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Abstract

Let G be a triangle-free graph with n vertices and average degree t. We show

that G contains at least

e(1−n−1/12) 1
2
n
t

ln t( 1
2

ln t−1)

independent sets. This improves a recent result of the first and third authors [8]. In

particular, it implies that as n→∞, every triangle-free graph on n vertices has at

least e(c1−o(1))
√
n lnn independent sets, where c1 =

√
ln 2/4 = 0.208138... Further,

we show that for all n, there exists a triangle-free graph with n vertices which has

at most e(c2+o(1))
√
n lnn independent sets, where c2 = 2

√
ln 2 = 1.665109... This

disproves a conjecture from [8].

Let H be a (k + 1)-uniform linear hypergraph with n vertices and average

degree t. We also show that there exists a constant ck such that the number of

independent sets in H is at least

e
ck

n

t1/k
ln1+1/k t

.

This is tight apart from the constant ck and generalizes a result of Duke, Lef-

mann, and Rödl [9], which guarantees the existence of an independent set of size

Ω( n
t1/k

ln1/k t). Both of our lower bounds follow from a more general statement,

which applies to hereditary properties of hypergraphs.
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1 Introduction

An independent set in a graph G = (V,E) is a set I ⊂ V of vertices such that no two

vertices in I are adjacent. The independence number of G, denoted α(G), is the size of

the largest independent set in G.

Definition. Given a graph G, i(G) is the number of independent sets in G.

In [3], Ajtai, Komlós, and Szemerédi gave a semi-random algorithm for finding an

independent set of size at least n
100t

ln t in any triangle-free graph G with n vertices and

average degree t. By analyzing their algorithm, the first and third authors [8] recently

showed that for any such graph,

i(G) ≥ 2
1

2400
n
t

log2
2 t. (1)

As a consequence, they proved that every triangle-free graph has at least 2Ω(
√
n lnn)

independent sets and conjectured that this could be improved to 2Ω(
√
n ln3/2 n), based on

the best constructions of Ramsey graphs by Kim [12].

In this paper, we give a simpler proof of (1), which substantially improves the con-

stant in the exponent and avoids any analysis of the algorithm in [3]. Further, we

show that our bound is not far from optimal, by disproving the conjecture in [8] and

constructing a triangle-free graph with at most 2O(
√
n lnn) independent sets. The con-

struction is obtained by modifying the graph obtained by the triangle-free process. Our

bounds follow from the detailed analysis of this process by Bohman-Keevash [6] and Fiz

Pontiveros-Griffiths-Morris [10].

Theorem 1. Let G be a triangle-free graph with n vertices and average degree t. Then

i(G) ≥ max{e(1−n−1/12) 1
2
n
t

ln t( 1
2

ln(t)−1), 2t}.

Consequently, for every triangle-free graph H on n vertices,

i(H) ≥ e(1−o(1))
√
n ln 2 lnn

4 .

The constant in the exponent above is
√

ln 2/4 ≈ 0.2081. As we show below it is not

far from optimal as we have an upper bound with exponent 2
√

ln 2 ≈ 1.665.

Theorem 2. For all n, there exists a triangle-free graph G on n vertices with

i(G) ≤ e(1+o(1))(2
√

ln 2)
√
n lnn.
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Using random graphs, one can show that for t < n1/3, there is a triangle-free graph

G with independence number at most (2n/t) ln t. Consequently,

i(G) ≤
α(G)∑
i=1

(
n

i

)
≤ 2

(
n

α(G)

)
≤ 2

(
te

2 ln t

) 2n
t

ln t

< 2eln (te) 2n
t

ln t = e(1+o(1)) 2n
t

ln2 t,

so the constant in the exponent of Theorem 1 is within a factor of 8 of the best possible

constant.

