Proof of a Conjecture of Erdos on triangles in

set-systems

Dhruv Mubayi * Jacques Verstraéte!

November 11, 2005

Abstract

A triangle is a family of three sets A, B, C such that ANB, BNC, CN A are each nonempty,
and ANBNC = (. Let A be a family of r-element subsets of an n-element set, containing
no triangle. Our main result implies that for > 3 and n > 3r/2, we have |A| < (::11) This
settles a longstanding conjecture of Erdés [7], by improving on earlier results of Bermond,
Chvatal, Frankl, and Fiiredi. We also show that equality holds if and only if A consists of all
r-element subsets containing a fixed element.

Analogous results are obtained for nonuniform families.

1 Introduction.

Throughout this paper, X is an n-element set. For any nonnegative integer r, we write X (") for
the family of all r-element subsets of X. Define X(E=r) = Uoging(i) and X7 = Urgian(i).
For ACc X5 andz € X, welet A, = {Ac A:zc A}

A triangle is a family of three sets A, B, C such that AN B, BNC, C'N A are each nonempty, and
ANBNC = 0. Let f(r,n) denote the maximum size of a family A C X(") containing no triangle.
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A special case of Turan’s theorem (proved by Mantel) implies that f(2,n) = |n?/4]. Motivated
by this result, Erdés [7] asked for the determination of f(r,n) for r > 2, and conjectured that

n—1

f(r,n) = (r—l) for n > 3r/2. (1)

(Actually, in [7] it is stated more as a question, and n > 3r/2 is not explicitly mentioned, but

later, e.g. in [3, 10], (1) is referred to as a conjecture of Erdés’.)

This conjecture attracted quite a few researchers. It was proved by Chvétal [3] for » = 3. In
fact, he proved the more general statement that if n > r+2 > 5, A c X, and |A| > (2:11),
then A contains r sets A1, ..., A, such that every r — 1 of them have nonempty intersection, but
N;A; = (0. This configuration is also called an (r — 1)-dimensional simplex. Chvétal generalized

(1) as follows.

Conjecture 1 (Chvétal) Let r > d+1>3, n>r(d+1)/d and A C X", If A contains no
d-dimensional simplex, then |A] < (fj) Equality holds only when A = XQ(CT), for some x € X.

Recently Csédkany and Kahn [6] gave a different proof of the » = 3 case of (1) using Homology
theory. Frankl [9] settled (1) for 3r/2 < n < 2r, and then Bermond and Frankl [2] proved
(1) for infinitely many n, r, where n < r2 . About five years later, Frankl [10] settled (1) for
n > no(r), where no(r) is an unspecified but exponentially growing function of r. In 1987, Frankl
and Firedi [11] proved Conjecture 1 for n > ng(r). Frankl [10] had earlier verified Conjecture 1
for (d+ 1)r/d < n < 2r, using Katona’s permutation method. Thus both (1) and Conjecture 1
remained open in the range 2r < n < ng(r), where no(r) is exponential in 7. Also, the uniqueness

of the extremal configuration remained open for 3r/2 < n < ng(r) in both (1) and Conjecture 1.

Our main result settles (1) for all n > 3r/2 while also characterizing the extremal examples. A
nontrivial intersecting family of size d + 1 is a family of d + 1 distinct sets A1,..., Ag11 that have

pairwise nonempty intersection, but N;A4; = 0.

Theorem 2 Letr >d+1>3 andn > (d+1)r/d. Suppose that A C X ™) contains no nontrivial
intersecting family of size d + 1. Then |A] < (77}:11) Equality holds if and only if A = x for

somezx € X.

Note that the special case d = 2 above implies (1). Every d-dimensional simplex is a nontrivial
intersecting family of size d 4+ 1, and in this sense Theorem 2 can be thought of as a solution to a

weakening of Conjecture 1.



