Proof of a Conjecture of Erdős on triangles in set-systems

Dhruv Mubayi * Jacques Verstraëte ${ }^{\dagger}$

November 11, 2005

Abstract

A triangle is a family of three sets A, B, C such that $A \cap B, B \cap C, C \cap A$ are each nonempty, and $A \cap B \cap C=\emptyset$. Let \mathcal{A} be a family of r-element subsets of an n-element set, containing no triangle. Our main result implies that for $r \geq 3$ and $n \geq 3 r / 2$, we have $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. This settles a longstanding conjecture of Erdős [7], by improving on earlier results of Bermond, Chvátal, Frankl, and Füredi. We also show that equality holds if and only if \mathcal{A} consists of all r-element subsets containing a fixed element.

Analogous results are obtained for nonuniform families.

1 Introduction.

Throughout this paper, X is an n-element set. For any nonnegative integer r, we write $X^{(r)}$ for the family of all r-element subsets of X. Define $X^{(\leq r)}=\cup_{0 \leq i \leq r} X^{(i)}$ and $X^{(\geq r)}=\cup_{r \leq i \leq n} X^{(i)}$. For $\mathcal{A} \subset X^{(\leq n)}$ and $x \in X$, we let $\mathcal{A}_{x}=\{A \in \mathcal{A}: x \in A\}$.

A triangle is a family of three sets A, B, C such that $A \cap B, B \cap C, C \cap A$ are each nonempty, and $A \cap B \cap C=\emptyset$. Let $f(r, n)$ denote the maximum size of a family $\mathcal{A} \subset X^{(r)}$ containing no triangle.

[^0]A special case of Turán's theorem (proved by Mantel) implies that $f(2, n)=\left\lfloor n^{2} / 4\right\rfloor$. Motivated by this result, Erdős [7] asked for the determination of $f(r, n)$ for $r>2$, and conjectured that

$$
\begin{equation*}
f(r, n)=\binom{n-1}{r-1} \quad \text { for } \quad n \geq 3 r / 2 \tag{1}
\end{equation*}
$$

(Actually, in [7] it is stated more as a question, and $n \geq 3 r / 2$ is not explicitly mentioned, but later, e.g. in $[3,10],(1)$ is referred to as a conjecture of Erdős'.)

This conjecture attracted quite a few researchers. It was proved by Chvátal [3] for $r=3$. In fact, he proved the more general statement that if $n \geq r+2 \geq 5, \mathcal{A} \subset X^{(r)}$, and $|\mathcal{A}|>\binom{n-1}{r-1}$, then \mathcal{A} contains r sets A_{1}, \ldots, A_{r} such that every $r-1$ of them have nonempty intersection, but $\cap_{i} A_{i}=\emptyset$. This configuration is also called an $(r-1)$-dimensional simplex. Chvátal generalized (1) as follows.

Conjecture 1 (Chvátal) Let $r \geq d+1 \geq 3, n \geq r(d+1) / d$ and $\mathcal{A} \subset X^{(r)}$. If \mathcal{A} contains no d-dimensional simplex, then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. Equality holds only when $\mathcal{A}=X_{x}^{(r)}$, for some $x \in X$.

Recently Csákány and Kahn [6] gave a different proof of the $r=3$ case of (1) using Homology theory. Frankl [9] settled (1) for $3 r / 2 \leq n \leq 2 r$, and then Bermond and Frankl [2] proved (1) for infinitely many n, r, where $n<r^{2}$. About five years later, Frankl [10] settled (1) for $n>n_{0}(r)$, where $n_{0}(r)$ is an unspecified but exponentially growing function of r. In 1987, Frankl and Füredi [11] proved Conjecture 1 for $n>n_{0}(r)$. Frankl [10] had earlier verified Conjecture 1 for $(d+1) r / d \leq n<2 r$, using Katona's permutation method. Thus both (1) and Conjecture 1 remained open in the range $2 r \leq n<n_{0}(r)$, where $n_{0}(r)$ is exponential in r. Also, the uniqueness of the extremal configuration remained open for $3 r / 2 \leq n<n_{0}(r)$ in both (1) and Conjecture 1 .

Our main result settles (1) for all $n \geq 3 r / 2$ while also characterizing the extremal examples. A nontrivial intersecting family of size $d+1$ is a family of $d+1$ distinct sets A_{1}, \ldots, A_{d+1} that have pairwise nonempty intersection, but $\cap_{i} A_{i}=\emptyset$.

Theorem 2 Let $r \geq d+1 \geq 3$ and $n \geq(d+1) r / d$. Suppose that $\mathcal{A} \subset X^{(r)}$ contains no nontrivial intersecting family of size $d+1$. Then $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. Equality holds if and only if $\mathcal{A}=X_{x}^{(r)}$ for some $x \in X$.

Note that the special case $d=2$ above implies (1). Every d-dimensional simplex is a nontrivial intersecting family of size $d+1$, and in this sense Theorem 2 can be thought of as a solution to a weakening of Conjecture 1.

A hypergraph \mathcal{F} satisfies H_{d}, the Helly property of order d, if every subfamily of \mathcal{F} with empty intersection contains a subcollection of at most d sets with empty intersection. A related problem is to determine the maximum size of an $\mathcal{F} \in X^{(r)}$ that satisfies H_{d}. Theorem 2 implies that for $d=2$, such an \mathcal{F} satisfies $|\mathcal{F}| \leq\binom{ n-1}{r-1}$, however, stronger results for this problem were obtained by several authors (see Bollobás and Duchet [4, 5], Tuza [15, 16], and Mulder [13]).

The proof of Theorem 2 actually gives a little more: we may allow $r \leq d \leq \min \left\{\binom{2 r-2}{r-1},\binom{n-1}{r-1}\right\}$. Theorem 2 is not valid when $r=3$ and $d \geq 10$ however, as the next result attests (see Section 4):

Theorem 3 Let $\mathcal{A} \subset X^{(3)}$ contain no non-trivial intersecting family of size $d+1 \geq 8$. Then

$$
|\mathcal{A}| \leq\left(\left\lfloor\frac{(d+2)}{3}\right\rfloor^{-1}+\left\lfloor\frac{(d+3)}{3}\right\rfloor^{-1}+\left\lfloor\frac{(d+4)}{3}\right\rfloor^{-1}\right)^{-1}\binom{n}{2} \leq \frac{1}{3}\left(\left\lceil\frac{d}{3}\right\rceil+\frac{1}{d+3}\right)\binom{n}{2}
$$

Furthermore, for $d+1 \geq 11$ and infinitely many n, there exists such a family \mathcal{A} with $|\mathcal{A}| \geq$ $\left(\frac{1}{3}\left\lceil\frac{d}{3}\right\rceil-\frac{1}{3}\right)\binom{n}{2}$.

We conjecture that for $r \geq 4$ and n sufficiently large, the phenomenon exhibited by Theorem 3 does not arise:

Conjecture 4 Let $r \geq 4$, $d \geq 2$, and let $\mathcal{A} \subset X^{(r)}$ contain no non-trivial intersecting family of size $d+1$. Then, provided n is sufficiently large, $|\mathcal{A}| \leq\binom{ n-1}{r-1}$ with equality if and only if $\mathcal{A}=X_{x}^{(r)}$ for some $x \in X$.