1.1 Linear hypergraphs

Fix k ≥ 1. Using the semi-random method, Ajtai, Komlós, Pintz, Spencer, and Sze-

merédi [2] showed that there exists ck such that every (k+1)-uniform hypergraph H with

n vertices, average degree t, and girth 5 satisfies α(H) ≥ ck
n
t1/k

ln1/k t. A hypergraph is

linear (or has girth 3) if any two edges intersect in at most one vertex. Duke, Lefmann,

and Rödl [9] (using the result of [2]) showed that there exists c′k such that every linear

(k + 1)-uniform hypergraph H with n vertices and average degree t satisfies

α(H) ≥ c′k
n

t1/k
ln1/k t.

This leads to our second theorem.

Theorem 3. Fix k ≥ 1. There exists c′′k > 0 such that the following holds: For every

(k + 1)-uniform, linear hypergraph H on n vertices with average degree t,

i(H) ≥ e
c′′k

n

t1/k
ln1+1/k t

. (2)

In [2], Ajtai, Komlós, Pintz, Spencer, and Szemerédi observed that, for infinitely many

t and n, there exists a (k + 1)-uniform, linear hypergraph H with n vertices, average

degree t, and independence number at most b′k
n
t1/k

ln1/k t. For this hypergraph,

i(H) ≤ e
b′′k

n

t1/k
ln1+1/k t

,

so (2) is tight up to the constant in the exponent.

1.2 Hereditary Properties

In [7], Colbourn, Hoffman, Phelps, Rödl, and Winkler counted the number of partial

S(t, t + 1, n) Steiner systems by analyzing a semi-random algorithm; Using the same

techniques, Grable and Phelps [11] extended their result to partial S(t, k, n) Steiner
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systems. Asratian and Kuzjurin [5] gave a simpler proof of the bound in [11], which

avoids any algorithm analysis. Theorems 1 and 3 both follow from a more general result

(Theorem 4 below), which is based on this simpler proof. Since our proof avoids any

analysis of how the independent sets are obtained, we are able to extend the bound

in [8] from triangle-free graphs to a more general hypergraph setting. Recall that a

hereditary property P of hypergraphs is any set of hypergraphs which is closed under

vertex-deletion.

Theorem 4. Fix k ≥ 1 and ε ∈ (0, 4
k+1

). Let P be any hereditary hypergraph property.

Suppose there exists a non-decreasing function f so that every (k+1)-uniform hypergraph

H ∈ P with n vertices and average degree at most t satisfies

α(H) ≥ n

t1/k
f(t).

Then there exists n0 = n0(ε) such that every (k + 1)-uniform hypergraph H ∈ P with

n ≥ n0 vertices and average degree at most t < nk satisfies

i(H) ≥ e
α′ n

t1/k
ln t
,

where

α′ =

(1− n−ε/21) 1
k+1

f(t
1
k+1 ), if H is linear

(1− n−ε/21) 1−ε
k(2k+1)

f(t
2k+ε
2k+1 ), otherwise.

Remark 5. In [1], Ajtai, Erdős, Komlós, and Szemerédi asked if every Kr-free graph has

independence number at least Ω(n
t

ln t). They gave a lower bound of Ω(n
t

ln ln t), which

Shearer [16] later improved to Ω(n
t

ln t
ln ln t

) for sufficiently large t. Theorem 4 implies that

if there exists cr so that every Kr-free graph G satisfies α(G) ≥ cr
n
t

ln t, then

i(G) ≥
(

n

Ω(n
t

ln t)

)
= eΩ(n

t
ln2 t).

2 Lower Bounds

Theorems 1 and 3 follow from the linear case of Theorem 4. We will prove Theorem 4

for linear hypergraphs and afterward describe the changes needed for non-linear hyper-

graphs.

We first state a version of the Chernoff bound and two claims, which contain the main

differences between the linear and non-linear cases. The proofs of the claims will follow

the proof of the theorem.
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Chernoff Bound (Chernoff bound [14]). Suppose X is the sum of n independent vari-

ables, each equal to 1 with probability p and 0 otherwise. Then for any 0 ≤ t ≤ np,

P(|X − np| > t) < 2e−t
2/3np.