A hypergraph F satisfies Hg, the Helly property of order d, if every subfamily of F with empty
intersection contains a subcollection of at most d sets with empty intersection. A related problem
is to determine the maximum size of an F € X (") that satisfies H;. Theorem 2 implies that for
d = 2, such an F satisfies | F| < ("~}
by several authors (see Bollobds and Duchet [4, 5], Tuza [15, 16], and Mulder [13]).

), however, stronger results for this problem were obtained

The proof of Theorem 2 actually gives a little more: we may allow r < d < min{ (QT 2) (ﬁj)}

Theorem 2 is not valid when r = 3 and d > 10 however, as the next result attests (see Section 4):

Theorem 3 Let A C X®) contain no non-trivial intersecting family of size d+1 > 8. Then

~1
(d+2w_1 {0#+$J4 Vd+4w—1 n 1<Fﬂ 1 > n
< <
Al = ({ 3 * 3 * 3 -3 * d+3
Furthermore, for d +1 > 11 and infinitely many n, there exists such a family A with |A| >

(3151 -3)©)-

We conjecture that for » > 4 and n sufficiently large, the phenomenon exhibited by Theorem 3

does not arise:
Conjecture 4 Let r >4, d > 2, and let A € X" contain no non-trivial intersecting family of
size d+1. Then, provided n is sufficiently large, |A| < (:f:ll) with equality if and only if A = x

for some x € X.

The following table summarizes the above results for r = 3:

Size ‘ Lower Bound ‘ Upper Bound
3<d+1<7]| (") )

d+1=8 ("2) (3)

d+1=9 (") 1t (3)

d+1=10 | (") ()

d+1>11 5151 -D() | 5051+ 73 ("3

It would be interesting to determine the exact bounds for d + 1 > 11. In the course of the proof
of the lower bound in Theorem 3, it is proved that a Steiner (n, 3,k — 1)-system, when it exists,
contains no non-trivial intersecting family of size 3k + 1 whenever k > 2. We conjecture that this

is the extremal family for » = 3 and k > 2:



Conjecture 5 Let n be sufficiently large and let k > 2. Let A € X®) contain no non-trivial
intersecting family of size 3k + 1, and suppose there exists a Steiner (n,3,k — 1)-system. Then
|A| < 3(k —1)(3), with equality if and only if A is such a Steiner system.

Non-uniform families: It is natural to consider these extremal problems for families that are not
uniform. Perhaps the most basic statement in this context is the analogue of the Erdds-Ko-Rado

Theorem.

If A XS s intersecting, then |A| < 271,

The non-uniform analogue of Erdds’ conjecture about triangles in uniform families was asked by
Erdés and proved by Milner [7].

Theorem 6 (Milner) Suppose that A C X5 is triangle free. Then |A| < 2"~ +n.

Since Milner’s proof has not been published, we give our own short proof of this result (see also
Lossers [12]). Our proof also yields that equality holds if and only if A = Xg(czz) UX® U {0} for
some x € X; this fact seems not to have been mentioned in the previous literature. We also prove

the non-uniform analogue of Theorem 2 (see Section 4).

Theorem 7 Let d > 2 and n > logyd + log, logy d + 2. Suppose that A C X (") contains no
non-trivial intersecting family of size d + 1. Then |A| < 2" 1 4+ n. Equality holds if and only if
A=xFPuxMy {0} for some x € X.

If n < |logyd], then trivially the bound |A| < 27! + n in Theorem 7 does not hold. It can
be shown that this remains true for [logy d| + 1 and |log, d| + 2. However, once n > [logy d| +
logy log, d + 2, Theorem 7 applies. It would be interesting to determine if the log, logy d term in

Theorem 7 can be replaced by an absolute constant.

2 Proof of Theorem 2.

We use the notation [n] = {1,...,n} and [a,b] = {a,a +1,...,b—1,b}. Let A be a family of
r-sets with |A| > (Zj), containing no non-trivial intersecting family of size d + 1. We prove that
A consists of all sets containing a fixed element of X. The proof, for n > (d + 1)r/d, is split into

three parts;



Part I n<2randn=~k(n—r)+ ¢ with k € [2,d] and some ¢ € [n —r — 1],
Part I n < 2r and n = k(n —r) with k € [3,d + 1],
Part III n > 2r > 8.

