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Abstract. In this paper we investigate the protein sequence design
(PSD) problem (also known as the inverse protein folding problem)
under the Canonical model 4 on 2D and 3D lattices [12, 25]. The
Canonical model is specified by (i) a geometric representation of a target
protein structure with amino acid residues via its contact graph, (ii) a
binary folding code in which the amino acids are classified as hydrophobic
(H) or polar (P), (iii) an energy function Φ defined in terms of the target
structure that should favor sequences with a dense hydrophobic core and
penalize those with many solvent-exposed hydrophobic residues (in the
Canonical model, the energy function Φ gives an H-H residue contact
in the contact graph a value of −1 and all other contacts a value of 0),
and (iv) to prevent the solution from being a biologically meaningless
all H sequence, the number of H residues in the sequence S is limited by
fixing an upper bound λ on the ratio between H and P amino acids. The
sequence S is designed by specifying which residues are H and which ones
are P in a way that realizes the global minima of the energy function Φ.
In this paper, we prove the following results:

(1) An earlier proof of NP-completeness of finding the global energy
minima for the PSD problem on 3D lattices in [12] was based on the NP-
completeness of the same problem on 2D lattices. However, the reduction
was not correct and we show that the problem of finding the global energy
minima for the PSD problem for 2D lattices can be solved efficiently in
polynomial time. But, we show that the problem of finding the global
energy minima for the PSD problem on 3D lattices is indeed NP-complete
by a providing a different reduction from the problem of finding the
largest clique on graphs.

(2) Even though the problem of finding the global energy minima on 3D
lattices is NP-complete, we show that an arbitrarily close approximation
to the global energy minima can indeed be found efficiently by taking

4 The Canonical model is neither the same nor a subset of the Grand Canonical (GC)
model in [19, 24]; see Section 1.3 for more details.



appropriate combinations of optimal global energy minima of substrings
of the sequence S by providing a polynomial-time approximation scheme
(PTAS). Our algorithmic technique to design such a PTAS for finding the
global energy minima involves using the shifted slice-and-dice approach
in [6, 17, 18]. This result improves the previous best polynomial-time ap-
proximation algorithm for finding the global energy minima in [12] with
a performance ratio of 1

2
.

1 Introduction

In protein structure studies the single most important research problem is to
understand how protein sequences fold into their native 3D structures, e.g.,
see [3, 5, 7, 9, 12–16, 21, 22, 26, 27]. This problem can be investigated at two com-
plementary levels. At a lower level, one wishes to determine how an individual
protein sequence folds. The problem of using sequence input to generate 3D
structure output is referred to as the ab initio protein structure prediction prob-
lem and has been shown to be NP-hard [3, 5, 7]. At a higher level, one wants
to analyze the protein landscapes, i.e., the relationship between the space of all
protein sequences and the space of native 3D structures. A formal framework
for analyzing protein landscapes is established by a model that relates a set S
of protein sequences to a set P of protein structures. Typically this is given by
a real-valued energy function Φ : S ×P → R that models the “fit” of a sequence
s ∈ S to a structure p ∈ P according to the principles of statistical mechanics.
A functional relationship between sequences and structures is obtained by min-
imizing Φ with respect to the structures, i.e., a structure q fits a sequence s if
Φ(s, q) = minp∈P Φ(s, p). Typically the values of Φ are assumed to model notions
of free energy and the minimization is supposed to provide approximations to
the most probable structure obtained from thermodynamical considerations.

The exact nature of Φ depends on the particular model but, for any given
specification, there is natural interest in the fine-scale structure of Φ. For exam-
ple, one might ask whether a certain kind of protein structure is more likely to be
the native structure of a diverse collection of sequences (thus making structure
prediction from sequences difficult). One approach to investigating the structure
of Φ is to solve what is called the protein sequence design (PSD) or the inverse
protein folding problem: given a target 2D or 3D structure as input, return a
fittest sequence with respect to Φ. Three criteria have been proposed for evalu-
ation of the fitness of the protein sequence with respect to the target structure:
(a) the sequence should fold to the target structure, (b) there should be no de-
generacy in the ground state of the sequence and (c) there should be a large gap
between the energy of the sequence in the target structure and the energy of the
sequence in any other structure. Some researchers [27] have proposed weakening
condition (b) by requiring that the degeneracy of the sequence be no greater than
the degeneracy of any other sequence that also folds to the target structure. The
PSD problem has been investigated in a number of studies [4, 8, 10, 12, 19, 23–
25, 27]. The computational complexity of PSD in its full generality as described



above is unknown but conjectured to be NP-hard; the currently best known
algorithms are by exhaustive search or Monte Carlo simulations.

