x; € N, then opt?, = optlj’n. Our goal is to find
opt? and it will be a lower bound for Ny (G).

Claim 2.12. There exists a constant C' > 0 such that

k—1 k
(s - m> -optS, — C'nF~1 < opth, < (3 - nm) -optS, + C'nM 4,
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Proof of Claim 2.12. We abuse notation by assuming that z1,...,z;_1 is an optimal so-
lution of OPTE. Since di<icj<k_1Titj =tg—1(n) +t —s+m >tp_1(n) — s, by Lemma
24, n/(k—1)—s<z; <n/(k—1)+sfor all i € [k — 1]. Therefore,

ot = (152 Tz (oo ) 1l

B (k—1m\ (k—1)2sm =
= (=) Mo ey L

=2 =2
k-1
k—1
> <s — ()m> : T; — C'nk4
" i=2
(k—1)m k—4
> (s—n -optS, — C'n"~%,
where C’ is a constant depending only on k, s, m.
Now let #,..., 2} _, be an optimal solution of OPT%. Then similarly we have

k-1
m , b I k—4
=|s—— ||:cl— ||x > opt,, — C'n" ",
( ) = e 1(% 19

Claim 2.12 shows that optl;’n = (3 - %m) opts, £C'n k=4 So we could view (s — %m) :
optS, as a "trajectory” (in other words, the ”expected” Value) for Opt , and this will be
useful later for us to show that opt? | < optb,.

Let us solve the optimization problem OPTS first. We use the Lagrangian multiplier
method. Let

k-1 k—1 k—1
= Hacl + A (le —n) +p (Zm? — (n® = 2t)_1(n) + 25 — 2t — 2m)> :
=2 i=1 i=1

Again, we abuse notation here by assuming that (x1,...,z5_1) € Cp,(R) is an optimal
solution of OPT%. Then by the Lagrangian multiplier method,

oL _ _ _ A
Dar —%i?#$1—0:>$1——5,
oL i=2 Ti _

Wj :724‘)\4‘2/133]‘—0,
% —Z 1xl—n—O

% Zz 1 SL’ (n — th,l(n) + 25 — 2t — 2m) =0.

Note that 21 # 0 so it is an interior point and hence we can apply the Lagrangian multiplier
here.

Let m = Hf:zl z;. Note that the equation

E+)\—|—2/mc:0
xr
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has only two solutions

o A+ /A2 — 8um and o — A= \/)\2—8,LL7T.

4u 4p

Therefore, referring to OL/0x;, for every 2 < j < k — 1 either z; = 2’ or z; = 2.
Before we state the next claim let us recall from the beginning of Case 1 that s; = s.

Claim 2.13. 21 > 29 = -+ = Tp_1.

Proof of Claim 2.13. First we show that z1 > x; for all 2 < ¢ < k — 1. Suppose to
the contrary that there exists some i € [k — 1] \ {1} such that z; > 1, and without
loss of generality we may assume that x5 > 1. Then let z = z; for 3 < i < k —1,
2 = @9, and oy = x1. Tt is clear that (z/,...,2,_,) € Cm(R), but [[¥5 o} < [1F=5 =,
which contradicts our assumption that (z1,...,2x_1) is an optimal solution of OPT%.
Therefore, 1 > x; forall 2 <i <k — 1.

Now we show that x9 = --- = xp_1. Suppose that z;; # x;, for some 2 < i3 < ip <
k —1. Then {z;,,z;,} = {2/,2”}, which implies that z;, + x;, = —A\/(2u) = 1. Since
di<icj<k—1TiTj =tg—1(n) +t—s+m>t,_1(n) —s, by Lemma 2.4, |v; —n/(k—1)] <s
for all ¢ € [k — 1]. Therefore,

n
— 28> —— + 5> 21,

n
:L'il+x2-2>2><k_1 P

a contradiction. Therefore, xo = --- = xp_1. |

By Lemma 2.2,

n? (k—1—-nr)r

2
— 9% —
n tk—1(n) k—1+ ]

Let z =21,y =29 = -+ = xp_1. Since (x1,...,25-1) € Cn(R),

z+ (k—2)y =
2?4 (k=22 = 25+ B0 o 9p —om,
x; > 0,Vi € [k —1],

which implies

y = ,%:1 — A,
where
A @Dk =2 (s —t—m)+ (k=2)(k—1-rn)"*
" (k—1)(k —2)
Therefore,

n k—2
k—
opty, =y 2:<k_1—Am) .