The following table summarizes the above results for $r=3$:

Size	Lower Bound	Upper Bound
$3 \leq d+1 \leq 7$	$\binom{n-1}{2}$	$\binom{n-1}{2}$
$d+1=8$	$\binom{n-1}{2}$	$\binom{n}{2}$
$d+1=9$	$\binom{n-1}{2}$	$\frac{12}{11}\binom{n}{2}$
$d+1=10$	$\binom{n-1}{2}$	$\frac{6}{5}\binom{n}{2}$
$d+1 \geq 11$	$\frac{1}{3}\left(\left\lceil\frac{d}{3}\right\rceil-1\right)\binom{n}{2}$	$\frac{1}{3}\left(\left\lceil\frac{d}{3}\right\rceil+\frac{1}{d+3}\right)\binom{n-1}{2}$

It would be interesting to determine the exact bounds for $d+1 \geq 11$. In the course of the proof of the lower bound in Theorem 3, it is proved that a Steiner ($n, 3, k-1$)-system, when it exists, contains no non-trivial intersecting family of size $3 k+1$ whenever $k \geq 2$. We conjecture that this is the extremal family for $r=3$ and $k \geq 2$:

Conjecture 5 Let n be sufficiently large and let $k \geq 2$. Let $\mathcal{A} \subset X^{(3)}$ contain no non-trivial intersecting family of size $3 k+1$, and suppose there exists a Steiner ($n, 3, k-1$)-system. Then $|\mathcal{A}| \leq \frac{1}{3}(k-1)\binom{n}{2}$, with equality if and only if \mathcal{A} is such a Steiner system.

Non-uniform families: It is natural to consider these extremal problems for families that are not uniform. Perhaps the most basic statement in this context is the analogue of the Erdős-Ko-Rado Theorem.

$$
\text { If } \mathcal{A} \subset X^{(\leq n)} \text { is intersecting, then }|\mathcal{A}| \leq 2^{n-1}
$$

The non-uniform analogue of Erdős' conjecture about triangles in uniform families was asked by Erdős and proved by Milner [7].

Theorem 6 (Milner) Suppose that $\mathcal{A} \subset X^{(\leq n)}$ is triangle free. Then $|\mathcal{A}| \leq 2^{n-1}+n$.

Since Milner's proof has not been published, we give our own short proof of this result (see also Lossers [12]). Our proof also yields that equality holds if and only if $\mathcal{A}=X_{x}^{(\geq 2)} \cup X^{(1)} \cup\{\emptyset\}$ for some $x \in X$; this fact seems not to have been mentioned in the previous literature. We also prove the non-uniform analogue of Theorem 2 (see Section 4).

Theorem 7 Let $d \geq 2$ and $n>\log _{2} d+\log _{2} \log _{2} d+2$. Suppose that $\mathcal{A} \subset X^{(\leq n)}$ contains no non-trivial intersecting family of size $d+1$. Then $|\mathcal{A}| \leq 2^{n-1}+n$. Equality holds if and only if $\mathcal{A}=X_{x}^{(\geq 2)} \cup X^{(1)} \cup\{\emptyset\}$ for some $x \in X$.

If $n \leq\left\lfloor\log _{2} d\right\rfloor$, then trivially the bound $|\mathcal{A}| \leq 2^{n-1}+n$ in Theorem 7 does not hold. It can be shown that this remains true for $\left\lfloor\log _{2} d\right\rfloor+1$ and $\left\lfloor\log _{2} d\right\rfloor+2$. However, once $n>\left\lfloor\log _{2} d\right\rfloor+$ $\log _{2} \log _{2} d+2$, Theorem 7 applies. It would be interesting to determine if the $\log _{2} \log _{2} d$ term in Theorem 7 can be replaced by an absolute constant.

2 Proof of Theorem 2.

We use the notation $[n]=\{1, \ldots, n\}$ and $[a, b]=\{a, a+1, \ldots, b-1, b\}$. Let \mathcal{A} be a family of r-sets with $|\mathcal{A}| \geq\binom{ n-1}{r-1}$, containing no non-trivial intersecting family of size $d+1$. We prove that \mathcal{A} consists of all sets containing a fixed element of X. The proof, for $n \geq(d+1) r / d$, is split into three parts;

Part I $\quad n<2 r$ and $n=k(n-r)+\ell$ with $k \in[2, d]$ and some $\ell \in[n-r-1]$,
Part II $\quad n<2 r$ and $n=k(n-r)$ with $k \in[3, d+1]$,
Part III $n \geq 2 r \geq 8$.

Note that for $(d+1) r / d \leq n \leq 2 r-1$, there exist $k \in[2, d]$ and $\ell \in[n-r-1]$ such that $n=k(n-r)+l$ or $n=(k+1)(n-r)$. Thus Parts I and II include all these values of n.

Part I uses Katona's permutation method, Part II uses Baranyai's Theorem [1] on partitioning $X^{(r)}$ into matchings, and in Part III we proceed by induction on n. Frankl [9] established the upper bound $|\mathcal{A}| \leq\binom{ n-1}{r-1}$ for $(d+1) r / d \leq n \leq 2 r-1$; however, it is substantially more difficult to establish the case of equality in Theorem 2, which we achieve in Parts I and II of our proof.

$$
\text { Part I: } n=k(n-r)+\ell .
$$

In this part, we consider the case $n<2 r$ and $n=k(n-r)+\ell$, for some $k \in[2, d]$ and $\ell \in[n-r-1]$. For convenience, let $X=[n]$ and fix a (cyclic) permutation π of X. Let Q_{i} denote the interval $\{i, i+1, \ldots, i+r-1\}$ (modulo n), and let \mathcal{A}_{π} denote the subfamily of \mathcal{A} consisting of those sets $A \in \mathcal{A}$ such that $\pi\left(Q_{i}\right)=A$ for some i :

$$
\mathcal{A}_{\pi}=\left\{\pi\left(Q_{i}\right): \pi\left(Q_{i}\right) \in \mathcal{A}\right\} .
$$

Claim 1. Let π be any permutation. Then $\left|\mathcal{A}_{\pi}\right| \leq r$ with equality if and only if there exists m such that

$$
\mathcal{A}_{\pi}=\left\{\pi\left(Q_{m}\right), \pi\left(Q_{m+1}\right), \ldots, \pi\left(Q_{m+r-1}\right)\right\}
$$

Proof. It is sufficient to prove Claim 1 for the identity permutation, since we may relabel X. Therefore $\mathcal{A}_{\pi}=\left\{Q_{i}: Q_{i} \in \mathcal{A}\right\}$. Without loss of generality, $Q_{n} \in \mathcal{A}_{\pi}$. For $j \in[n-r]$, let $P_{j}=\{i: i \equiv j(\bmod n-r)\} \cap[n]$, together with $\{n\}$ if $j \in[\ell+1, n-r]$. Thus $\left|P_{j}\right| \leq k+1 \leq d+1$. For each $j \in[n-r]$, there is an $i \in P_{j}$ such that $Q_{i} \notin \mathcal{A}_{\pi}$, otherwise $\bigcap_{i \in P_{j}} Q_{i}=\emptyset$. Thus $Q_{i} \notin \mathcal{A}_{\pi}$ for at least $n-r$ values of i, so $\left|\mathcal{A}_{\pi}\right| \leq r$.

