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Abstract

Given integers 2 ≤ t ≤ k+1 ≤ n, let gk(t, n) be the minimum N such that every red/blue
coloring of the k-subsets of {1, . . . , N} yields either a (k + 1)-set containing t red k-subsets,
or an n-set with all of its k-subsets blue. Erdős and Hajnal proved in 1972 that for fixed
2 ≤ t ≤ k, there are positive constants c1 and c2 such that

2c1n < gk(t, n) < twrt−1(nc2),

where twrt−1 is a tower of 2’s of height t−2. They conjectured that the tower growth rate in
the upper bound is correct. Despite decades of work on closely related and special cases of
this problem by many researchers, there have been no improvements of the lower bound for
2 < t < k. Here we settle the Erdős-Hajnal conjecture in almost all cases in a strong form,
by determining the correct tower growth rate, and in half of the cases we also determine the
correct power of n within the tower. Specifically, we prove that if 2 < t < k − 1 and k − t is
even, then

gk(t, n) = twrt−1(nk−t+1+o(1)).

Similar results are proved for k − t odd.

1 Introduction

A k-uniform hypergraph H (k-graph for short) with vertex set V is a collection of k-element

subsets of V . We write Kk
n for the complete k-uniform hypergraph on an n-element vertex set.

Given two families of k-graphs F , G, the Ramsey number r(F ,G) is the minimum N such that

every red/blue coloring of the edges of Kk
N results in a monochromatic red copy of F ∈ F or a

monochromatic blue copy of G ∈ G. In order to avoid the excessive use of superscripts, we use

the simpler notation

rk(F , n) = r(F ,Kk
n) and rk(s, n) = r(Kk

s ,K
k
n).

Estimating the Ramsey number rk(s, n) is a fundamental problem in combinatorics and has

been extensively studied since 1935. For graphs, classical results of Erdős [12] and Erdős and

Szekeres [16] imply that 2n/2 < r2(n, n) < 22n. For k-graphs with k ≥ 3, Erdős, Hajnal, and

Rado [14, 13] showed that there are positive constants c1 and c2 such that

twrk−1(c1n
2) ≤ rk(n, n) ≤ twrk(c2n),
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where the tower function is defined recursively as twr1(x) = x and twri+1 = 2twri(x). It is a

major open problem to determine if rk(n, n) ≥ twrk(cn) and Erdős offered a $500 reward for a

proof (see [5]).

In order to shed more light on these questions, Erdős and Hajnal [13] in 1972 considered the

following more general parameter.

Definition 1. For integers 2 ≤ k < s < n and 2 ≤ t ≤
(
s
k

)
, let rk(s, t;n) be the minimum N

such that every red/blue coloring of the edges of Kk
N results in a monochromatic blue copy of

Kk
n or has a set of s vertices which contains at least t red edges.

By definition, rk(s, n) = rk(s,
(
s
k

)
;n) so rk(s, t;n) includes classical Ramsey numbers. Note also

that we have changed the original notation of Erdős and Hajnal to fit better with the more

standard notation rk(F , n). Here F denotes the collection of k-graphs on s vertices with at least

t edges and we have further simplified this by just listing the parameters s, t.

The main conjecture of Erdős and Hajnal states that as t grows from 1 to
(
s
k

)
, there is a

well-defined value t1 = h
(k)
1 (s) at which rk(s, t1 − 1;n) is polynomial in n while rk(s, t1;n) is

exponential in a power of n, another well-defined value t2 = h
(k)
2 (s) at which it changes from

exponential to double exponential in a power of n and so on, and finally a well-defined value

tk−2 = h
(k)
k−2(s) <

(
s
k

)
at which it changes from twrk−2 to twrk−1 in a power of n. They were not

able to offer a conjecture as to what h
(k)
i (s) is in general, except when i = 1 and when s = k+1.

• When i = 1, they conjectured that t1 = h
(k)
1 (s) is one more than the number of edges in the

k-graph obtained from a complete k-partite k-graph on s vertices with almost equal part sizes,

by repeating this construction recursively within each part. Erdős offered $500 for a proof of

this (see [5]). For k = 3, this was settled for many values of s, including powers of three, by

Conlon, Fox, and Sudakov [6]. Very recently, Mubayi and Razborov [24] proved the conjecture

for all s ≥ k ≥ 4.

• When s = k + 1, they conjectured that h
(k)
i (k + 1) = i + 2 and proved this for i = 1 via the

following:

Theorem 1 (Erdos-Hajnal [13]). For k ≥ 3, there are positive c = c(k) and c′ = c′(k) such that

rk(k + 1, 2;n) < cnk−1 and rk(k + 1, 3;n) > 2c
′n.