One possible mode of handling the PSD problem is by defining a heuristic
sequence design (HSD) problem where a simplified pair-wise interaction func-
tion is used to compute the landscape energy function Φ. The implicit assump-
tion is that a sequence that satisfies the HSD problem also solves PSD. Several
quantitative models have been proposed for the HSD problem in the litera-
ture [8, 24, 25]. This paper is concerned with the Canonical model of Shahknovich
and Gutin [25]. This model is specified by (1) a geometric representation of a
target protein structure with n amino acid residues via its contact graph, (2) a
binary folding code in which the amino acids are classified as hydrophobic (H) or
polar (P) [9, 20], and (3) an energy function Φ defined in terms of the target
structure that should favor sequences with a dense hydrophobic core and penalize
those with many solvent-exposed hydrophobic residues. To design a sequence S,
we must specify which residues are H and which ones are P. Thus, S is a sequence
of n symbols each of which is either H or P. In the Canonical model, the energy
function Φ gives a H-H residue contact in the contact graph a value of −1 and
all other contacts a value of 0. To prevent the solution from being a biologically
meaningless all H sequence, the number of H residues in S is limited by fixing
an upper bound λ of the ratio between H and P amino acids. The Canonical
model gives rise to the following special case of the densest subgraph problem on
K vertices (denoted by the PSDC2 and the PSDC3 Problems):

Definition 1.
(a) A d-dimensional lattice is a graph G(n, d) = (V (n, d), E(n, d)) with V (n, d) =
×d

i=1{−n,−n + 1, . . . , n − 1, n} for some positive integer n and
E(n, d) = {{(i1, · · · , id), (j1, · · · , jd)} :

∑d
k=1 |ik − jk| = 1} (X × Y denote the

Cartesian product of two sets X and Y ).

(b) A 2D sequence (resp. 3D sequence) S = (V, E) is a graph that is a sim-
ple path in G(n, 2) (resp. G(n, 3)) for some n; the contact graph of such a 2D
sequence (resp. 3D sequence) S is a graph Ḡ = (V̄ , Ē) where Ē consists of all
edges {u, v} ∈ E(n, 2) (resp. {u, v} ∈ E(n, 2)) such that u, v ∈ V and {u, v} �∈ E
and V̄ is the set of end points of the edges in Ē.

Problem 1 (DS Problem). The Densest Subgraph (DS) problem has a graph
G = (V, E) and a positive integer K as inputs, and the goal is to find a V ′ ⊆ V
with |V ′| ≤ K that maximizes |{(u, v) ∈ E : u, v ∈ V ′}|.
Problem 2 (PSDC2/PSDC3 Problems). The PSD problem for the Canonical
model on a 2D (resp. 3D) lattice, denoted by PSDC2 (resp. PSDC3), is an in-
stance of the DS problem when the input graph G is the contact graph realized
by a 2D (resp. 3D) sequence.

References [1, 2] consider the DS problem for general graphs. Hart [12] con-
siders both PSDC2 and PSDC3 problems, provides approximation algorithm for
PSDC3 with an approximation ratio of 1

2 and an almost optimal algorithm for



PSDC2. The following property of the contact graph of a 2D/3D sequence is
easy to observe [12]:

the contact graph G for a 2D sequence (resp. 3D sequence) is a graph
that is a subgraph of the 2D lattice (respectively, 3D lattice) with at
most two vertices of degree 3 (resp. 5) and all other vertices of degree at
most 2 (resp. 4).

1.1 Our Results

Throughout the rest of the paper, G is the given input graph in our problems, K
is the maximum number of residues that can be hydrophobic and V (H) (resp.
E(H)) is the vertex set (resp. edge set) of any graph H . Our results are:

(I) We show that the problem of finding the global energy minima for the PSD
problem for 2D lattices can be solved in polynomial time (see Section 2).

(II) We show that the problem of finding the global energy minima for the PSD
problem on 3D lattices is NP-complete by showing that the PSDC3 decision
problem is NP-complete via a reduction from the problem of finding the largest
clique on graphs (see Section 3.1). An earlier proof of NP-completeness of this
problem in [12] was based on an incorrect proof of NP-completeness of the same
problem on 2D lattices.

(III) Even though the problem of finding the global energy minima on 3D
lattices is NP-complete, we show that an arbitrarily close approximation to the
global energy minima can indeed be found efficiently by taking appropriate com-
binations of optimal global energy minima of substrings of the sequence S by
providing a polynomial-time approximation scheme (PTAS) for the PSDC3 prob-
lem (see Section 3.2). This result improves the previous best polynomial-time
approximation algorithm for finding the global energy minima in [12] which had
a performance ratio of 1

2 .