. . . b
Now we are going to use opt, to describe the behavior of opt,),.
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Claim 2.14. The value opt®, is strictly increasing in m. In particular, optB < opth for
all m > 0.

Proof of Claim 2.14. Since

n k—2 n k—2 n k—3
c _ (" S _ . k—4

by Claim 2.12, there exists a constant C’ > 0 such that

k—1
opth, = <s - nm) -optS, + C'nk~4

=s(— H—( +s(k—2)Ap) ([ — L s
=S k—l m S m ]{;—]_ n s

where C” > (" is a constant depending only on s, k, m. Therefore,

k-3
optd, | —opt? = (1 —s(k—2) (A1 — Ap)) (&) + 20"k,

Now view A,, as a function of the variable m. Then it is easy to see that A,, is concave
down, i.e. d2A,,/dm? < 0 for 0 < m < s — t. Therefore,

sk —2) (A1 — Ay) > s(k—2)(—1) . 38m

m=0

s(k—2)
k=D (k—2)(s—t)+ (k—2)(k—1—r)r)/?

Since

2k — )k~ 2)(s — 1)+ (k—2) (k—1— 1))/
k—2 ’

we obtain s(k — 2) (A1 — Ap) > 2. Therefore,

s>2R=2

1_5(k_2) (Am—l —Am) < -1, (*)

and hence opt? | —opt? < — (n/(k—1))" 3 + ©(n* %) < 0. 1

Therefore,

b b n k=2 k—2
Ni(G) > opt?, > opt,, > optg = s-optj = s - (k:—l —Ao) =s- (n;’s’t> .

Here we used that fact that Ag = R/(k — 1).
Case 2: |S| > 2.

The number of potential copies of Kj, is Ef:ll (si . H#i xj). Suppose that wv € M
satisfies u € V;, and v € Vj, for some ig,i; € [k — 1]. Similar to the proof of Theorem
1.6 we may assume that s;, > 1 and s;, > 1. Then there are at most || x; potential
copies of K}, containing uv. Therefore,

0,1

k—1 k—1
Si
Ni(G) > si- 1z | =2 T = —_— ;.
J T; Tio X
i=1 G#i weM  i#igiy i=1 """ uwveM LR R R
uGVZO veViy uGVZO veViy



We abuse notation by assuming that z;,z;, = min{x;z; : Juv € M such that v € V;,v €
Vj}. Then

Since

1 1 2m 1 ( 1 1 ) ( 1 1 )
—+ — - =—-2m|——— | |=———,
Tip Ty Tig%i,  2m 2m  my, 2m  wy,

Therefore,

zw«n><8_1+]—2m>iim

1 x2 12 -1
k—1 k—1
s T — 9 2m r1— Ty 2m
=|(—+ - Ti=|s+ - — | | Zi.
1 T1T2 xr1x2 ) - 1 €2 2 5
1= 1=

Therefore, in order to get a lower bound for N (G) we need solve the following optimization
problem.

opD , [ Minimize (s+ 25z - 2y 1) o
b
subject to (1,...,25-1) € Cpr(N).

Similarly, we are going to consider the following auxiliary optimization problem.

e e T1—T2 Qﬂ k—1 )
Minimize <s + 8z — 2o ) |

OPTE -
subject to (x1,...,2k_1) € Cr(R).

Theoretically, one could solve OPTE exactly using the Lagrange multiplier method. How-
ever, the optimal solution of OPTE is very complicated. So we are going to compare
OPTE with OPTY,.