They also stated that the methods of Erdős and Rado [15] show that for 4 ≤ t ≤ k + 1 there

exists c = c(k, t) > 0 such that

rk(k + 1, t;n) ≤ twrt−1(nc). (1)

Hence in our notation their conjecture for s = k + 1 is the following lower bound:

Conjecture 1 (Erdos-Hajnal [13]). For 2 ≤ t ≤ k, there exists c = c(k, t) > 0 such that

rk(k + 1, t;n) ≥ twrt−1(c n).

Another important special case of the Erdős-Hajnal problem is when s is fixed and t =
(
s
k

)
.

Here we are interested in determining the correct tower growth rate for the off-diagonal Ramsey
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number rk(s, n) as n grows. It follows from well-known results that rk(s, n) ≤ twrk−1(nc) where

c = c(k, s) (see [1, 3, 4, 15] for the best known bounds) and the Erdős-Hajnal conjecture implies

that for all s ≥ k + 1 there exists c′ > 0 such that

rk(s, n) ≥ rk(s, h
(k)
k−2(s);n) > twrk−1(c′n).

The Erdős-Hajnal stepping up lemma shows this for all s ≥ 2k−1 − k + 3 and Conlon, Fox,

and Sudakov [7] improved this to s ≥ d5k/2e − 3. Recently the current authors [27], and

independently Conlon, Fox, and Sudakov [8], further improved this to s ≥ k + 3. For the

remaining two values s = k+2 and k+1 the current authors improved the previous best bounds

to twrk−1(cn1/5) and twrk−2(nc logn) respectively [26].

As we have indicated, the function rk(s, t;n) encompasses several fundamental problems which

have been studied for a while. In addition to off-diagonal and diagonal Ramsey numbers already

mentioned, the case (k, s, t, n) = (k, k+1, k+1, k+1) has been studied in the context of the Erdős-

Szekeres theorem and Ramsey numbers of ordered tight paths by several researchers [9, 10, 11,

22, 23], the more general case (k, k+ 1, k+ 1, n) is related to high dimensional tournaments [21],

and even the very special case (3, 4, 3, n) has tight connections to quasirandom hypergraph

constructions [2, 18, 19, 20]. Lastly, h
(3)
1 (s) is quite well understood due to results of Erdős-

Hajnal [13] and Conlon-Fox-Sudakov [6]. In spite of this activity, no lower bound better than

rk(k + 1, t;n) ≥ 2cn (2)

has been proved for a single pair (k, t) with 2 < t < k.

In this paper we prove such lower bounds and settle Conjecture 1 in almost all cases, while also

improving the upper bounds. In half of the cases we even obtain the correct power of n within

the tower thereby improving Theorem 1, (1) and (2). First, we state our result when t = 3.

Theorem 2. For k ≥ 3, there are positive c = c(k) and c′ = c′(k) such that

2c
′nk−2 logn ≥ rk(k + 1, 3;n) ≥ 2cn

k−2
.

Our result for larger t, which represents the main new advance in this work, is similar.

Theorem 3. For 4 ≤ t ≤ k − 2, there are positive c = c(k, t) and c′ = c′(k, t) such that

twrt−1(c′nk−t+1 log n) ≥ rk(k + 1, t; n) ≥

{
twrt−1(c nk−t+1) if k − t is even

twrt−1(c n(k−t+1)/2) if k − t is odd.

Remarks.

• The lower bound in Theorem 2 shows that the lower bound of Erdős and Hajnal (Theorem 9

in [13]) is incorrect for k ≥ 4.

• The basic approach for the proof of the tower lower bounds in Theorem 3 is the stepping up

technique. Although this method first appeared in 1965 (Lemma 6 of Erdős-Hajnal-Rado [14]),

and has been used extensively since then by many researchers to solve various cases of the Erdős-

Hajnal problem, it has not yielded any progress on Conjecture 1. It is the new ingredients that we
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add to the stepping up method that allow us to prove our lower bounds. These new ingredients

have already been used successfully for the Erdős-Rogers problem [25] and we expect more

applications in the future.

• The upper bounds in Theorem 3 also hold when k − 2 < t ≤ k + 1.