1.2 Summary of Algorithmic Techniques Used

– The polynomial-time algorithm in Result (I) uses the polynomial-time Gen-
eralized Knapsack problem, the special topology of the input contact graph
as mentioned at the end of the introduction and the fact that the range of
Φ are small integers.

– The NP-completeness reduction in Result (II) uses the NP-completeness re-
duction in [11] from the maximum clique problem to the densest subgraph
problem on general graphs. The challenging and tedious parts in our reduc-
tion is to make sure that the reduction works for the special topology of our
input contact graph and that such a contact graph can in fact be realized
by a 3D sequence.

– The PTAS in Result (III) is designed using the shifted slice-and-dice ap-
proach in [6, 17, 18].



1.3 Difference Between the Canonical and the Grand Canonical
Model

To avoid possible confusion due to similar names, we would like to point out that
the Canonical model considered in this paper is neither the same nor a subset of
the Grant Canonical (GC) model for the protein sequence design problem [19,
24]. The GC model is defined by a different choice of the energy function Φ. In
particular, let SH to denote the set of numbers i such that the ith position in S is
equal to H . Then, Φ is defined by the equation Φ(S) = α

∑
i,j∈SH ,i<j−2 g(dij)+

β
∑

i∈SH
si, where α < 0, β > 0, si is the area of the solvent-accessible contact

surface for the residue (in Å), dij is the distance between the residues i and j

(in Å) and g =
{

1/[1 + exp(dij − 6.5)] when dij ≤ 6.5
0 when dij > 6.5 is a sigmoidal function.

The scaling parameters α and β have default values −2 and 1
3 , respectively.

1.4 Basic Definitions and Notations

For two graphs G1 and G2, G1∪G2 denotes the graph with V (G1∪G2) = V (G1)∪
V (G2) and E(G1 ∪ G2) = E(G1) ∪ E(G2). HS is the subgraph of H induced
by the vertex set S, i.e., V (HS) = S and E(HS) = {(x, y) ∈ E(H) | x, y ∈
S}. n0(H), n1(H) and n2(H) denote the number of vertices in the connected
components of a graph H with zero, one or two cycles, respectively. H\S denotes
the graph obtained from a graph H by removing the vertices in S and all the
edges incident to these vertices in S. For a vertex (x, y, z) of the 3D lattice, x, y
and z are the 1st, 2nd and 3rd coordinate, respectively. [i, j] and [i, j) denote the
set of integers {i, i + 1, i + 2, . . . , j} and {i, i + 1, i + 2, . . . , j − 1}, respectively.
OPT(G, K) denotes the number of edges in an optimal solution to the PSDC2

or PSDC3 problem. A δ-approximate solution (or simply a δ-approximation) of
a maximization problem is a solution with an objective value no smaller than δ
times the value of the optimum; an algorithm of performance or approximation
ratio δ produces an δ-approximate solution. A polynomial-time approximation
scheme (PTAS) for a maximization problem is an algorithm that, for any given
constant ε > 0, runs in polynomial time and produces an (1 − ε)-approximate
solution.

2 The PSDC2 Problem

In [12] Hart provided a proof of NP-completeness of PSDC2. Unfortunately,
the proof was not correct because the reduction from the Knapsack problem was
pseudo-polynomial time and Knapsack problem is not strongly NP-complete. We
show in the following lemma that PSDC2 can indeed be solved in polynomial
time. Due to space limitations, we omit the proof of the following lemma.

Lemma 1. There exists an O(K|V (G)|) time algorithm that solves PSDC2.



3 The PSDC3 Problem

In the first subsection, we show that the PSDC3 problem is NP-complete even
though the PSDC2 problem is not. In the second subsection, we show how to
design a PTAS for the PSDC3 problem using the shifted slice-and-dice technique.

3.1 NP-completeness Result for PSDC3

Theorem 1. The PSDC3 problem is NP-complete.