Note that for (d + 1)r/d < n < 2r — 1, there exist k € [2,d] and ¢ € [n — r — 1] such that
n=k(n—r)+lorn=(k+1)(n—r). Thus Parts I and II include all these values of n.

Part I uses Katona’s permutation method, Part II uses Baranyai’s Theorem [1] on partitioning
X () into matchings, and in Part III we proceed by induction on n. Frankl [9] established the
upper bound |A| < (:‘:11) for (d+ 1)r/d < n < 2r — 1; however, it is substantially more difficult

to establish the case of equality in Theorem 2, which we achieve in Parts I and II of our proof.
Part I: n = k(n —r) + L.

In this part, we consider the case n < 2r and n = k(n—r)+/, for some k € [2,d] and £ € [n—r—1].
For convenience, let X = [n] and fix a (cyclic) permutation 7 of X. Let @; denote the interval
{i,i+1,...,i+r—1} (modulo n), and let A, denote the subfamily of .4 consisting of those sets
A € A such that 7(Q;) = A for some i:

Ar ={m(Qi) : m(Qi) € A}.

Claim 1. Let m be any permutation. Then |A;| < r with equality if and only if

there exists m such that

ATK‘ = {W(Qm)7 W(Qm-f—l)a s vw(Qm-ﬁ-r—l)}'

Proof. It is sufficient to prove Claim 1 for the identity permutation, since we may relabel X.
Therefore A, = {Q; : Q; € A}. Without loss of generality, @, € A;. For j € [n —r], let
P; = {i:i=j(mod n—r)}N[n], together with {n}if j € [(+1,n—r]. Thus |Pj| <k+1<d+1.
For each j € [n— 7], there is an i € P; such that Q; ¢ Ay, otherwise Niep, Qi = (. Thus Q; € Ar

for at least n — r values of 4, so |A;| < r.

Equality holds only if there is a unique z; such that Qu;(n—r)1; & Ax for all j € [n —r]. We now
show 1 > z9 > ... > z,_ > x1 — 1. Let us illustrate the proof of this fact using Figures 1 and

2 below, where y; = z;(n — r) + j, and the box (4, j) represents the integer (i — 1)(n —r) + j:



If x; < zj4;1 for some j € [¢], then, since £ < n —r — 1, the intersection of the k + 1 intervals
Q(i—1)(n—r)+j> Where (7, j) is a shaded box in Figure 1, is empty (this is the only place in Part I
where we use £ < n —r — 1; the case £ = n —r — 1 is the content of Part II). This contradiction
implies that z; > x;41. In a similar way, x; > ;41 for j € [( +1,n — 1], using Q,, € A,. Finally,
if z,,— < w1 — 1, then the intersection of the intervals Q(_1)(n—r)+;, With (i,) a shaded box in

Figure 2, is empty, a contradiction. This proves that A, has the required form.
Without loss of generality, we assume that for the identity permutation ¢, A, = {Q1,Q2,...,Qr}.
Claim 2. For each permutation m, Ay = {n(Q1),7(Q2),...,7(Qr)}.

Proof. Each permutation 7 of X \{r} is a product of transpositions. Therefore it suffices to show

that if 7 is a transposition in which r is a fixed point, then

AT = {T(Q1)7 T(QQ)v o 7T(QT’)}'
Suppose that 7 transposes t and t + 1, with r» ¢ {t,t + 1}. Then Claim 1 implies that A, =
{1(Qn), T(Qm+1), - -, T(Qmir—1)} for some m € [n]. We show below that m = 1.

Case 1. n & {t,t +1}: Here 7(Q1) = [r] = Q1 € A, and 7(Q,,) = {1,...,r = 1,n} = Q, & A.

Therefore m = 1.