Equality holds only if there is a unique x_{j} such that $Q_{x_{j}(n-r)+j} \notin \mathcal{A}_{\pi}$ for all $j \in[n-r]$. We now show $x_{1} \geq x_{2} \geq \ldots \geq x_{n-r} \geq x_{1}-1$. Let us illustrate the proof of this fact using Figures 1 and 2 below, where $y_{j}=x_{j}(n-r)+j$, and the box (i, j) represents the integer $(i-1)(n-r)+j$:

If $x_{j}<x_{j+1}$ for some $j \in[\ell]$, then, since $\ell \leq n-r-1$, the intersection of the $k+1$ intervals $Q_{(i-1)(n-r)+j}$, where (i, j) is a shaded box in Figure 1, is empty (this is the only place in Part I where we use $\ell \leq n-r-1$; the case $\ell=n-r-1$ is the content of Part II). This contradiction implies that $x_{j} \geq x_{j+1}$. In a similar way, $x_{j} \geq x_{j+1}$ for $j \in[\ell+1, n-r]$, using $Q_{n} \in \mathcal{A}_{\pi}$. Finally, if $x_{n-r}<x_{1}-1$, then the intersection of the intervals $Q_{(i-1)(n-r)+j}$, with (i, j) a shaded box in Figure 2, is empty, a contradiction. This proves that \mathcal{A}_{π} has the required form.

Without loss of generality, we assume that for the identity permutation $\iota, \mathcal{A} \iota=\left\{Q_{1}, Q_{2}, \ldots, Q_{r}\right\}$.
Claim 2. For each permutation $\pi, \mathcal{A}_{\pi}=\left\{\pi\left(Q_{1}\right), \pi\left(Q_{2}\right), \ldots, \pi\left(Q_{r}\right)\right\}$.
Proof. Each permutation π of $X \backslash\{r\}$ is a product of transpositions. Therefore it suffices to show that if τ is a transposition in which r is a fixed point, then

$$
\mathcal{A}_{\tau}=\left\{\tau\left(Q_{1}\right), \tau\left(Q_{2}\right), \ldots, \tau\left(Q_{r}\right)\right\} .
$$

Suppose that τ transposes t and $t+1$, with $r \notin\{t, t+1\}$. Then Claim 1 implies that $\mathcal{A}_{\tau}=$ $\left\{\tau\left(Q_{m}\right), \tau\left(Q_{m+1}\right), \ldots, \tau\left(Q_{m+r-1}\right)\right\}$ for some $m \in[n]$. We show below that $m=1$.

Case 1. $n \notin\{t, t+1\}$: Here $\tau\left(Q_{1}\right)=[r]=Q_{1} \in \mathcal{A}$, and $\tau\left(Q_{n}\right)=\{1, \ldots, r-1, n\}=Q_{n} \notin \mathcal{A}$. Therefore $m=1$.

Case 2. $t+1=n$: In this case $\tau\left(Q_{i}\right)=Q_{i} \in \mathcal{A}$ for each $i \in[r] \backslash\{n-r\}$. Consequently $\tau\left(Q_{n-r}\right) \in \mathcal{A}$ as well, and therefore $m=1$.

Case 3. $t=n$: If $n<2 r-1$, then $\tau\left(Q_{r}\right)=Q_{r} \in \mathcal{A}$ and $\tau\left(Q_{r+1}\right)=Q_{r+1} \notin \mathcal{A}$. Therefore $m=1$. If $n=2 r-1$, then $\tau\left(Q_{i}\right)=Q_{i} \in \mathcal{A}$ for $i=2, \ldots, r-1$. This leaves the posibilities $m=1,2, n$. However, $\tau\left(Q_{r+1}\right)=Q_{r+1} \notin \mathcal{A}$, and $\tau\left(Q_{n}\right)=Q_{n} \notin \mathcal{A}$. Consequently, $\left\{\tau\left(Q_{1}\right), \tau\left(Q_{r}\right)\right\} \subset \mathcal{A}$ and $m=1$ again.

We now complete Part I. For each $A \in \mathcal{A}$, there are $\frac{1}{2} r!(n-r)!$ families \mathcal{A}_{π} containing A. The total number of cyclic permutations of X is $(n-1)!/ 2$. By Claim $1,\left|\mathcal{A}_{\pi}\right| \leq r$ and therefore

$$
\frac{1}{2} r!(n-r)!|\mathcal{A}| \leq \frac{1}{2} r(n-1)!.
$$

This establishes the upper bound $|\mathcal{A}| \leq\binom{ n-1}{r-1}$. By Claim 1, equality holds if and only if for every cyclic permutation π of X, we have $\mathcal{A}_{\pi}=\left\{\pi\left(Q_{1}\right), \pi\left(Q_{2}\right), \ldots, \pi\left(Q_{r}\right\}\right.$. Set $x=r$. For any $A \subset(X \backslash\{x\})^{(r-1)}$, we may thus choose such a cyclic permutation π so that $\pi\left(Q_{1}\right)=A \cup\{x\}$. Therefore $A \cup\{x\} \in \mathcal{A}$, and $\mathcal{A}=X_{x}^{(r)}$ is the required family.

Part II: $n=k(n-r)$.

The argument here is different to that of Part I; we use a result of Baranyai [1], stating that the family $X^{(r)}$ may be partitioned into perfect matchings when r divides n. This result is only needed for the characterization of the extremal family \mathcal{A}. Recall that $\overline{\mathcal{A}}=\{X \backslash A: A \in \mathcal{A}\}$.

Claim 3. If $A \in X^{(n-r)} \backslash \overline{\mathcal{A}}$, then $(X \backslash A)^{(n-r)} \subset \overline{\mathcal{A}}$.
Proof. Pick $A^{\prime} \in(X \backslash A)^{(n-r)}$. We will show that $A^{\prime} \in \overline{\mathcal{A}}$. By Baranyai's Theorem, there is a partition of $X^{(n-r)}$ into perfect matchings $\mathcal{M}_{1}, \ldots, \mathcal{M}_{t}$ of size k, where $t=\frac{1}{k}\binom{n}{n-r}$. By relabelling X if necessary, we may assume that $\mathcal{M}_{1} \supset\left\{A, A^{\prime}\right\}$. Since $\overline{\mathcal{A}}$ has no perfect matching, and $n=k r /(k-1)$,

$$
|\overline{\mathcal{A}}| \leq(k-1) t=\frac{k-1}{k}\binom{n}{n-r}=\frac{k-1}{k}\binom{n}{r}=\frac{k-1}{k} \frac{n}{r}\binom{n-1}{r-1}=\binom{n-1}{r-1} .
$$

Therefore $|\mathcal{A}|=|\overline{\mathcal{A}}|=\binom{n-1}{r-1}$, and $\left|\overline{\mathcal{A}} \cap \mathcal{M}_{i}\right|=k-1$ for all i. Since $\mathcal{M}_{1} \supset\left\{A, A^{\prime}\right\}$ and $A \notin \overline{\mathcal{A}}$, we must have $A^{\prime} \in \overline{\mathcal{A}}$. Therefore Claim 3 is verified.