• The missing cases of Conjecture 1 are for r4(5, 4;n), and for rk(k + 1, t;n) when k ≥ 5 and

t ∈ {k − 1, k}. The proof of the lower bound in Theorem 3 together with the previous remark

yields

twrk−3(c n3) ≤ rk(k + 1, k; n) ≤ twrk−1(c′ n),

for all k ≥ 4, and

twrk−3(c n3) ≤ rk(k + 1, k − 1; n) ≤ twrk−2(c′ n2),

for all k ≥ 5. Note that both of these results are new though we still expect that further

improvements of the lower bounds should be possible.

2 The upper bound

In this section, we prove the upper bounds in Theorems 2 and 3. The standard Erdős-Rado

argument [15] gives an upper bound of the form

rk(k + 1, t;n) < 2(rk−1(k,t−1;n−1)

k−1
). (3)

We improve this substantially in the case t = 3 (to the optimal power of n) by adapting the

on-line approach of Conlon, Fox, and Sudakov [6].

Here we consider ordered (k − 1)-uniform hypergraphs H = (V,E), that is, hypergraphs whose

vertex set V = {v1, . . . , vn} and v1 < · · · < vn. We define the ordering ≺ on
(

V
k−2

)
such that for

a = (a1, . . . , ak−2) and b = (b1, . . . , bk−2), where a1 < · · · < ak−2 and b1 < . . . < bk−2, we have

a ≺ b if the maximum i for which ai 6= bi we have ai < bi. This is the colex order on sequences.

Consider the following game, played by two players, builder and painter: at stage i + 1 a new

vertex vi+1 is revealed; then, for every (k − 2)-tuple S among the existing vertices v1, . . . , vi,

builder decides, one by one, whether to draw the (k− 1)-edge S ∪{vi+1}; if he does expose such

an edge, painter has to color it either red or blue immediately. The exposed vertices will be

naturally ordered v1 < v2 < · · · < vi.

Let F be the ordered (k−1)-graph on k vertices a1, . . . , ak, where a1 < · · · < ak, with two edges

(a1, . . . , ak−1) and (a1, . . . , ak−2, ak).

Our main result in this section is the following.

Theorem 4. In the vertex on-line ordered Ramsey game, builder has a strategy which ensures

a red F or a blue Kk−1
n using at most s = O(nk−2) vertices, r = O(nk−2) red edges, and

m = O(n2k−4) total edges.

For t ≥ 2, let Fk
t be the collection of ordered k-graphs with vertex set a1 < · · · < ak+1 and t

edges, where one of the edges is (a1, . . . , ak). Define rk(Fk
t , n) to be the minimum N such that

in every red/blue coloring of
([N ]

k

)
there is a red ordered H ∈ Fk

t or a blue Kk
n. We need the

following result which is a straightforward adaptation of Theorem 2.1 in [6].
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Theorem 5. Suppose in the vertex on-line ordered Ramsey game that builder has a strategy

which ensures a red F or a blue Kk−1
n using at most s vertices, r red edges, and in total m

edges. Then, for any 0 < α < 1/2,

rk(Fk
3 , n) ≤ O(sα−r(1− α)r−m).

Setting α = n−2k+4 and using Theorem 4 we obtain

rk(Fk
3 , n) < 2O(nk−2 logn). (4)

Now we apply (3) t− 3 times to obtain

rk(k + 1, t;n) < twrt−2(c rk−t+3(k − t+ 3, 3;n)) ≤ twrt−2(c rk−t+3(Fk−t+3
3 , n)).

Note that this application of (3) involves some subtleties, in particular, when applying the

standard Erdős-Rado pigeonhole argument [15], one should observe that a copy of a member of

Fk−1
t−1 gives rise to a copy of some member of Fk

t due to the existence of the initial edge, and

this edge remains to carry out the induction.

Finally we apply (4) with k replaced by k − t+ 3 to obtain

rk(k + 1, t;n) < twrt−1(c′nk−t+1 log n)

as desired. We now turn to the proof of Theorem 4.

Proof of Theorem 4. The proof is based on the following strategy for builder. During the game,

we will label each exposed vertex with a string of R’s and B’s, and build a subset T of the exposed

vertices as follows. We start the game by exposing k − 2 vertices v1, . . . , vk−2, v1 < · · · < vk−2,

and label each of these vertices by ∅. We set T = {v1, . . . , vk−2}. For every other vertex exposed

during this game, builder will draw an edge between that vertex and {v1, . . . , vk−2}. Recall

painter will immediately color that edge red or blue. The first exposed vertex that is connected

to {v1, . . . , vk−2} with a red (blue) (k− 1)-edge will be labelled R (B). The first exposed vertex

that is connected to {v1, . . . , vk−2} with a blue edge, will be added to the set T .