Let optd and opt® denote the optimal values of the optimization problems OPTY and
m m m

OPTE | respectively. It is easy to see that optd > opt® . The following claim is very
m y m m

similar to Claim 2.12, and can be proved in a similar fashion so so we omit the proof.
Claim 2.15. There ezists a constant C > 0 such that

<8 2k - Dm

n

2(k—1)m

) optS, — CnF~4 < opt®, < <s - -

> -optS, + CnF4.

Claim 2.16. The value opt$, is strictly increasing in m. In particular, opty < opts, for
all m > 0.
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Proof of Claim 2.16. The proof is basically the same as the proof for Claim 2.14. The only
difference is that s > 2R implies that there exists £ > 0 such that s(k—2) (An—1 — Ap) >
2 4 . Therefore, (*) now becomes

2—s(k—=2)(Am1—Ap) < —¢,
which implies that
n k—3
optd | —opt? = (2—5(k—2) (Ap_1 — Ap)) <1<;1> + 20"nk~4
< —e(n/(k—1))"3+0m"*) <o.

Therefore, if s > 2R, then

k—1

Note that we may assume that s —¢ > 2 since the case s — ¢t = 1 has been solved by
Theorem 1.5. Therefore, there exists copies of Kj in G that contains at least two edges
in B, which implies that the first inequality above is strict. |

k—2
n k—2
Ni(G) > optS, > optS, > optf > s - opt§ = s - ( - Ao) =s- (";Z,s,t> :

2.5 Proof of Theorem 1.9

In this section we prove Theorem 1.9. We need the following lemma.

Lemma 2.17 ([7]). Fiz k > 3 and a k-critical graph F with f vertices. Then there are
positive constants ap and Bp such that if n is sufficiently large, then |c(n, F) —apnf 72| <
ﬁan—B'

Now we are ready to prove Theorem 1.9.

Proof of Theorem 1.9. Let s >t > 1,k > 3 be fixed integers and let F' be a k-critical graph
on f vertices. Let n be sufficiently large. Let G be a graph on n vertices with tx_1(n) +t
edges and 77(G) = s. We may assume that Np(G) < s-¢(n, F), since otherwise we are
done.

By Lemma 2.10, there exists a partition V(G) = V43 U--- U Vj_; such that B := G —
G[Vi,...,Vk_1] is a matching of size s. Let z; = |V;| for i € [k — 1] and without loss
of generality we may assume that 1 > -+ > xp_1. Let H = G[Vi,..., V4], M =

K[WVi,...,Viy_1] — H, and m = |M|. Since ty_1(n) —t = |H| = |K[V1,..., Vi_1]| — m,

Z zir; =tp_1(n) +t—s+m.
1<i<j<k—1

Therefore, by Lemma 2.4, n/(k —1) —s < z; <n/(k—1) + s for all i € [k — 1]. Let
Cmin = Min{c(Zy (1) - - 5 Tok—1)) : 0 € Sk-1},

where Si_1 is the collection of all permutations of [k —1]. By Lemma 2.3, ¢;nin > ¢(n, F) —
vrsnd =3 for some constant yp. Note the the number of potential copies of Kj, is at least
S+ Cmin- Since every e € M is contained in at most nf =3 potential copies of K,

Np(G) > s emin —mn! 3 >s-¢(n, F) —Cnf 3

for some constant C'. This completes the proof of Theorem 1.9. |
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3 Concluding remarks

We proved several bounds on the number of copies of K}, (and also for k-critical graphs
F') in a graph G on n vertices with tx_1(n) +t edges and 74,(G) = s. In our proof we need
s and t to be fixed. Using the same method we are able to show that the same conclusions
as in Theorems 1.4, 1.5, 1.6, and 1.9 hold for all s > ¢ > 1 (for Theorem 1.6 we still need
s > 2Ry(n, s,t)) as long as s(s — t)'/2 < &n for some small constant &€ > 0. In particular,
if s —t < C for some constant C, then the conclusions hold for all s < &'n for some small
constant £’ > 0. The proofs are more involved and tedious, so we chose to omit them here.
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