Case 2. t+ 1 = n: In this case 7(Q;) = Q; € A for each i € [r] \ {n — r}. Consequently
T(Qn—r) € A as well, and therefore m = 1.

Case 3. t =n: If n < 2r — 1, then 7(Q,) = Q, € A and 7(Qr+1) = Qr+1 € A. Therefore m = 1.
If n =2r —1, then 7(Q;) = Q; € A for i = 2,...,r — 1. This leaves the posibilities m = 1,2, n.
However, 7(Qr+1) = Qr41 € A, and 7(Qr) = Qn ¢ A. Consequently, {7(Q1),7(Qr)} C A and

m = 1 again.

We now complete Part I. For each A € A, there are r!(n — r)! families A, containing A. The

total number of cyclic permutations of X is (n — 1)!/2. By Claim 1, |A;| < r and therefore
bri(n — r)1A] < dr(n— 1)L

This establishes the upper bound |A| < (77}:11) By Claim 1, equality holds if and only if for
every cyclic permutation 7 of X, we have A, = {w(Q1),7(Q2),...,7(Qr}. Set x = r. For any
A c (X\{z})"~V, we may thus choose such a cyclic permutation 7 so that 7(Q;) = A U {z}.
Therefore AU {z} € A, and A = X" is the required family.

Part II: n = k(n — 7).

The argument here is different to that of Part I; we use a result of Baranyai [1], stating that
the family X () may be partitioned into perfect matchings when r divides n. This result is only
needed for the characterization of the extremal family A. Recall that A = {X\A: A € A}.

Claim 3. If A € X"\ A, then (X\A)"") c A.

Proof. Pick A" € (X\A)™ ). We will show that A € A. By Baranyai’s Theorem, there
is a partition of X" into perfect matchings My, ..., M; of size k, where ¢t = %(nl‘r) By
relabelling X if necessary, we may assume that M; D {4, A’}. Since A has no perfect matching,

and n = kr/(k—1),
— k—1 n k—1(n k—1nf{n-1 n—1
’Aé(k_l)t:k<n—r) :k:<7“> :kr<r—1> - (T—1>'
Therefore |A| = |A|

("~1), and [ANM;| =k — 1 for all i. Since M; D {A, A’} and A ¢ A, we
must have A’ € A. Therefore Claim 3 is verified.



We now complete the proof of Theorem 2 for n = k(n — r). Let B = X"\ A. Then n(B) =
%r >2(n—r)as k> 2and n < 2r. Furthermore, B is an intersecting family, by Claim 3,
and |B] = (," ) — [A| = (,">',). By Theorem 1, B = X" for some x € X. This shows that

n—r—1

A= Xg(cr), and Part IT is complete.

Part III: n > 2r.

Throughout Part III, we assume r > 4. Addition of technical details in Claim 3 in the proof
below accommodates the case r = 3. However, a short proof in this case was presented by weight

counting techniques in Frankl and Fiiredi [11], which we revisit in Section 5.
We need the following notations.

For A C X, let V(A) = Upeq A and n(A) = [V(A)|. For Y € X, we define A—Y = {A € A:
ANY = 0}. We also write 4 = {X\A: A € A}. The following five definitions and the associated
notations will be used repeatedly throughout the paper:

Sum of Families. The sum of families Ay, As, ..., A, denoted >, A;, is the family of all sets in
each A;. Note that > A; may have repeated sets, even if none of the A; have repeated sets.

Trace of a Set. The trace of a set Y in A is defined by tr(Y) =tra(Y) ={A C X : AUY € A}.
We define tr(A) = Y, cx tr(z).

Degree of a Set. The edge neighborhood of a set Y isT'(Y) =Ty(Y)={4A € A: ANY #
) and A # Y}, and the degree of Y is deg4(Y) = [T4(Y)]. If Y = {y}, then we write y instead

of {y}, and deg4(y) = [Ta(y)| = [Ayl.
The families S, and L,. Let A be an r-uniform family of sets in X and z € X. Then we define
Sy =AY etr(z): |tr(Y)| =1} and L, = tr(x)\S,.