Now assume that the vertices v1, . . . , vi have been exposed, each such vertex is labeled with a

string of R’s and B’s, and some (k − 1)-edges between these vertices have been drawn (and

colored). Moreover, we have our current subset T ⊂ {v1, . . . , vi}. The next stage begins by ex-

posing vertex vi+1, and builder will always begin by drawing the (k−1)-edge (v1, . . . , vk−2, vi+1).

Depending on whether painter colors this edge red or blue, the first digit in the string assigned

to vi+1 will be R or B respectively. Builder will continue to draw edges of the form S ∪ {vi+1},
where S ⊂ T and |S| = k− 2, one by one by considering each such S in order with respect to ≺.

If at any point painter colors any drawn edge red, we immediately stop and proceed to the next

stage, revealing the new vertex vi+2. If painter paints every such edge blue, then we add vi+1

to T , and proceed to the next stage. Note that all (k − 1)-subsets of T are blue.

Let us make some observations about this game. Suppose at the end of a stage, builder has not

forced a red F or a blue Kk−1
n . Then:

1) a vertex is labelled with a string of B’s (no R’s) if and only if it is in T ,
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2) a vertex is labelled with a sequence of B’s followed by a single R if and only if it is not in T ,

3) no two strings have R in the same position,

4) no two string are the same,

5) no string has more than
(

n
k−2

)
B’s.

1) holds since this is how T is created. 2) holds since we stop the moment we get an R. 3) holds

since if we obtained two such strings, and since builder’s strategy was to consider (k− 2)-tuples

S ⊂ T in colex order, we would obtain two red (k− 1)-tuples sharing the same first k− 2 points

S ⊂ T , and this yields a red F . Note that we are using the crucial fact that the colex order

≺ takes all (k − 2)-subsets of a set before moving on to a new element. 4) holds since the

previous three properties show that this is possible only if two vertices in T have the same label

(number of B’s). However this is impossible since the larger vertex considers more edges and

must have more B’s. 5) holds since otherwise T would induce a blue Kk−1
n due to the property

of ≺ mentioned above.

Therefore, in the vertex on-line Ramsey game, builder has a strategy which ensures a red F or

a blue Kk−1
n using at most O(nk−2) vertices, O(n2k−4) edges, and O(nk−2) red edges. 2

3 The lower bound

In this section we prove the lower bounds in Theorems 2 and 3. We start with Theorem 2, the

case when t = 3, which has no dependence on parity. We point out that it is this result which

shows that the lower bound of Erdős and Hajnal in Theorem 9 of [13] is incorrect for k ≥ 4.

Note that their lower bound corresponds to the upper bound 2cn logn in our notation.

Theorem 6. For k ≥ 3 there exists c = c(k) such that

rk(k + 1, 3;n) > 2cn
k−2

.

Proof. Let k ≥ 3 and N = 2cn
k−2

where c = c(k) is a sufficiently small constant that will be

determined later. Color the (k − 1)-sets of [N ] randomly with k colors, where each edge has

probability 1/k of being a particular color independent of all other edges. Call this coloring ϕ

and suppose that ϕ(S) ∈ [k] for all S ∈
( [N ]
k−1

)
. Now, given a k-set e = a1 < · · · < ak of [N ], and

a (k − 1)-subset S = e− {ai} of e, let ranke(S) = i. Define the red/blue coloring χ of
([N ]

k

)
by

χ(e) = red iff ϕ(S) = ranke(S) for all S ∈
(

e
k−1

)
.

The probability that χ(e) = red is pk = k−k. If an n-set X is blue, then all the k-subsets of

X in a partial Steiner system F = Sp(k − 1, k, n) of X are blue, and the colors within F are

assigned independently as they depend only on (k − 1)-subsets (recall that by definition of F ,

|A∩B| ≤ k− 2 for all A,B ∈ F ). It is well known that there exists an F so that |F | = Θ(nk−1)

as n grows. Hence the expected number of blue copies of Kk
n in [N ] is at most(

N

n

)
(1− pk)|F | < Nne−Θ(nk−1) < (Ne−Θ(nk−2))n < 1
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due to the choice of ck. So there exists a coloring χ with no blue Kk
n. Next, suppose for

contradiction that Y is a (k + 1)-subset of [N ] that contains three red edges under χ. Say that

Y = a1 < · · · < ak+1. Call these red edges ei, ej , el, where eq = Y −{aq}. Assume that i < j < l

so that l − 1 > i and let S = Y − {ai, al}. Then

ϕ(S) = rankei(S) = l − 1 > i = rankel(S) = ϕ(S).