We now complete the proof of Theorem 2 for $n=k(n-r)$. Let $\mathcal{B}=X^{(n-r)} \backslash \overline{\mathcal{A}}$. Then $n(\mathcal{B})=$ $\frac{k}{k-1} r \geq 2(n-r)$ as $k \geq 2$ and $n<2 r$. Furthermore, \mathcal{B} is an intersecting family, by Claim 3, and $|\mathcal{B}|=\binom{n}{n-r}-|\overline{\mathcal{A}}|=\binom{n-1}{n-r-1}$. By Theorem 1, $\mathcal{B}=X_{x}^{(n-r)}$ for some $x \in X$. This shows that $\mathcal{A}=X_{x}^{(r)}$, and Part II is complete.

Part III: $n \geq 2 r$.

Throughout Part III, we assume $r \geq 4$. Addition of technical details in Claim 3 in the proof below accommodates the case $r=3$. However, a short proof in this case was presented by weight counting techniques in Frankl and Füredi [11], which we revisit in Section 5.

We need the following notations.
For $\mathcal{A} \subset X^{(r)}$, let $V(\mathcal{A})=\bigcup_{A \in \mathcal{A}} A$ and $n(\mathcal{A})=|V(\mathcal{A})|$. For $Y \subset X$, we define $\mathcal{A}-Y=\{A \in \mathcal{A}$: $A \cap Y=\emptyset\}$. We also write $\overline{\mathcal{A}}=\{X \backslash A: A \in \mathcal{A}\}$. The following five definitions and the associated notations will be used repeatedly throughout the paper:

Sum of Families. The sum of families $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots, \mathcal{A}_{t}$, denoted $\sum_{i} \mathcal{A}_{i}$, is the family of all sets in each \mathcal{A}_{i}. Note that $\sum \mathcal{A}_{i}$ may have repeated sets, even if none of the \mathcal{A}_{i} have repeated sets.

Trace of a Set. The trace of a set Y in \mathcal{A} is defined by $\operatorname{tr}(Y)=\operatorname{tr}_{\mathcal{A}}(Y)=\{A \subset X: A \cup Y \in \mathcal{A}\}$. We define $\operatorname{tr}(\mathcal{A})=\sum_{x \in X} \operatorname{tr}(x)$.

Degree of a Set. The edge neighborhood of a set Y is $\Gamma(Y)=\Gamma_{\mathcal{A}}(Y)=\{A \in \mathcal{A}: A \cap Y \neq$ \emptyset and $A \neq Y\}$, and the degree of Y is $\operatorname{deg}_{\mathcal{A}}(Y)=\left|\Gamma_{\mathcal{A}}(Y)\right|$. If $Y=\{y\}$, then we write y instead of $\{y\}$, and $\operatorname{deg}_{\mathcal{A}}(y)=\left|\Gamma_{\mathcal{A}}(y)\right|=\left|\mathcal{A}_{y}\right|$.

The families \mathcal{S}_{x} and \mathcal{L}_{x}. Let \mathcal{A} be an r-uniform family of sets in X and $x \in X$. Then we define

$$
\mathcal{S}_{x}=\{Y \in \operatorname{tr}(x):|\operatorname{tr}(Y)|=1\} \quad \text { and } \quad \mathcal{L}_{x}=\operatorname{tr}(x) \backslash \mathcal{S}_{x} .
$$

We write $\mathcal{S}=\sum_{x \in X} \mathcal{S}_{x}$ and $\mathcal{L}=\sum_{x \in X} \mathcal{L}_{x}=\operatorname{tr}(\mathcal{A}) \backslash \mathcal{S}$. Note that if $A \in \mathcal{L}_{x}$, then there exists $y \neq x$ such that $A \in \mathcal{L}_{y}$.

Paths and Connectivity. A path in \mathcal{A} is a family \mathcal{P} of sets A_{1}, A_{2}, \ldots such that $A_{i} \cap A_{j} \neq \emptyset$ if and only if $|i-j| \leq 1$. Family \mathcal{A} is connected if every pair of vertices in $V(\mathcal{A})$ is contained in some path in \mathcal{A}. A component of \mathcal{A} is a maximal non-empty connected subfamily of \mathcal{A}.

We begin with the following simple lemma. Recall that $\mathcal{B}-S=\{A \in \mathcal{B}: A \cap S=\emptyset\}$.

Lemma 8 Let \mathcal{B}_{0} be a finite family of sets. Then there exist disjoint sets $S_{0}, S_{1}, \ldots, S_{t-1} \in V\left(\mathcal{B}_{0}\right)$, such that the families $\mathcal{B}_{i}=\mathcal{B}_{0}-\cup_{j=0}^{i-1} S_{j}$ for $i=1, \ldots, t$ satisfy
(1) $S_{i} \in \mathcal{B}_{i}$ and $\operatorname{deg}_{\mathcal{B}_{i}}\left(S_{i}\right)<d-1$ for every $i<t$,
(2) $\operatorname{deg}_{\mathcal{B}_{t}}(S) \geq d-1$ for every $S \in \mathcal{B}_{t}$.

Proof. For $i \geq 0$, if there exists a $T \in \mathcal{B}_{i}$ with $\operatorname{deg}_{\mathcal{B}_{i}}(T)<d-1$, then set $S_{i}=T$. Form \mathcal{B}_{i+1} and repeat for $i+1$. If there is no such T, then set $i=t$ and stop.

For $n \geq 2 r-1$, we proceed by induction on n. The base case $n=2 r-1$ has been proved in Part I. Suppose that $n \geq 2 r,|\mathcal{A}|=\binom{n-1}{r-1}$, and \mathcal{A} contains no nontrivial intersecting family of size $d+1$. We will prove that $\mathcal{A}=X_{y}^{(r)}$ for some $y \in X$. This implies that if $\mathcal{A}^{\prime} \subset X^{(r)}$ contains no nontrivial intersecting family of size $d+1$, then $\left|\mathcal{A}^{\prime}\right| \leq\binom{ n-1}{r-1}$, by the following argument: If $\left|\mathcal{A}^{\prime}\right|>\binom{n-1}{r-1}$, then \mathcal{A}^{\prime} contains an r-set R in addition to $X_{y}^{(r)}$ by our assumption. Now consider the subfamily consisting of all r-sets of $X_{y}^{(r)}$ intersecting R as well as R itself. This is clearly a nontrivial intersecting family, and it has size

$$
1+\binom{n-1}{r-1}-\binom{n-1-r}{r-1}>1+r>d+1
$$

Consequently, $\left|\mathcal{A}^{\prime}\right| \leq\binom{ n-1}{r-1}$ as claimed.
Our approach is to show that there exists a vertex $x \in X$ with $\operatorname{deg}_{\mathcal{A}}(x) \leq\binom{ n-2}{r-2}$. Subsequently, the family $\mathcal{A}-\{x\}$ has size at least $\binom{n-1}{r-1}-\binom{n-2}{r-2}=\binom{n-2}{r-1}$. By induction, equality holds and $\mathcal{A}-\{x\}=X_{y}^{(r)}$ for some $y \in X$; it is easy to see that every set in \mathcal{A} containing x also contains y and \mathcal{A} is the required family. Let us show that $\operatorname{deg}(x) \leq\binom{ n-2}{r-2}$ if $\left|\mathcal{L}_{x}\right|$ is a maximum.