We write S = Y, cx Sy and £ = > cx L, = tr(A)\S. Note that if A € £, then there exists
y # x such that A € L,,.

Paths and Connectivity. A path in A is a family P of sets Ay, Ag, ... such that A; N A; # 0
if and only if |i — j| < 1. Family A is connected if every pair of vertices in V(.A) is contained in

some path in A. A component of A is a maximal non-empty connected subfamily of A.

We begin with the following simple lemma. Recall that B—S={4Ae€B: ANS =0}.



Lemma 8 Let By be a finite family of sets. Then there exist disjoint sets Sy, S1, ..., Si—1 € V(Bo),
such that the families B; = By — U;;%]Sj fori=1,...,t satisfy

(1) S; € B; and degg,(S;) < d —1 for every i <t,
(2) degg,(S)>d—1 for every S € B;.

Proof. For i > 0, if there exists a T' € B; with degg, (T') < d — 1, then set S; = T'. Form B,y and
repeat for ¢ + 1. If there is no such T, then set ¢ =t and stop. U

For n > 2r — 1, we proceed by induction on n. The base case n = 2r — 1 has been proved in
Part I. Suppose that n > 2r, |A| = (:f:ll), and A contains no nontrivial intersecting family of size
d+ 1. We will prove that A = Xl(,r) for some y € X. This implies that if A’ ¢ X () contains

n—1

no nontrivial intersecting family of size d + 1, then |A’| < (77;), by the following argument: If
|A'| > ("~]), then A’ contains an r-set R in addition to Xl(,r) by our assumption. Now consider
the subfamily consisting of all r-sets of Xl(f) intersecting R as well as R itself. This is clearly a

nontrivial intersecting family, and it has size
1 1
(I ) [ ">14r>d+1
r—1 r—1
Consequently, |A'| < ("~}) as claimed.

Our approach is to show that there exists a vertex € X with deg4(z) < (?:22) Subsequently,
the family A — {z} has size at least (7;:11) - (?:3) = (’;:f) By induction, equality holds and
A—{z} = ngr) for some y € X it is easy to see that every set in A containing x also contains y

and A is the required family. Let us show that deg(x) < ("~2

r—2) if |£;] is a maximum.

Claim 1. |, > ("73).

Proof. Note that r|A| = 37 deg(y) = 32, [Sy| + 3, |£y|. By the choice of z, this is at most
|S| + n|Ls|. Also, SN L, =0, 50 |S| < (") —|Ls|. Consequently

(o) () (i)

where the last inequality follows from a short computation and the fact that r > 4. Dividing by

(n=1)|L.] > 7lA| - (TL)

n—3) )

n — 1, we obtain |L,| > (17}

Applying Lemma 8 to L, = By, let (Sp, S1,-..,S:—1) be the sets in V(L,) satisfying (1) and (2),
and let B; be as in Lemma 8. Note that B; # (), since otherwise
t—1

Lo < (degp,(Si) +1) < t(d—1) <
1=0

::i(r—2)<n—1, (2)



contradicting Claim 1. Let Ko, Ky, ..., Ks be the components of B;. We let K. denote the union
of IC; and the family of all sets in S, intersecting V' (K;).

Claim 2. The family K| is an intersecting family.

Proof. Suppose, for a contradiction, that K} contains disjoint sets Ao, By. Since K; is connected,
K; U {Ag, By} is also connected. Choose a path Ag, Aj, Ag,..., By in K; U {Ag, By} (possibly
Az = Bp). Then A; € K;. Lemma 8 part (2) implies that degy, (A1) > d — 1, hence (if d > 4)
there exist sets C1,Chy,...,Cq_3 € K;\{Ap, A2} each of which intersects A;. By definition of £,
there exists y € X\{z} such that A; € £,. Consequently,

{AQUI’,AlUl‘,AgUl’,ClU.%',...,Cdngx,AlUy}

is a non-trivial intersecting family of size d + 1 in A, since Ag N Ay = (), a contradiction.