This contradiction shows that we have at most two red edges in Y . 2

For larger values of t, we establish the lower bound in Theorem 3 using ideas that originated

in the Erdős-Hajnal stepping up lemma (see [17]) and were further developed recently by the

authors in [25]. As mentioned in the introduction, this is the main new advance in this work.

It is convenient to use the following notation. Let Ht := Hk
t be the family of k-graphs with k+1

vertices and t edges, and define rk(Hk
t , n) = rk(k + 1, t;n). We will omit the superscript if it is

obvious from the context. In what follows, by a red Ht we mean a red copy of some member

H ∈ Ht.

Theorem 7. Let k ≥ 6 and t ≥ 4. If we are not in the case when t = 4 and k is odd, then we

have rk(Ht, 2kn) > 2rk−1(Ht−1,n)−1.

Proof. Set N = rk−1(Ht−1, n) − 1, and let ϕ be a red/blue coloring of the edges of Kk−1
N with

no red Hk−1
t−1 and no blue Kk−1

n . Given ϕ, we will produce a red/blue coloring χ on the edges of

Kk
2N

with no red Hk
t and no blue Kk

2kn. Let V (Kk−1
N ) = [N ] and V (Kk

2N
) = {0, 1}N .

The vertices of V (Kk
2N

) are naturally ordered by the integer they represent in binary, so for

a, b ∈ V (Kk
2N

) where a = (a(1), . . . , a(N)) and b = (b(1), . . . , b(N)), a < b iff there is an i such

that a(i) = 0, b(i) = 1, and a(j) = b(j) for all 1 ≤ j < i. In other words, i is the first position

(minimum index) in which a and b differ. For a, b ∈ V (Kk
2N

), where a 6= b, let δ(a, b) denote the

least i for which a(i) 6= b(i).1 Notice we have the following stepping-up properties (see [17]).

Property A: For every triple a < b < c, δ(a, b) 6= δ(b, c).

Property B: For a1 < · · · < ar, δ(a1, ar) = min1≤j≤r−1 δ(aj , aj+1).

Before we define the coloring χ, let us introduce several definitions. Set V = {0, 1}N . Given

any m-set S = {a1, . . . , am} ⊂ V , where a1 < a2 < · · · < am, consider the integers δi =

δ(ai, ai+1), 1 ≤ i ≤ m−1. We say that δi is a local minimum if δi−1 > δi < δi+1, a local maximum

if δi−1 < δi > δi+1, and a local extremum if it is either a local minimum or a local maximum.

Since δi−1 6= δi for every i, every nonmonotone sequence {δi}m−1
i=1 has a local extremum. For

convenience, we write δ(S) = {δi}mi=1.

We now define the coloring χ on the k-tuples of V = {0, 1}N as follows. Given an edge e =

(a1, . . . , ak) in V = V (Kk
2N

), where a1 < · · · < ak, let δi = δ(ai, ai+1). Then χ(e) = red if

1For a = (1, 0, 1, 1, 0) and b = (1, 0, 0, 1, 1), we have a > b and δ(a, b) = 3. Let us remark that we have slightly
modified the definition of δ in [17], using least i rather than largest i for which a(i) 6= b(i).
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• the sequence δ(e) is monotone and ϕ(δ1, . . . , δk−1) = red, or

• the sequence δ(e) is a zigzag, meaning δ2, δ4, . . . are local minimums and δ3, δ5, . . . are local

maximums. In other words, δ1 > δ2 < δ3 > δ4 < · · · .

Otherwise χ(e) = blue.

Note that the definition of zigzag requires δ1 > δ2 < δ3 > δ4 < · · · and if the inequalities are in

the opposite directions, i.e. δ1 < δ2 > δ3 < · · · , then e is not zigzag.

The following property can easily be verified using Properties A and B (see [17]).

Property C: For a1 < · · · < ar, set δj = δ(aj , aj+1) and suppose that δ1, . . . , δr−1 forms a

monotone sequence. If χ colors every k-tuple in {a1, . . . , ar} red (blue), then ϕ colors

every (k − 1)-tuple in {δ1, . . . , δr−1} red (blue).