Claim 1. $\left|\mathcal{L}_{x}\right|>\binom{n-3}{r-2}$.
Proof. Note that $r|\mathcal{A}|=\sum_{y} \operatorname{deg}(y)=\sum_{y}\left|\mathcal{S}_{y}\right|+\sum_{y}\left|\mathcal{L}_{y}\right|$. By the choice of x, this is at most $|\mathcal{S}|+n\left|\mathcal{L}_{x}\right|$. Also, $\mathcal{S} \cap \mathcal{L}_{x}=\emptyset$, so $|\mathcal{S}| \leq\binom{ n}{r-1}-\left|\mathcal{L}_{x}\right|$. Consequently

$$
(n-1)\left|\mathcal{L}_{x}\right| \geq r|\mathcal{A}|-\binom{n}{r-1}=r\binom{n-1}{r-1}-\binom{n}{r-1}>(n-1)\binom{n-3}{r-2},
$$

where the last inequality follows from a short computation and the fact that $r \geq 4$. Dividing by $n-1$, we obtain $\left|\mathcal{L}_{x}\right|>\binom{n-3}{r-2}$.

Applying Lemma 8 to $\mathcal{L}_{x}=\mathcal{B}_{0}$, let ($S_{0}, S_{1}, \ldots, S_{t-1}$) be the sets in $V\left(\mathcal{L}_{x}\right)$ satisfying (1) and (2), and let \mathcal{B}_{i} be as in Lemma 8. Note that $\mathcal{B}_{t} \neq \emptyset$, since otherwise

$$
\begin{equation*}
\left|\mathcal{L}_{x}\right| \leq \sum_{i=0}^{t-1}\left(\operatorname{deg}_{\mathcal{B}_{i}}\left(S_{i}\right)+1\right) \leq t(d-1) \leq \frac{n-1}{r-1}(r-2)<n-1, \tag{2}
\end{equation*}
$$

contradicting Claim 1. Let $\mathcal{K}_{0}, \mathcal{K}_{1}, \ldots, \mathcal{K}_{s}$ be the components of \mathcal{B}_{t}. We let \mathcal{K}_{i}^{\prime} denote the union of \mathcal{K}_{i} and the family of all sets in \mathcal{S}_{x} intersecting $V\left(\mathcal{K}_{i}\right)$.

Claim 2. The family \mathcal{K}_{i}^{\prime} is an intersecting family.
Proof. Suppose, for a contradiction, that \mathcal{K}_{i}^{\prime} contains disjoint sets A_{0}, B_{0}. Since \mathcal{K}_{i} is connected, $\mathcal{K}_{i} \cup\left\{A_{0}, B_{0}\right\}$ is also connected. Choose a path $A_{0}, A_{1}, A_{2}, \ldots, B_{0}$ in $\mathcal{K}_{i} \cup\left\{A_{0}, B_{0}\right\}$ (possibly $A_{2}=B_{0}$). Then $A_{1} \in \mathcal{K}_{i}$. Lemma 8 part (2) implies that $\operatorname{deg}_{\mathcal{K}_{i}}\left(A_{1}\right) \geq d-1$, hence (if $d \geq 4$) there exist sets $C_{1}, C_{2}, \ldots, C_{d-3} \in \mathcal{K}_{i} \backslash\left\{A_{0}, A_{2}\right\}$ each of which intersects A_{1}. By definition of \mathcal{L}_{x}, there exists $y \in X \backslash\{x\}$ such that $A_{1} \in \mathcal{L}_{y}$. Consequently,

$$
\left\{A_{0} \cup x, A_{1} \cup x, A_{2} \cup x, C_{1} \cup x, \ldots, C_{d-3} \cup x, A_{1} \cup y\right\}
$$

is a non-trivial intersecting family of size $d+1$ in \mathcal{A}, since $A_{0} \cap A_{2}=\emptyset$, a contradiction.
Claim 3. $\quad \mathcal{L}_{x}=\mathcal{K}_{0}$ and $n\left(\mathcal{L}_{x}\right) \geq n-2$.
Proof. We first show $t=s=0$, so that $\mathcal{L}_{x}=\mathcal{K}_{0}$. For a contradiction, suppose $t>0$ or $s>0$. By Claim $2, \mathcal{K}_{i} \subset \mathcal{K}_{i}^{\prime}$ is an intersecting family of $(r-1)$-sets. Therefore, for $n\left(\mathcal{K}_{i}\right) \geq 2(r-1)$, the Erdős-Ko-Rado theorem shows $\left|\mathcal{K}_{i}\right| \leq\binom{ n\left(\mathcal{K}_{i}\right)-1}{r-2} \leq\binom{ n\left(\mathcal{K}_{i}\right)}{r-2}$. If $n\left(\mathcal{K}_{i}\right) \leq 2 r-3$, then $\left|\mathcal{K}_{i}\right| \leq\binom{ n\left(\mathcal{K}_{i}\right)}{r-1}$, and this is at most $\binom{n\left(\mathcal{K}_{i}\right)}{r-2}$. Since $n\left(\mathcal{K}_{i}\right) \geq r-1$ for $i \leq s$, convexity of binomial coefficients yields

$$
\sum_{i=0}^{s}\left|\mathcal{K}_{i}\right| \leq \sum_{i=0}^{s}\binom{n\left(\mathcal{K}_{i}\right)}{r-2}=\binom{n\left(\mathcal{K}_{0}\right)}{r-2}+\sum_{i=1}^{s}\binom{n\left(\mathcal{K}_{i}\right)}{r-2} \leq\binom{\left[\sum_{i=0}^{s} n\left(\mathcal{K}_{i}\right)\right]-s(r-1)}{r-2}+\sum_{i=1}^{s}\binom{r-1}{r-2}
$$

Recalling that $n\left(\mathcal{L}_{x}\right)=\sum_{i=0}^{s} n\left(\mathcal{K}_{i}\right)+t(r-1)$, we obtain

$$
\sum_{i=0}^{s}\left|\mathcal{K}_{i}\right| \leq\binom{ n\left(\mathcal{L}_{x}\right)-s(r-1)-t(r-1)}{r-2}+s(r-1) .
$$

By the argument giving the first two inequalities of (2), and $d-1 \leq r-1$, we have

$$
\left|\mathcal{L}_{x}\right|=\sum_{i=0}^{s}\left|\mathcal{K}_{i}\right|+\sum_{i=0}^{t-1}\left(\operatorname{deg}_{\mathcal{B}_{i}}\left(S_{i}\right)+1\right) \leq\binom{ n\left(\mathcal{L}_{x}\right)-(s+t)(r-1)}{r-2}+s(r-1)+t(r-1) .
$$

If $s+t \geq 1$ then, by convexity of binomial coefficients,

$$
\left|\mathcal{L}_{x}\right| \leq\binom{ n\left(\mathcal{L}_{x}\right)-(r-1)}{r-2}+(r-1) \leq\binom{ n-r}{r-2}+(r-1) .
$$

As $n \geq 2 r$ and $r \geq 4$, this contradicts Claim 1. Thus $s=t=0$, and \mathcal{L}_{x} consists of one component, \mathcal{K}_{0}.