Claim 3. £, =Ky and n(L;) >n — 2.

Proof. We first show t = s = 0, so that £, = Kg. For a contradiction, suppose ¢ > 0 or s > 0.
By Claim 2, K; C K} is an intersecting family of (r — 1)-sets. Therefore, for n(/C;) > 2(r — 1), the

Erdés-Ko-Rado theorem shows |K;| < ("(lfi)gl) < ("T(g)) If n(K;) < 2r — 3, then |K;| < ("(’Ci)),

r—1
and this is at most ("T(g)) Since n(K;) > r —1 for i < s, convexity of binomial coefficients yields

- ~ (n(K; n(K > (n(K; on(K)] —s(r—1 S r—
sier< 3 (19) = (99) 5 (1) < (P )+ 5 00)

Recalling that n(L;) = > ;_qn(K;) + t(r — 1), we obtain

ZS: Kl < <n(£x) —s(r—1)—t(r — 1)) +s(r—1).
i=0

r—2
By the argument giving the first two inequalities of (2), and d — 1 < r — 1, we have

s t—1 — (s r—
|Lo| = Z IICi| + Z(degBi(Si) +1) < <n(£x) i _+2t)( 1)> +s(r—1)+t(r—1).
i=0 i=0

If s+t > 1 then, by convexity of binomial coefficients,

IL4] < ("wm) - (r_1)> Fr-1)< ("_r> Y (r—1).

r—2 r—2

10



Asn > 2r and r > 4, this contradicts Claim 1. Thus s = ¢ = 0, and L, consists of one component,
Ko.

We now show that n(L;) > n — 2. By the arguments above, |ICo| < (”T(Eg)) Therefore, by Claim
1, n(Ko) =n(L;) > n — 2. This completes the proof of Claim 3.

We now complete Part III and the proof of Theorem 2, by showing that deg(z) < (:f:g) By
Claim 2, K, is an intersecting family. Since n(Ko) > n—2 >n —r + 1, tr(z) = K so tr(z) is
itself an intersecting family of (r — 1)-sets. As n —1 > n(K{) > n(Ko) > n—2 > 2(r — 1), the

Erdés-Ko-Rado theorem implies that

deg(w) = [ICy| = [tr()] < (Zj).

This completes the proof of Theorem 2. O

3 Proof of Theorem 3.

Part III of the proof of Theorem 2 can be extended to the case r = 3 and 2 < d < 6 by addition of
some technical details. However, Chvatal [3] and Frankl and Fiiredi [11] already settled the case
r =3 and d = 2 so we do not consider this case here. In fact, from the proof below, it follows
that for 2 < d < 6 and n > 15, a family A € X©® containing no non-trivial intersecting family of

size d + 1 has at most (";') members, with the equality as in Theorem 2.

We now prove Theorem 3, employing the weight counting methods of Frankl and Fiiredi.

Proof of Theorem 3. Let A ¢ X®) and suppose A contains no non-trivial intersecting family
of size d + 1. Following Frankl and Fiiredi, the weight of a set A € A is defined by

1
w(A) = _—,
W= 2 el
Then
1
dowl) = > >
AcA AEA {zy}CA [tr(z, )|

IN

1=

{z,y}tcA

Equality holds if and only if every pair in X is contained in some set in A.

11



As A contains no non-trivial intersecting family of size d + 1, |tr{z,y}| = 1 for some {z,y} € A
or 3, yea [tr{z,y}| < d+ 2. This implies that for all A € A,

otz i [ ¢ 452+ 07

For d > 7, the second term is smaller (in fact, less than 1). Therefore

5 oz (1924527 + 552
AcA

Together with Y- 4 4 w(A) < (3), this gives the upper bound on |A] in Theorem 3, which is for
d>T.