Setup. Fix k ≥ 1 and ε ∈ (0, 4
k+1

). Let H be a (k + 1)-uniform hypergraph with n

vertices, average degree at most t < nk, and maximum degree at most tnε/8. Select each

vertex of H independently with probability p. Let m′ denote the sum of vertex degrees in

the subgraph induced by the selected vertices.

The next two claims come under the assumption of the setup.

Claim 6. If H is linear and p = t
−1
k+1 , Then for all n > n0(ε),

P
[
m′ > ntpk+1 +

ntpk+1

nε/20

]
< n−2.

Claim 7. If p = t
ε−1

k(2k+1) , then for all n > n0(ε),

P
[
m′ > ntpk+1 +

ntpk+1

nε/20

]
< n−2.

Proof of Theorem 4 (linear case). Fix k ≥ 1 and ε ∈ (0, 4
k+1

). Let H ∈ P be a (k + 1)-

uniform, linear hypergraph with n vertices and average degree at most t < nk. We

assume n ≥ n0, where n0 is chosen implicity so that several inequalities throughout the

proof are satisfied. We consider two cases. In Case 1, we require that the maximum

degree of H is at most tnε/8, while Case 2 requires the maximum degree of H to be at

least tnε/8.

Case 1: The maximum degree of H is at most tnε/8.

Select each vertex of H independently with probability p = t−
1
k+1 . Let H ′ denote the

subgraph of H induced by the selected vertices. Let n′ denote the the number of vertices

in H ′. Since t < nk and ε < 4
k+1

,

np = nt−
1
k+1 > n1−k/(k+1) = n

1
k+1 > nε/4.

By the Chernoff bound,

P[|n′ − np| > np

nε/20
] ≤ 2e−np/3n

ε/20

< n−2. (3)

Let m′ denote the sum of vertex degrees in H ′. By linearity of expectation,

E[m′] = ntpk+1.
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Set λ = n−ε/20. By Claim 6,

P[m′ > (1 + λ)ntpk+1] < n−2. (4)

Therefore, by the union bound, with probability at least 1 − 2n−2 > 1 − 1/n, H ′

satisfies both

m′ ≤ (1 + λ)ntpk+1

and

n′ ≥ (1− λ)np.

Let t′ = (1 + 3λ)tpk. Then with probability at least 1− 1/n, H ′ has average degree at

most

m′/n′ ≤ (1 + λ)ntpk+1

(1− λ)np
≤ (1 + 3λ)tpk = t′.

Since P is hereditary, H ′ ∈ P . Thus, with probability at least 1 − 1/n, H ′ has an

independent set of size at least

n′

t′1/k
f(t′) ≥ (1− λ)np

((1 + 3λ)tpk)1/k
f((1 + 3λ)tpk) =

(1− λ)n

(1 + 3λ)1/kt1/k
f((1 + 3λ)tpk)

≥ (1− λ)n

(1 + 3λ)t1/k
f((1 + 3λ)tpk)

> (1− 6λ)
n

t1/k
f((1 + 3λ)tpk)

≥ (1− 6λ)
n

t1/k
f(tpk),

where we used that f is non-decreasing in the last inequality.

Let g = (1 − 6λ) n
t1/k

f(tpk). Suppose I is an independent set in H with at least g

vertices. Then

P[I ⊂ V (H ′)] = p|I| ≤ pg.

Let N denote the number of independent sets in H with at least g vertices, and let

the random variable N ′ denote the number of independent sets in H ′ with at least g

vertices. By Markov’s inequality,

1− 1/n < P[N ′ ≥ 1] ≤ E[N ′] ≤ Npg = Ne−g ln p

Thus

N > (1− 1/n)e−g ln p = (1− 1/n)e
(1−6λ) 1

k+1
n

t1/k
f(t

1
k+1 ) ln t

(5)

> (1− 1/n)e
(1−n−ε/21) 1

k+1
n

t1/k
f(t

1
k+1 ) ln t

.
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Case 2: The maximum degree of H is more than tnε/8.