Proof. It is trivial to see that PSDC3 is in NP. To show NP-hardness, we provide
a reduction from the CLIQUE problem on graphs whose goal is to decide, for
a given graph G and an integer k, if there is a complete subgraph (clique) of
G of k vertices. Let us denote by 3DS problem the DS problem on graphs with
a maximum degree of 3. We will use a minor modification of a reduction of
Feige and Seltser [11] from the CLIQUE problem to the the 3DS problem along
with additional arguments. Consider an instance (G, k) of the CLIQUE problem
where V (G) = (v1, . . . , vn) with |V (G)| = n. We can assume without loss of
generality that n is an exact power of 2, n is sufficiently large and the vertex
vn has zero degree5. Let t1 � t2 � t3 � t4 � t5 � t6 be six sufficiently large
polynomials in n; for example, t1 = n20 and ti = t2i−1 for i ∈ [2, 6] suffices.
From G, we construct an instance graph H of the 3DS problem using a minor
modification of the construction in Section 3 of Feige and Seltser [11] as follows:

– Replace each vertex vi by a simple cycle of “cycle” edges

Ci = {vi
1, v

i
2}, {vi

2, v
i
3}, . . . , {vi

2nt4−1, v
i
2nt4}, {vi

2nt4 , v
i
1} ∈ E(H)

on the 2nt4 new “cycle” vertices vi
1, v

i
2, . . . , v

i
2nt4 ∈ V (H).

– Replace each edge {vi, vj} ∈ E(G) with i < j by a simple path of “path”
edges

P ij = {{vi
(n+j)t4

, uij
1 }, {uij

1 , uij
2 } . . . , {uij

kt5−1, u
ij
kt5

}, {uij
kt5

, vj
(n+i)t4

}} ⊆ E(H)

of kt5 + 2 > 2nkt4 vertices between vi
(n+j)t4

and vj
(n+i)t4

where

uij
1 , uij

2 , . . . , uij
kt5

∈ V (H) are the new “path” vertices.
– Finally, we add a set of s additional separate connected components

Q1, Q2, . . . , Qs, which will be specified later, such that all vertices in ∪s
i=1Qi

are of degree at most 2, no Qi is an odd cycle and ∪s
i=1|V (Qi)| is a polynomial

in n.

Let K = 2nkt4 +
(
k
2

)
kt5 and m = 2nkt4 +

(
k
2

)
(kt5 + 1). The same proof in Feige

and Seltser [11] works to show that, for any selection of Q1, . . . , Qs, there exists a
subgraph with K vertices and at least m edges in H if and only if G has a clique
of k vertices. Thus, to complete our reduction, we need to show the following:
5 The degree assumption for vn helps us to design the sequence S whose contact

map will correspond to the graph H for the 3DS problem that we generate from an
instance of the CLIQUE problem.



Step 1 (embedding H in the 3D lattice) H can be embedded in the 3D
lattice.

Step 2 (realizing H as a contact graph) For some choice of Q1, Q2, . . . , Qs

H is the contact graph of a 3D sequence S.

Details of both these steps are omitted due to space limitations.

Corollary 2 3DS is NP-complete even if G is a subgraph of the 3D lattice.

3.2 An Approximation Scheme via Shifted Slice-and-dice

All the graphs discussed in this section are subgraphs of the 3D lattice. For
notational convenience and simplifications we assume, without loss of generality,
that our input graph G satisfies V (G) ⊆ ×3

i=1[0, ni) for some n1, n2, n3 with
|V (G)| ≥ max{n1, n2, n3}. We classify an edge {(i1, i2, i3), (j1, j2, j3)} ∈ E(G)
as horizontal, vertical or lateral if i1 �= j1, i2 �= j2 or i3 �= j3, respectively. Let
E–, E| and E/ be the set of horizontal, vertical and lateral edges in an optimal
solution.

Theorem 3. For every ε > 0, there is an O
(

K
ε3 21/ε3 |V (G)|

)
time algorithm

that returns a solution of the PSDC3 problem with at least (1 − ε)OPT(G, K)
edges.

Proof. We use the shifted slice-and-dice technique of [6, 17, 18]. For convenience,
we use the following notations:

– νj =
⌊

nj−1
�

⌋
for j ∈ [1, 3],

– κ1 = [i	 + α, min{(i + 1)	, n1} + α) κ2 = [j	 + α, min{(j + 1)	, n2} + α)
and κ3 = [k	 + α, min{(k + 1)	, n3}+ α) for some specified values i, j, k and
number α.

We first need the following definition.

Definition 2. For a given positive integer (partition length) 	 > 0 and three
positive integers (shifts) 0 ≤ α, β, γ < 	, an (α, β, γ)-shifted 	-partition of G,
denoted by Πα,β,γ

� [G] is the subgraph of G in which V (Πα,β,γ
� [G]) = V (G) and

E(Πα,β,γ
� [G]) is exactly

E(G) ∩(⋃ν1
i=0

⋃ν2
j=0

⋃ν3
k=0{ {(x, y, z), (x′, y′, z′)} | x, x′ ∈ κ1 & y, y′ ∈ κ2 & z, z′ ∈ κ3 }

)

See Figure 1 for a simple illustration of the above definition.
Let 	 = 
1/ε�. It is trivial to compute the Πα,β,γ

� [G]’s for all 0 ≤ α, β, γ < 	

in O(	3|V (G)|) time. For each Πα,β,γ
� [G], OPT(Πα,β,γ

� [G], K) can be calculated
in O(K2�3 |V (G)|) time since:



(1,0,0)-shifted 2-partition of GG (0,0,0)-shifted 2-partition of G

Fig. 1. Illustration of Definition 2 for a G embeddable in the 2D lattice (i.e., n3 = 2).