For the lower bound in Theorem 3, it suffices to show that every non-trivial intersecting family of
size d + 1 > 11 contains a pair in at least (%] of its edges. Then a Steiner (n, 3, [%] — 1)-system,

for those n for which such a structure exists, does not contain such an intersecting family.

Lemma 9 Let F C X®) be a non-trivial intersecting family with |F| > 11. Then there exist
distinct elements x,y € X such that

terta 9} > 5] - 1).

Proof. For a,b € X, we let d(a,b) = |trr{a,b}|. First suppose that there exist x,y € X
with d(z,y) > 3. Now let u,v,w € trg{z,y}. Throughout the proof, we assume d(z,y) <
[%(|.7—"| —1)] — 1, otherwise we are done. Let L, = trr(z) — {y} = {A € tre(z) : y € A} and let
L,=trr(y) —{z} ={A e trr(y) : = € A} Since F is an intersecting family,

ANB#( for every A€ L, and B € L, (x).

Case 1: L, contains a matching of size three.

In this case, L, consists of three stars with distinct centers in X. By (x), every pair in L, intersects
all three centers. This implies L, = (). As F is a non-trivial intersecting family, there is a triple
in F disjoint from z. Since L, = () and d(x,y) > 3, this triple must be {u,v, w} and d(z,y) = 3.
Since F is intersecting, the centers of the three stars must also be u, v, w. Now every F' € F —{y}

with F # {u,v,w} contains x. Therefore, assuming d(z,u) > d(z,v) > d(z,w), we find

12



(e, u) 2 S(1F] = 4) +1= 3 (1F] - 1).

Lo =

This completes the proof in Case 1.

Case 2: L, and L, contain no matching of size three.

It is not hard to see by () that |L,|+|Ly| < 2([%(]}"] —1)] —1)+1, with equality if and only if L,
consists of a pair of stars of size [(|F|—1)/3] — 1 with distinct centers a,b and L, consists of the
pair {a,b}. Then |F|—|L;|—|Ly| —d(z,y) > 2, unless |F| =3k +2, kK > 3 and L, and L, are as
described above. By (x), any triple in F —{z,y} contains u,v and w. This shows |F —{z,y}| =1,
and therefore |F| = 3k + 2, k > 3. In this case, {u,v,w} € F and a,b € {u,v,w}, since F is
intersecting. Therefore d(a,z) > 4 (and also d(b,z) > 4), completing the proof in Case 2.

If every pair a,b € X has d(a,b) < 2, then the arguments in Cases 1 and 2 still apply to give a
contradiction with |F| > 11, since in this case |F| = 8. This completes the proof of the Lemma.
O

4 Proof of Theorem 7.

Let A be a family of subsets of X containing no non-trivial intersecting family of size d + 1. We
prove Theorem 7 by showing that A’ = AN X(Z2) has size at most 2! — 1, with equality if and
only if A" = Xg(c22) for some x € X. Theorem 7 is proved in two parts. Part I deals with the case
d = 2, by induction on n > 1. In Part II, we use Part I to prove Theorem 7 for d > 3.

Part I: d =2

Theorem 7 is easily verified for n < 3. Now let n > 4 and w € X.

Case 1: For every partition of X\{w} into two non-empty sets Y and Z, there exists a set
Ae A —{w} such that ANY # () and AN Z # (. Then, for each partition of X\{w} into sets
Y and Z, either Y U{w} ¢ A or Z U {w} ¢ A" — otherwise A’ contains a triangle. Therefore
deg 4 (w) < 2772, By induction, A” = A’ — {w} has size at most 272 — 1, with equality if and
only if A” = (X\{wh)F? for some z € X — {w}. Thus