Let

K = {u ∈ V (H) : deg(u) > tnε/8/2}.

Let H ′ denote the subgraph of H induced by V (H)−K, and let n′ = |V (H ′)|. Since

1

n′

∑
v∈V (H′)

degH′(v)− 1

n

∑
v∈V (H′)

degH(v) ≤ (
1

n′
− 1

n
)
∑

v∈V (H′)

degH(v)

≤ (
1

n′
− 1

n
)n′tnε/8/2

= (n− n′)tn
ε/8

2n

≤ 1

n

∑
v∈K

degH(v),

the average degree of H ′ is at most

1

n

∑
v∈K

degH(v) +
1

n

∑
v∈V (H′)

degH(v) =
1

n

∑
v∈V (H)

degH(v) ≤ t.

Also, because

tn ≥
∑

u∈V (H)

degH(u) ≥
∑
u∈K

degH(u) > |K|tnε/8/2,

|K| < 2n1−ε/8, and so n′ > n(1 − 2n−ε/8) > n/28/ε. Thus H ′ has maximum degree at

most tnε/8/2 < tn′ε/8. Further, since H has maximum degree at least tnε/8 and at most

nk, t < nk−ε/8. Hence t < nk−ε/8 < n′k. Thus Case 1 implies that

i(H ′) ≥ (1− 1/n′)e
(1−6λ) 1

k+1
n′

t1/k
f(t

1
k+1 ) ln t

> (1− 2/n)e
(1−6λ)(1−n−ε/8) 1

k+1
n

t1/k
f(t

1
k+1 ) ln t

,

where λ = n′−ε/20. We conclude that

i(H) ≥ i(H ′) ≥ e
(1−n−ε/21) 1

k+1
n

t1/k
f(t

1
k+1 ) ln t

. (6)

The proof of Theorem 4 when H is non-linear is similar. We set p = t
ε−1

k(2k+1) . Since we

still have np > nε/4, (3) still holds. We then use Claim 7 instead of Claim 6 to prove (4).

The proof then proceeds in the same way until we get to (5), where, using the different

value of p, we instead obtain

N > (1− 1/n)e
(1−6λ) 1−ε

k(2k+1)
n

t1/k
f(t

2k+ε
2k+1 ) ln t

.

Finally, (6) becomes

e
(1−n−ε/21) 1−ε

k(2k+1)
n

t1/k
f(t

2k+ε
2k+1 ) ln t

.

We now prove Theorem 1 and Theorem 3.
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Proof of Theorem 1. Shearer [15] showed that every triangle-free graph with n vertices

and average degree t has independence number at least n
t
(ln(t)−1). Since being triangle-

free is hereditary and graphs are 2-uniform, linear hypergraphs, we may apply Theorem

4 (with f(t) = ln(t)−1) to conclude that for ε = 21/12 ∈ (0, 2), there exists n0 such that

every triangle-free graph G with n ≥ n0 vertices and average degree at most t satisfies

i(G) ≥ e(1−n−ε/21) 1
2
n
t

ln t( 1
2

ln(t)−1) > e(1−n−1/12) 1
2
n
t

ln t( 1
2

ln(t)−1).

Suppose G is a triangle-free graph with n < n0 vertices and average degree t. Choose

an integer r so that rn ≥ n0. Let G′ be the disjoint union of r copies of G. Then

i(G′) = i(G)r, so by the previous paragraph,

i(G) = i(G′)1/r ≥ (e(1−(rn)−1/12) 1
2
rn
t

ln t( 1
2

ln(t)−1))1/r

≥ e(1−n−1/12) 1
2
n
t

ln t( 1
2

ln(t)−1).