Set m = 2kn. For sake of contradiction, suppose there is an m-set S = {a1, . . . , am} ⊂ V such

that χ colors every k-tuple in S blue. Let δi = δ(ai, ai+1) for 1 ≤ i ≤ m − 1. By Property C,

there is no integer j such that the sequence {δi}j+n−1
i=j is monotone, since otherwise ϕ colors every

triple of the n-set {δj , δj+1, . . . , δj+n−1} blue which is a contradiction. Therefore, we can assume

there are k consecutive extremums δi1 , δi2 , · · · , δik , such that δi1 , δi3 , . . . are local maximums and

δi2 , δi4 , . . . are local minimums. Recall that δij = δ(aij , aij+1). For k even, consider the k vertices

e = (ai1 , ai1+1, ai3 , ai3+1, ai5 , ai5+1, . . . , aik−1
, aik−1+1).

By Property B, we have

δ(ai1 , ai1+1) > δ(ai1+1, ai3) < δ(ai3 , ai3+1) > δ(ai3+1, ai5) < · · · .

Hence δ(e) is zigzag and χ(e) = red, contradiction. For k odd, consider the k vertices

e = (ai1 , ai1+1, ai3 , ai3+1, ai5 , ai5+1, . . . , aik−2
, aik−2+1, aik−2+2).

Again by Property B, we have

δ(ai1 , ai1+1) > δ(ai1+1, ai3) < δ(ai3 , ai3+1) > δ(ai3+1, ai5) < · · · ,

which implies δ(e) is zigzag and χ(e) = red, contradiction.

Now it suffices to show that there is no red copy of an H ∈ Hk
t under χ. We first establish the

following claim. We use the notation X + x = X ∪ {x}.

Claim 1. For k ≥ 6, let e, e′ ∈ E(Kk
2N

) such that δ(e) is monotone, δ(e′) is zigzag, and

χ(e) = χ(e′) = red. Then we have |e ∩ e′| < k − 1.

Proof. Suppose for contradiction that e = (a1, . . . , ak), where a1 < · · · < ak, and e′ = e−ai +a′.

Now the sequence δ(e− ai) is monotone of length k − 1. Relabel e− ai = (b1, . . . , bk−1), where

b1 < · · · < bk−1 and let us insert a′ into e−ai. Assume first that sequence δ(e−ai) is increasing.

If a′ > b3, then δ(b1, b2) < δ(b2, b3) shows that δ(e′) is not zigzag (starts in the wrong direction).
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If a′ < b2, then δ(b2, b3) < δ(b3, b4) < δ(b4, b5) shows that δ(e′) is not zigzag. So we have

b2 < a′ < b3. However by Property B, δ(b2, a
′) ≥ δ(b2, b3). So we have

δ(b2, a
′) ≥ δ(b2, b3) > δ(b1, b2),

which shows that δ(e′) is not zigzag

Now suppose δ(e − ai) is decreasing. For δ(e′) to be zigzag, we must have b2 < a′ < b4. If

b2 < a′ < b3, then by Property B we have δ(a′, b3) > δ(b3, b4) > δ(b4, b5) which is a contradic-

tion. Now if b3 < a′ < b4, we must have δ(b2, b3) < δ(b3, a
′) > δ(a′, b4) < δ(b4, b5). However,

Property B and the fact that δ(e − ai) is decreasing imply that δ(a′, b4) ≥ δ(b3, b4) > δ(b4, b5)

which is a contradiction. 2

For sake of contradiction, suppose χ produces a red H ∈ Ht. By Claim 1, we may assume that

for the t red edges e1, . . . , et ∈ E(H), either all of the sequences δ(e1), . . . , δ(et) are monotone or

all of them are zigzag. Let V (H) = a = {a1, . . . , ak+1} with a1 < · · · < ak+1 and δi = δ(ai, ai+1).

Case 1. All t sequences are monotone. Suppose they are all increasing (clearly one cannot be

increasing and another decreasing). Then one can easily see that δ(a) is increasing. By Property

B, for i ≤ k, we have δ(a − ai) = δ(a) − δi and δ(a − ak) = δ(a − ak+1). Hence these t red

edges give rise to at least t − 1 red edges in Kk−1
N , which is a contradiction. If all t sequences

are decreasing, then a similar argument follows.

Case 2. All t sequences are zigzag, and t ≥ 5. Since t ≥ 5, we must have two red edges

e1 = a− ai and e2 = a− aj where |i− j| ≥ 4. Several times we will use the following

Fact: δi 6= δi+2 as long as δi+1 > δi.

Case 2.1. If i = 1 then we have j ≥ 5. Since δ(e2) is zigzag, we have δ1 > δ2 < δ3, but this

contradicts the fact that δ(e1) is zigzag as δ3 is a local maximum in the sequence.