|A'| = deg g (w) + JA"| < 2" 24 (272 1) =21 — 1.
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Now suppose that equality holds above. We will show that every set in A’ containing w also
contains z. Suppose on the contrary that w € S € A" and z ¢ S. Among all such S, choose the
one of minimum size, call it Sy. Let T be another set containing w. By the choice of Sy, either
T D Sy, or there exist t € T — S, and s € S — T (possibly t = x). In the latter case, {xz,s,t},S,T
form a triangle (replace {z, s, t} by {s,t} if t = x). We may therefore assume that every set in A’
containing w also contains Sy. Hence 272 = deg 4 (w) < 27~ 1%I=1 from which we conclude that
So = {s}, and EU{w} € A’ for every E C X\{w, s}. Since |X| > 4, there exist distinct a,b for
which {w, s,a} and {w,s,b} lie in A’. Together with {x,a,b} (or just {a,b} if a = z or b = z)

this once again forms a triangle.

Case 2: There exists a partition of X \{w} into two nonempty sets Y and Z such that no member
of A" in X\{w} contains an element of both Y and Z. By induction, at most 2I¥| — 1 elements of
A’ are contained in Y U {w}, and similarly for Z. The number of sets which contain an element
of Y and an element of Z is, by the choice of Y and Z, at most 271 —1 — (2V1 —1) — (2/41 —1).

Therefore

Wl -n+eEA-n+E —1-eM -y - @ -y =2 -1

If equality holds, then by induction there exist y € Y U {w},z € Z U {w} with (Y U {w})g(lzz) U
(ZU {w})gZQ) c A'. Since |X| > 4, we may assume by symmetry that |Y| > 2. We next show
that y = w. Observe that for every set S C X\{w} containing an element of both Y and Z, we
have SU{w} € A". If y # w, then {y,a} € A’ for some a € Y\{y}. The set {y,a} together with
{y,w} and {w,a,b} for some b € Z forms a triangle. Consequently y = w, and z = w as well
unless Z = {z}. But in this case (Z U {w}),(222) =(ZU {w})i(uZQ), therefore A’ = X2,

Part II: d > 3
Define a function f on the positive integers by f(1) = f(2) = f(3) = 1, and for n > 4,
f(n) = max{0, f(n—3)+d—2"""}. (%)

It is easy to see that if n > 4, and f(n) > 0, then

=1+ ([1]-1)a- % s

1=0

Set ng = logy d + log, logy d + 2. An easy calculation now shows that f(n) = 0 whenever n > ny
and f(n) > f(n —3) +d —2""* when n > ng.
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In this part of the proof, we proceed by induction on n > 1, with the following hypothesis: Let
A’ € X(Z2) contain no non-trivial intersecting family of size d + 1. Then |A’| < 2"~ 1 — 1+ f(n).

For n < 3, the result is true as
A< |XED|=2" —n—1<2""' — 14 f(n).

Now suppose that n > 4. By Part I, we may assume A’ contains a triangle F = {F}, F5, F3},

otherwise the proof is complete.

Let x,y, z be elements in Fy N Fy, F5 N F3 and F3 N F| respectively. Then at most d sets in A’
intersect {z,y,z} in at least two points, otherwise F together with another d — 2 of these sets

forms a non-trivial intersecting family of size d + 1. The total number of sets in A’ intersecting
{x,y, 2} is therefore at most 3 - 2" 3 +d. Let A” = A’ — {x,y, z}. Then

A< A" +3-2"73 1 d.

As A" contains no non-trivial family of size d 4 1, the induction hypothesis shows |A"| < 27~ —
1+ f(n —3). This gives

Al < 2 -1t f(n—-3)+3-2" P 44
= 27 1 f(n) — (f(n) — fn = 3) — d+ 27
< 214 f(n),  (x%)

where the last inequality follows from (x). By the choice of ng, we know that f(n) = 0 for n > ng,
so |A’| <271 —1 for n > ng, completing the proof of the upper bound in Theorem 7.

Now suppose that |A’| = 2"t — 1 and n > ng. Then the inequality (sx) is strict. This gives
the contradiction |A’| < 2"~ — 1. Consequently A’ contains no triangle and Part I of the proof
applies to give the case of equality. O
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