We now show that $n\left(\mathcal{L}_{x}\right) \geq n-2$. By the arguments above, $\left|\mathcal{K}_{0}\right| \leq\binom{ n\left(\mathcal{K}_{0}\right)}{r-2}$. Therefore, by Claim 1, $n\left(\mathcal{K}_{0}\right)=n\left(\mathcal{L}_{x}\right) \geq n-2$. This completes the proof of Claim 3.

We now complete Part III and the proof of Theorem 2, by showing that $\operatorname{deg}(x) \leq\binom{ n-2}{r-2}$. By Claim 2, \mathcal{K}_{0}^{\prime} is an intersecting family. Since $n\left(\mathcal{K}_{0}\right) \geq n-2>n-r+1, \operatorname{tr}(x)=\mathcal{K}_{0}^{\prime}$ so $\operatorname{tr}(x)$ is itself an intersecting family of $(r-1)$-sets. As $n-1 \geq n\left(\mathcal{K}_{0}^{\prime}\right) \geq n\left(\mathcal{K}_{0}\right) \geq n-2 \geq 2(r-1)$, the Erdős-Ko-Rado theorem implies that

$$
\operatorname{deg}(x)=\left|\mathcal{K}_{0}^{\prime}\right|=|\operatorname{tr}(x)| \leq\binom{ n-2}{r-2} .
$$

This completes the proof of Theorem 2.

3 Proof of Theorem 3.

Part III of the proof of Theorem 2 can be extended to the case $r=3$ and $2 \leq d \leq 6$ by addition of some technical details. However, Chvátal [3] and Frankl and Füredi [11] already settled the case $r=3$ and $d=2$ so we do not consider this case here. In fact, from the proof below, it follows that for $2 \leq d \leq 6$ and $n \geq 15$, a family $\mathcal{A} \subset X^{(3)}$ containing no non-trivial intersecting family of size $d+1$ has at most $\binom{n-1}{2}$ members, with the equality as in Theorem 2 .

We now prove Theorem 3, employing the weight counting methods of Frankl and Füredi.

Proof of Theorem 3. Let $\mathcal{A} \subset X^{(3)}$ and suppose \mathcal{A} contains no non-trivial intersecting family of size $d+1$. Following Frankl and Füredi, the weight of a set $A \in \mathcal{A}$ is defined by

$$
\omega(A)=\sum_{\{x, y\} \subset A} \frac{1}{|\operatorname{tr}\{x, y\}|} .
$$

Then

$$
\begin{aligned}
\sum_{A \in \mathcal{A}} \omega(A) & =\sum_{A \in \mathcal{A}} \sum_{\{x, y\} \subset A} \frac{1}{|\operatorname{tr}(x, y)|} \\
& \leq \sum_{\{x, y\} \in X} \sum_{\substack{A \in \mathcal{A} \\
\{x, y\} \in \mathcal{A}}} \frac{1}{|\operatorname{tr}(x, y)|} \leq \sum_{\{x, y\} \in X} 1=\binom{n}{2} .
\end{aligned}
$$

Equality holds if and only if every pair in X is contained in some set in \mathcal{A}.

As \mathcal{A} contains no non-trivial intersecting family of size $d+1,|\operatorname{tr}\{x, y\}|=1$ for some $\{x, y\} \in A$ or $\sum_{x, y \in A}|\operatorname{tr}\{x, y\}| \leq d+2$. This implies that for all $A \in \mathcal{A}$,

$$
\omega(A) \geq \min \left\{1+\frac{2}{n-2},\left\lfloor\frac{(d+2)}{3}\right\rfloor^{-1}+\left\lfloor\frac{(d+3)}{3}\right\rfloor^{-1}+\left\lfloor\frac{(d+4)}{3}\right\rfloor^{-1}\right\} .
$$

For $d \geq 7$, the second term is smaller (in fact, less than 1). Therefore

$$
\sum_{A \in \mathcal{A}} \omega(A) \geq\left(\left\lfloor\frac{(d+2)}{3}\right\rfloor^{-1}+\left\lfloor\frac{(d+3)}{3}\right\rfloor^{-1}+\left\lfloor\frac{(d+4)}{3}\right\rfloor^{-1}\right)|\mathcal{A}| .
$$

Together with $\sum_{A \in \mathcal{A}} \omega(A) \leq\binom{ n}{2}$, this gives the upper bound on $|\mathcal{A}|$ in Theorem 3, which is for $d \geq 7$.

For the lower bound in Theorem 3, it suffices to show that every non-trivial intersecting family of size $d+1 \geq 11$ contains a pair in at least $\left\lceil\frac{d}{3}\right\rceil$ of its edges. Then a Steiner $\left(n, 3,\left\lceil\frac{d}{3}\right\rceil-1\right)$-system, for those n for which such a structure exists, does not contain such an intersecting family.

Lemma 9 Let $\mathcal{F} \subset X^{(3)}$ be a non-trivial intersecting family with $|\mathcal{F}| \geq 11$. Then there exist distinct elements $x, y \in X$ such that

$$
\left|\operatorname{tr}_{\mathcal{F}}\{x, y\}\right| \geq \frac{1}{3}(|\mathcal{F}|-1) .
$$

Proof. For $a, b \in X$, we let $d(a, b)=\left|\operatorname{tr}_{\mathcal{F}}\{a, b\}\right|$. First suppose that there exist $x, y \in X$ with $d(x, y) \geq 3$. Now let $u, v, w \in \operatorname{tr}_{\mathcal{F}}\{x, y\}$. Throughout the proof, we assume $d(x, y) \leq$ $\left\lceil\frac{1}{3}(|\mathcal{F}|-1)\right\rceil-1$, otherwise we are done. Let $L_{x}=\operatorname{tr}_{\mathcal{F}}(x)-\{y\}=\left\{A \in \operatorname{tr}_{\mathcal{F}}(x): y \notin A\right\}$ and let $L_{y}=\operatorname{tr}_{\mathcal{F}}(y)-\{x\}=\left\{A \in \operatorname{tr}_{\mathcal{F}}(y): x \notin A\right\}$ Since \mathcal{F} is an intersecting family,

$$
A \cap B \neq \emptyset \text { for every } A \in L_{x} \text { and } B \in L_{y} \quad(*) .
$$

Case 1: L_{x} contains a matching of size three.

In this case, L_{x} consists of three stars with distinct centers in X. By $(*)$, every pair in L_{y} intersects all three centers. This implies $L_{y}=\emptyset$. As \mathcal{F} is a non-trivial intersecting family, there is a triple in \mathcal{F} disjoint from x. Since $L_{y}=\emptyset$ and $d(x, y) \geq 3$, this triple must be $\{u, v, w\}$ and $d(x, y)=3$. Since \mathcal{F} is intersecting, the centers of the three stars must also be u, v, w. Now every $F \in \mathcal{F}-\{y\}$ with $F \neq\{u, v, w\}$ contains x. Therefore, assuming $d(x, u) \geq d(x, v) \geq d(x, w)$, we find

$$
d(x, u) \geq \frac{1}{3}(|\mathcal{F}|-4)+1=\frac{1}{3}(|\mathcal{F}|-1)
$$

This completes the proof in Case 1.