This completes the proof of the first bound in Theorem 1. For the second part, consider

a triangle-free graph G having average degree t. G contains a vertex u with degree at

least t. The neighborhood of u is an independent set, which contains 2t independent

sets. Therefore, every triangle-free graph has at least

max{2t, e(1−n−1/12) 1
2
n
t

ln t( 1
2

ln(t)−1)}

independent sets. This is minimized when t = (1
4

+ o(1))
√
n/ ln 2 lnn, so every triangle-

free graph on n vertices has at least

2
(1−o(1)).

√
n lnn

4
√
ln 2 = e(1−o(1)).

√
n ln 2 lnn

4

independent sets.

Proof of Theorem 3. Duke, Lefmann, and Rödl [9] showed that every (k + 1)-uniform

linear hypergraph with n vertices and average degree at most t has independence number

at least c′k
n
t1/k

ln1/k t. Since linearity is a hereditary property, we may apply Theorem 4

(with f(t) = c′k ln1/k t) to conclude that for ε = 3
k+1
∈ (0, 4

k+1
), there exists n0 such that

every (k + 1)-uniform linear hypergraph H with n ≥ n0 vertices satisfies

i(H) ≥ e
(1−n−1/(7(k+1)))

c′k
k+1

1

(k+1)1/k
n

t1/k
ln1+1/k t

> e
c′′k

n

t1/k
ln1+1/k t

.

If H is a (k + 1)-uniform linear hypergraph with n < n0 vertices, then we proceed in

the same way as in the proof of Theorem 1.

It only remains to prove the claims stated at the beginning of this section. We first

prove Claim 6. We will use the following theorem of Kim and Vu [13]:
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Theorem 8. Suppose F is a hypergraph such that W = V (F ) and |f | ≤ s for all f ∈ F .

Let

Z =
∑
f∈F

∏
i∈f

zi,

where the zi, i ∈ W are independent random variables taking values in [0, 1]. For A ⊂ W

with |A| ≤ s, let

ZA =
∑

f∈F :f⊃A

∏
i∈f−A

zi.

Let MA = E[ZA] and Mj = maxA:|A|≥jMA for j ≥ 0. Then there exists positive constants

a = a(s) and b = b(s) such that for any λ > 0,

P[|Z − E[Z]| ≥ aλs
√
M0M1] ≤ b|W |s−1e−λ.

Proof of Claim 6. Apply Theorem 8 with F = H and P[zi = 1] = p = t−
1
k+1 . Note first

that

E[Z∅] ≤ ntpk+1 = nt1−1 = n.

Since the maximum degree of H is at most tnε/8,

E[Z{u}] ≤ tnε/8pk = nε/8t
1
k+1

for any u ∈ V (G). By linearity, for any A ⊂ V (G) with |A| ≥ 2,

E[ZA] ≤ pk+1−|A| ≤ 1.

Since t ≤ nk and ε < 4
k+1

, n ≥ nε/8t
1
k+1 . Further, nε/8t

1
k+1 ≥ 1. Therefore M0 ≤ n and

M1 ≤ nε/8t1/(k+1). Theorem 8 therefore implies that there exist constants a = a(k) and

b = b(k) such that

P[|m′ − E[m′]| > a((k + 3) lnn)k+1
√
ntpk+1tnε/8pk] ≤ bnke−(k+3) lnn.

Since t ≤ nk and ε < 4
k+1

,

√
ntpk+1tnε/8pk =

ntpk+1

n1/2−ε/16p1/2
≤ ntpk+1

nε/16
.

Thus, since E[m′] ≤ ntpk+1,

P[m′ > ntpk+1 +
ntpk+1

nε/20
] < P[m′ > E[m′] + a((k + 3) lnn)k+1ntp

k+1

nε/16
]

≤ bnke−(k+3) lnn

< n−2.
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To prove Claim 7, we will apply the following theorem of Alon, Kim, and Spencer [4]:

Theorem 9. Let X1, . . . , Xn be independent random variables with

P[Xi = 0] = 1− pi and P[Xi = 1] = pi.