– For each i ∈ [0, ν1], j ∈ [0, ν2] and k ∈ [ν3], the subgraph Gi,j,k,α,β,γ of
Πα,β,γ

� [G] induced by the set of vertices V (Gi,j,k,α,β,γ) = V (G)∩{x, y, z | x ∈
κ1 & y ∈ κ2 & z ∈ κ3} is not connected by any edge of Πα,β,γ

� [G] to any
remaining vertex of Πα,β,γ

� [G]. Thus, we can compute OPT(Gi,j,k,α,β,γ , µ)
for all 1 ≤ µ ≤ K by exhaustive enumeration in O(K2�3) time. Since there
are at most |V (G)| Gi,j,k,α,β,γ ’s that are not empty, the total time for this
step is O(K2�3 |V (G)|).

– We now use the dynamic programming algorithm for the General Knap-
sack (GK) problem. For each i ∈ [0, ν1], j ∈ [0, ν2] and k ∈ [0, ν3], we
have a set of K objects Ai,j,k = {a1

i,j,k, a2
i,j,k, . . . , aK

i,j,k} with s(aµ
i,j,k) = µ

and v(aµ
i,j,k) =OPT(Gi,j,k,α,β,γ , µ) for µ ∈ [1, K], and moreover we set

b = K. We can solve this instance of the GK problem to determine in
O(K|V (G)|) time a subset of indices {(i1, j1, k1), (i2, j2, k2), . . . , (it, jt, kt)}
such that

∑t
p=1 |V (Gip,jp,kp,α,β,γ)| ≤ K and

∑t
p=1 |E(Gip,jp,kp,α,β,γ)| is max-

imized. Obviously,
OPT(Πα,β,γ

� [G], K) =
∑t

p=1 |E(Gip,jp,kp,α,β,γ)|.

Our algorithm then outputs maxα,β,γOPT(Πα,β,γ
� [G], K) as the approximate so-

lution. The total time taken by the algorithm is therefore O(K2�3	3|V (G)|) =
O(K|V (G)|) since ε > 0 is a constant. We now show that
maxα,β,γOPT(Πα,β,γ

� [G], K) ≥ (
1 − 1

�

)
OPT(G, K) ≥ (1 − ε)OPT(G, K). For

each 0 ≤ α, β, γ < 	, let E–(α, β, γ) = E– − E(Πα,β,γ
� [G]), E|(α, β, γ) =

E| − E(Πα,β,γ
� [G]) and E/(α, β, γ) = E/ − E(Πα,β,γ

� [G]). Now we observe the
following:

– The sets E–(α, β, γ), E|(α, β, γ) and E/(α, β, γ) are mutually disjoint.
– For any e ∈ E– (respectively, e ∈ E|, e ∈ E/), |{E–(α, β, γ) | e ∈ E–(α, β, γ) }|

≤ 	2 (respectively, |{E|(α, β, γ) | e ∈ E|(α, β, γ) }| ≤ 	2, |{E/(α, β, γ) | e ∈
E/(α, β, γ) }| ≤ 	2). We prove the case for e ∈ E– only; the other cases
are similar. Suppose that e ∈ E–(α, β, γ) for some α, β and γ. Then,
e �∈ E–(α′, β′, γ′) if α′ �= α.



– Thus,
∑�−1

α=0

∑�−1
β=0

∑�−1
γ=0 OPT(Πα,β,γ

� [G], K) is at least

	3OPT(G, K) − ∑�−1
α=0

∑�−1
β=0

∑�−1
γ=0(E–(α, β, γ) + E|(α, β, γ) + E/(α, β, γ)

≥ 	3OPT(G, K) − 	2(|E–| + |E|| + |E/|) ≥ 	3OPT(G, K) − 	2OPT(G, K)

Hence, maxα,β,γOPT(Πα,β,γ
� [G], K) ≥OPT(G, K)− 1

� OPT(G, K).

Remark 1. The PTAS can be generalized in an obvious manner when the given
graph is embeddable in a d-dimensional lattice for d > 3; however the running
time grows exponentially with d. We do not describe the generalization here
since it has no applications to the PSD problem.
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