Case 2.2. If i = 2, then we have j ≥ 6. Since δ(e2) is zigzag, we have δ1 > δ2 < δ3 > δ4. By

Property B, δ(e1) is not zigzag since δ3 is a local maximum in the sequence.

Case 2.3. If i ≥ 3, then we can also conclude that i ≤ k − 3 since t ≥ 5. Suppose δi is a

local minimum in the sequence δ(e2). Since δ(e2) is zigzag, we have δi−2 < δi−1 > δi < δi+1.

Moreover, we can conclude that i− 2 ≥ 2 since otherwise δ(e2) is not zigzag (wrong direction).

Hence δi−3 > δi−2 < δi−1 > δi < δi+1. By Property B, we have δ(ai−1, ai+1) = δi. By the Fact,

δi 6= δi−2. If δi < δi−2, then δ(e1) is not zigzag as δi−3 > δi−2 > δ(ai−1, ai+1). If δi > δi−2, then

again δ(e1) is not zigzag as δi−2 < δ(ai−1, ai+1) < δi+1, contradiction.

Now suppose δi is a local maximum in the sequence δ(e2). Then we have δi−2 > δi−1 < δi >

δi+1 < δi+2. By Property B, we have δ(ai−1, ai+1) = δi−1. By the Fact, δi−1 6= δi+1. If

δi−1 > δi+1, then δ(e1) is not zigzag as δi−2 > δ(ai−1, ai+1) > δi+1. If δi−1 < δi+1, then again

δ(e1) is not zigzag as δ(ai−1, ai+1) < δi+1 < δi+2, contradiction.

Case 3. Suppose t = 4, k is even, and all four sequences are zigzag. Let ej = a − aij be the

four red edges on the vertex set a = {a1, . . . , ak+1}, such that i1 < i2 < i3 < i4. We copy the

argument in Case 2 verbatim unless i4− i1 = 3, and therefore we can assume the four red edges

are of the form e1 = a− ai, e2 = a− ai+1, e3 = a− ai+2, e4 = a− ai+3.

Case 3.1. Suppose i = 1. Since δ(e4) is zigzag, we have δ1 > δ2 < δ(a3, a5). By Property B,
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δ3 ≥ δ(a3, a5) > δ2, which implies δ(e1) cannot be zigzag (wrong direction).

Case 3.2. Suppose i = 2. Since δ(e4) is zigzag, we have δ1 > δ2 < δ3. By Property B, we have

δ(a1, a3) = δ2 < δ3 which implies δ(e1) is not zigzag (wrong direction), contradiction.

Case 3.3. Suppose i = k− 2. This is the only part of the proof that requires k to be even. Since

k is even and δ(e1) is zigzag, we have δk−4 < δ(ak−3, ak−1) > δk−1 < δk. By Property B, δk−2 ≥
δ(ak−3, ak−1) > δk−1, and since k is even, this implies δ(e4) is not zigzag (wrong direction).

Case 3.4. Suppose 3 ≤ i ≤ k − 3. Then δi is an extremum in the sequence δ(e4). Suppose

it is a local minimum, which implies i ≥ 4. Then we have δi−3 > δi−2 < δi−1 > δi < δi+1.

By Property B we have δ(ai−1, ai+1) = δi. By the Fact, δi 6= δi−2. If δi > δi−2, then we

have δi−2 < δ(ai−1, ai+1) < δi+1, and hence δ(e1) is not zigzag. If δi < δi−2, then we have

δi−3 > δi−2 > δ(ai−1, ai+1), and hence δ(e1) is not zigzag, contradiction.

Now suppose that δi is a local maximum in the sequence δ(e4). Then we have δi−2 > δi−1 <

δi > δi+1 < δ(ai+2, ai+4). By Property B, we have δi+2 ≥ δ(ai+2, ai+4) and δ(ai−1, ai+1) = δi−1.

By the Fact, δi−1 6= δi+1. If δi−1 < δi+1, then we have δ(ai−1, ai+1) < δi+1 < δi+2, which implies

δ(e1) is not zigzag. If δi−1 > δi+1, then we have δi−2 > δ(ai−1, ai+1) > δi+1, which implies δ(e1)

is not zigzag, contradiction. 2

We now establish the stepping-up lemma for the special case k is odd and t = 4.

Theorem 8. For odd k > 6, we have rk(H4, 4n
2) > 2rk−1(H3,n)−1.