For Y = Y (X1, . . . , Xn), suppose that

|Y (X1, . . . , Xi−1, 1, Xi+1, . . . , Xn)− Y (X1, . . . , Xi−1, 0, Xi+1, . . . , Xn)| ≤ ci

for all X1, . . . , Xi−1, Xi+1, . . . , Xn, i = 1, . . . , n. Then for

σ2 =
n∑
i=1

pi(1− pi)c2
i

and a positive constant α with αmaxi ci < 2σ2,

P[|Y − E[Y ]| > α) ≤ 2e−
α2

4σ2 .

Proof of Claim 7. Recall that p = t
ε−1

k(2k+1) . The random variable m′ is determined by the

n independent, indicator random variables I[v ∈ V (H ′)]. Each of these affects m′ by at

most deg(v) ≤ tnε/8. Set α = ntpk+1

nε/16
and σ2 = n1+ε/4p(1− p)t2. Note that αtnε/8 ≤ 2σ2.

Also, because t ≤ nk,

α2

4σ2
=

np2k+1

16nε/4+ε/8(1− p)
≥ np2k+1

16nε/4+ε/8
=

nt
ε−1
k

16n3ε/8
≥ nε

16n3ε/8
= n5ε/8/16.

Since E[m′] ≤ ntpk+1, Theorem 9 implies

P[m′ > ntpk+1 +
ntpk+1

nε/20
] < P[m′ > E[m′] +

ntpk+1

nε/16
] ≤ 2e−n

5ε/8/16 < n−2.

3 Upper Bound for Triangle-free Graphs

In this section we prove Theorem 2. We use the results of Bohman-Keevash [6] and

Fiz Pontiveros-Griffiths-Morris [10] on the triangle-free graph process: Let G be the

maximal graph in which the triangle-free process terminates.

Theorem 10 (Bohman-Keevash, Fiz Pontiveros-Griffiths-Morris). With high probabil-

ity, every vertex of G has degree d ≤ (1 + o(1))
√

1
2
n lnn, and independence number

α ≤ (1 + o(1))
√

2n lnn.

Let r > 0 be a real parameter to be optimized later. Construct the graph G′ from G

as follows:
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Construction of G′: We take the strong graph product of G and K̄r, the empty graph

on r vertices: Replace each vertex v of G by a copy Cv of K̄r. Introduce a complete

bipartite graph between all the vertices of Cv and Cu if and only if {u, v} ∈ E(G). We

obtain the graph G′. Notice that |V (G′)| = N = nr.

Define the function f : V (G′)→ V (G), such that given any i ∈ Cu ⊂ V (G′), f(i) = u.

For a set S ⊂ V (G′), define f(S) =
⋃
i∈S{f(i)}.

Claim 11. For every S ⊂ V (G′), S is independent only if f(S) is independent in G.

Further |S| ≤ r|f(S)|.

Proof. Given an independent set I ⊂ G′, consider i, j ∈ I. Clearly, if f(i) 6= f(j), then

f(i), f(j) are not adjacent in G, by the construction. Further, if f(i) = f(j), then i, j

must belong to some copy of K̄r in G′.

Proof of Theorem 2. We shall show that G′ is the required graph. By Claim 11,

i(G′) ≤
∑

I⊂G:I ind. set

2r|I|

≤ α

(
n

α

)
2rα

≤ elnα+α ln(ne/α)+rα ln 2.

To finish the proof, note that

lnα + α ln(ne/α) + rα ln 2 = (
lnn

2
+ r ln 2 + o(1))α

≤ (
ln(N/r)

2
+ r ln 2 + o(1))

√
2(N/r) ln(N/r)

where the last line was obtained by substituting the value of α in terms of N and r.

Now maximizing the above expression with respect to r, we get that when r = 1
2

log2 n,

i(G′) ≤ e(1+o(1))2
√
N ln 2 ln(N).
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graphs, Combinatorica 1 (1981), no. 4, 313–317. MR 647980 (83d:05052)

[2] M. Ajtai, J. Komlós, J. Pintz, J. Spencer, and E. Szemerédi, Extremal uncrowded
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