Case 2: L_{x} and L_{y} contain no matching of size three.

It is not hard to see by $(*)$ that $\left|L_{x}\right|+\left|L_{y}\right| \leq 2\left(\left\lceil\frac{1}{3}(|\mathcal{F}|-1)\right\rceil-1\right)+1$, with equality if and only if L_{x} consists of a pair of stars of size $\lceil(|\mathcal{F}|-1) / 3\rceil-1$ with distinct centers a, b and L_{y} consists of the pair $\{a, b\}$. Then $|\mathcal{F}|-\left|L_{x}\right|-\left|L_{y}\right|-d(x, y) \geq 2$, unless $|\mathcal{F}|=3 k+2, k \geq 3$ and L_{x} and L_{y} are as described above. By $(*)$, any triple in $\mathcal{F}-\{x, y\}$ contains u, v and w. This shows $|\mathcal{F}-\{x, y\}|=1$, and therefore $|\mathcal{F}|=3 k+2, k \geq 3$. In this case, $\{u, v, w\} \in \mathcal{F}$ and $a, b \in\{u, v, w\}$, since \mathcal{F} is intersecting. Therefore $d(a, x) \geq 4$ (and also $d(b, x) \geq 4$), completing the proof in Case 2 .

If every pair $a, b \in X$ has $d(a, b) \leq 2$, then the arguments in Cases 1 and 2 still apply to give a contradiction with $|\mathcal{F}| \geq 11$, since in this case $|\mathcal{F}|=8$. This completes the proof of the Lemma.

4 Proof of Theorem 7.

Let \mathcal{A} be a family of subsets of X containing no non-trivial intersecting family of size $d+1$. We prove Theorem 7 by showing that $\mathcal{A}^{\prime}=\mathcal{A} \cap X^{(\geq 2)}$ has size at most $2^{n-1}-1$, with equality if and only if $\mathcal{A}^{\prime}=X_{x}^{(\geq 2)}$ for some $x \in X$. Theorem 7 is proved in two parts. Part I deals with the case $d=2$, by induction on $n \geq 1$. In Part II, we use Part I to prove Theorem 7 for $d \geq 3$.

Part I: $d=2$

Theorem 7 is easily verified for $n \leq 3$. Now let $n \geq 4$ and $w \in X$.
Case 1: For every partition of $X \backslash\{w\}$ into two non-empty sets Y and Z, there exists a set $A \in \mathcal{A}^{\prime}-\{w\}$ such that $A \cap Y \neq \emptyset$ and $A \cap Z \neq \emptyset$. Then, for each partition of $X \backslash\{w\}$ into sets Y and Z, either $Y \cup\{w\} \notin \mathcal{A}$ or $Z \cup\{w\} \notin \mathcal{A}^{\prime}$ - otherwise \mathcal{A}^{\prime} contains a triangle. Therefore $\operatorname{deg}_{\mathcal{A}^{\prime}}(w) \leq 2^{n-2}$. By induction, $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime}-\{w\}$ has size at most $2^{n-2}-1$, with equality if and only if $\mathcal{A}^{\prime \prime}=(X \backslash\{w\})_{x}^{(\geq 2)}$ for some $x \in X-\{w\}$. Thus

$$
\left|\mathcal{A}^{\prime}\right|=\operatorname{deg}_{\mathcal{A}^{\prime}}(w)+\left|\mathcal{A}^{\prime \prime}\right| \leq 2^{n-2}+\left(2^{n-2}-1\right)=2^{n-1}-1
$$

Now suppose that equality holds above. We will show that every set in \mathcal{A}^{\prime} containing w also contains x. Suppose on the contrary that $w \in S \in \mathcal{A}^{\prime}$ and $x \notin S$. Among all such S, choose the one of minimum size, call it S_{0}. Let T be another set containing w. By the choice of S_{0}, either $T \supset S_{0}$, or there exist $t \in T-S$, and $s \in S-T$ (possibly $t=x$). In the latter case, $\{x, s, t\}, S, T$ form a triangle (replace $\{x, s, t\}$ by $\{s, t\}$ if $t=x$). We may therefore assume that every set in \mathcal{A}^{\prime} containing w also contains S_{0}. Hence $2^{n-2}=\operatorname{deg}_{\mathcal{A}^{\prime}}(w) \leq 2^{n-\left|S_{0}\right|-1}$ from which we conclude that $S_{0}=\{s\}$, and $E \cup\{w\} \in \mathcal{A}^{\prime}$ for every $E \subset X \backslash\{w, s\}$. Since $|X| \geq 4$, there exist distinct a, b for which $\{w, s, a\}$ and $\{w, s, b\}$ lie in \mathcal{A}^{\prime}. Together with $\{x, a, b\}$ (or just $\{a, b\}$ if $a=x$ or $b=x$) this once again forms a triangle.

Case 2: There exists a partition of $X \backslash\{w\}$ into two nonempty sets Y and Z such that no member of \mathcal{A}^{\prime} in $X \backslash\{w\}$ contains an element of both Y and Z. By induction, at most $2^{|Y|}-1$ elements of \mathcal{A}^{\prime} are contained in $Y \cup\{w\}$, and similarly for Z. The number of sets which contain an element of Y and an element of Z is, by the choice of Y and Z, at most $2^{n-1}-1-\left(2^{|Y|}-1\right)-\left(2^{|Z|}-1\right)$. Therefore

$$
\left|\mathcal{A}^{\prime}\right| \leq\left(2^{|Y|}-1\right)+\left(2^{|Z|}-1\right)+\left(2^{n-1}-1-\left(2^{|Y|}-1\right)-\left(2^{|Z|}-1\right)\right)=2^{n-1}-1 .
$$

If equality holds, then by induction there exist $y \in Y \cup\{w\}, z \in Z \cup\{w\}$ with $(Y \cup\{w\})_{y}^{(\geq 2)} \cup$ $(Z \cup\{w\})_{z}^{(\geq 2)} \subset \mathcal{A}^{\prime}$. Since $|X| \geq 4$, we may assume by symmetry that $|Y| \geq 2$. We next show that $y=w$. Observe that for every set $S \subset X \backslash\{w\}$ containing an element of both Y and Z, we have $S \cup\{w\} \in \mathcal{A}^{\prime}$. If $y \neq w$, then $\{y, a\} \in \mathcal{A}^{\prime}$ for some $a \in Y \backslash\{y\}$. The set $\{y, a\}$ together with $\{y, w\}$ and $\{w, a, b\}$ for some $b \in Z$ forms a triangle. Consequently $y=w$, and $z=w$ as well unless $Z=\{z\}$. But in this case $(Z \cup\{w\})_{z}^{(\geq 2)}=(Z \cup\{w\})_{w}^{(\geq 2)}$, therefore $\mathcal{A}^{\prime}=X_{w}^{(\geq 2)}$.