Proof. The proof is nearly identical to the previous proof though there is one crucial difference

in the definition of a red edge. Again we set N = rk−1(H3, n) − 1, and let ϕ be a red/blue

coloring of the edges of Kk−1
N with no red Hk−1

t−1 and no blue Kk−1
n . Given ϕ, we will produce a

red/blue coloring χ on the edges of Kk
2N

with no red Hk
t and no blue Kk

4n2 . Let V (Kk−1
N ) = [N ]

and V (Kk
2N

) = {0, 1}N , and order the elements of V (Kk
2N

) by the integer they represent in

binary. We define χ slightly different from above. Given an edge e = (a1, . . . , ak) in Kk
2N

, where

a1 < · · · < ak, let δi = δ(ai, ai+1). Then χ(e) = red if

• the sequence δ(e) is monotone and ϕ(δ1, . . . , δk−1) = red, or

• the sequence δ(e) is a strong-zigzag, meaning δ2, δ4, . . . are local minimums and δ3, δ5, . . . are

local maximums, and δk−1 < δk−3. In other words,

δ1 > δ2 < δ3 > δ4 < · · · · · · > δk−3 < δk−2 > δk−1 and δk−1 < δk−3.

Otherwise χ(e) = blue.

Set m = 4n2. For sake of contradiction, suppose there is an m-set S = {a1, . . . , am}, where

a1 < · · · < am, such that χ colors every k-tuple in S blue. Let δi = δ(ai, ai+1) for 1 ≤
i ≤ m − 1 and consider the sequence δ(S). By Property C, there is no integer j such that

the sequence {δi}j+n−1
i=j is monotone, since otherwise ϕ colors every (k − 1)-tuple of the n-set

{δj , δj+1, . . . , δj+n−1} blue which is a contradiction. Therefore, we can assume there are 2n

consecutive extremums δi1 , δi2 , · · · , δi2n , such that δi1 , δi3 , . . . , δi2n−1 are local maximums and
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δi2 , δi4 , . . . , δi2n are local minimums. Recall that δij = δ(aij , aij+1). Notice that by Properties

A and B (or the Fact), we have δi2n 6= δi2n−2 . Suppose δi2n < δi2n−2 , and consider the vertices

corresponding the last (k− 1)/2 local maximums along with ai2n+1. More precisely, the vertices

ai2n−(k−2)
, ai2n−(k−2)+1, . . . , ai2n−3 , ai2n−3+1, ai2n−1 , ai2n−1+1, ai2n+1.

By the same argument as above, these vertices correspond to a strong-zigzag sequence, and

therefore χ colors these k vertices red and we have a contradiction. Therefore we can assume

δi2n > δi2n−2 . By the same argument, we can conclude that δi2n−2 > δi2n−4 . After repeating this

argument n times, we have

δi2n > δi2n−2 > · · · > δi2 .

Set T = {ai2 , ai4 , . . . , a2n−2, a2n, a2n+1}. By Property B, δ(T ) is a monotone sequence of length

n, which implies ϕ created a blue clique of size n in Kk−1
N , contradiction.

Now it suffices to show that there is no red copy of an H ∈ Hk
4 under χ. For sake of contradiction,

suppose χ produces a red H ∈ H4. Let V (H) = a = {a1, . . . , ak+1}, a1 < · · · < ak+1, and

δi = δ(ai, ai+1).

We follow the same arguments as in Theorem 7, except we need to replace Case 3.3, since that

was the only place where we used the fact that k is even. This is the case when our four red

edges have the form e1 = a − ak−2, e2 = a − ak−1, e3 = a − ak, e4 = a − ak+1. Since δ(e1) is

strong-zigzag and k is odd, we have δ(ak−3, ak−1) < δk−1 > δk and δ(ak−3, ak−1) > δk. For

δ(e4) to be a strong-zigzag, we must have δk−3 < δk−2 > δk−1. By Property B, this implies

δ(ak−3, ak−1) = δk−3, and therefore δk−3 < δk−1, which implies δ(e4) is not a strong-zigzag,

contradiction. 2

Proof of lower bound in Theorem 3. Suppose k− t+4 is even. Then by a (t−3)-fold application

of Theorem 7, along with Theorem 6, we have rk(Ht, n) ≥ twrt−1(c1n
k−t+1) where c1 = c1(k, t).

If k − t+ 4 is odd, then by a (t− 4)-fold application of Theorem 7, along with Theorem 8 and

Theorem 6, we have rk(Ht, n) ≥ twrt−1(c2n
(k−t+1)/2), where c2 = c2(k, t). 2
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