Part II: $d \geq 3$

Define a function f on the positive integers by $f(1)=f(2)=f(3)=1$, and for $n \geq 4$,

$$
\begin{equation*}
f(n)=\max \left\{0, f(n-3)+d-2^{n-4}\right\} . \tag{*}
\end{equation*}
$$

It is easy to see that if $n \geq 4$, and $f(n) \geq 0$, then

$$
f(n)=1+\left(\left\lceil\frac{n}{3}\right\rceil-1\right) d-\sum_{i=0}^{\lfloor(n-4) / 3\rfloor} 2^{n-4-3 i} .
$$

Set $n_{d}=\log _{2} d+\log _{2} \log _{2} d+2$. An easy calculation now shows that $f(n)=0$ whenever $n \geq n_{d}$ and $f(n)>f(n-3)+d-2^{n-4}$ when $n>n_{d}$.

In this part of the proof, we proceed by induction on $n \geq 1$, with the following hypothesis: Let $\mathcal{A}^{\prime} \subset X^{(\geq 2)}$ contain no non-trivial intersecting family of size $d+1$. Then $\left|\mathcal{A}^{\prime}\right| \leq 2^{n-1}-1+f(n)$. For $n \leq 3$, the result is true as

$$
\left|\mathcal{A}^{\prime}\right| \leq\left|X^{(\geq 2)}\right|=2^{n}-n-1 \leq 2^{n-1}-1+f(n)
$$

Now suppose that $n \geq 4$. By Part I, we may assume \mathcal{A}^{\prime} contains a triangle $\mathcal{F}=\left\{F_{1}, F_{2}, F_{3}\right\}$, otherwise the proof is complete.

Let x, y, z be elements in $F_{1} \cap F_{2}, F_{2} \cap F_{3}$ and $F_{3} \cap F_{1}$ respectively. Then at most d sets in \mathcal{A}^{\prime} intersect $\{x, y, z\}$ in at least two points, otherwise \mathcal{F} together with another $d-2$ of these sets forms a non-trivial intersecting family of size $d+1$. The total number of sets in \mathcal{A}^{\prime} intersecting $\{x, y, z\}$ is therefore at most $3 \cdot 2^{n-3}+d$. Let $\mathcal{A}^{\prime \prime}=\mathcal{A}^{\prime}-\{x, y, z\}$. Then

$$
\left|\mathcal{A}^{\prime}\right| \leq\left|\mathcal{A}^{\prime \prime}\right|+3 \cdot 2^{n-3}+d
$$

As $\mathcal{A}^{\prime \prime}$ contains no non-trivial family of size $d+1$, the induction hypothesis shows $\left|\mathcal{A}^{\prime \prime}\right| \leq 2^{n-4}-$ $1+f(n-3)$. This gives

$$
\begin{aligned}
\left|\mathcal{A}^{\prime}\right| & \leq 2^{n-4}-1+f(n-3)+3 \cdot 2^{n-3}+d \\
& =2^{n-1}-1+f(n)-\left(f(n)-f(n-3)-d+2^{n-4}\right) \\
& \leq 2^{n-1}-1+f(n), \quad(* *)
\end{aligned}
$$

where the last inequality follows from $(*)$. By the choice of n_{d}, we know that $f(n)=0$ for $n \geq n_{d}$, so $\left|\mathcal{A}^{\prime}\right| \leq 2^{n-1}-1$ for $n \geq n_{d}$, completing the proof of the upper bound in Theorem 7 .

Now suppose that $\left|\mathcal{A}^{\prime}\right|=2^{n-1}-1$ and $n>n_{d}$. Then the inequality ($* *$) is strict. This gives the contradiction $\left|\mathcal{A}^{\prime}\right|<2^{n-1}-1$. Consequently \mathcal{A}^{\prime} contains no triangle and Part I of the proof applies to give the case of equality.

5 Acknowledgments

Most of the work for this paper was done while both authors were Postdoctoral Researchers in the Theory Group at Microsoft Research. The authors also thank a referee for very helpful comments and minor corrections on an earlier draft, and Yi Zhao for carefully reading the proof of Theorem 7.

References

[1] Baranyai, Zs., On the factorization of the complete uniform hypergraph. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 91-108. Colloq. Math. Soc. Janos Bolyai, 10 North-Holland, Amsterdam, 1975.
[2] Bermond, J.-C., Frankl, P., On a conjecture of Chvátal on m-intersecting hypergraphs. Bull. London Math. Soc. 9 (1977), no. 3, 310-312.
[3] Chvátal, V., An extremal set-intersection theorem. J. London Math. Soc. (2) 9 (1974/75), 355-359.
[4] Bollobás, B., Duchet, P., On Helly families of maximal size. J. Combin. Theory Ser. B 35 (1983), no. 3, 290-296.
[5] Bollobás, B., Duchet, P., Helly families of maximal size. J. Combin. Theory Ser. A 26 (1979), no. 2, 197-200.
[6] Csákány, R., Kahn, J., A homological approach to two problems on finite sets. (English. English summary) J. Algebraic Combin. 9 (1999), no. 2, 141-149.
[7] Erdős, P., Topics in combinatorial analysis. Proc. Second Louisiana Conf. on Comb., Graph Theory and Computing (R. C. Mullin et al., Eds.) pp 2-20, Louisiana State Univ., Baton Rouge 1971.
[8] Erdős, P., Ko, H., Rado R., Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12 (1961) 313-320.
[9] Frankl, P., On Sperner families satisfying an additional condition. J. Combinatorial Theory Ser. A 20 (1976), no. 1, 1-11.
[10] Frankl, P., On a problem of Chvátal and Erdős on hypergraphs containing no generalized simplex. J. Combin. Theory Ser. A 30 (1981), no. 2, 169-182.
[11] Frankl, P., Füredi, Z., Exact solution of some Turán-type problems. J. Combin. Theory Ser. A 45 (1987), no. 2, 226-262.
[12] O. P. Lossers, P. Erdos and E. Milner: P. 190, Canad. Math Bull 16 (1973), 145-146.
[13] Mulder, H. M., The number of edges in a k-Helly hypergraph. Combinatorial mathematics (Marseille-Luminy, 1981), 497-501, North-Holland Math. Stud., 75, North-Holland, Amsterdam, 1983.
[14] Ray-Chaudhuri, D., Wilson, R., The existence of resolvable block designs. Survey of combinatorial theory (Proc. Internat. Sympos., Colorado State Univ., Fort Collins, Colo., 1971), pp. 361-375. North-Holland, Amsterdam, 1973.
[15] Tuza, Zs., Helly-type hypergraphs and Sperner families. European J. Combin. 5 (1984), no. $2,185-187$.
[16] Tuza, Zs., Helly property in finite set systems. J. Combin. Theory Ser. A 62 (1993), no. 1, $1-14$.

[^0]: *Department of Mathematics, Statistics, \& Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607-7045; email: mubayi@math.uic.edu
 ${ }^{\dagger}$ Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON N2L 3G1, Canada; E-mail: jverstra@math.uwaterloo.ca

 2000 Mathematics Subject Classification: 05C35, 05C65, 05D05
 Keywords: Extremal set theory, intersecting family, Baranyai's theorem
 Accepted, Combinatorica

