Proof of a Conjecture of Erdős on triangles in set-systems

Dhruv Mubayi * Jacques Verstraëte[†]

November 11, 2005

Abstract

A triangle is a family of three sets A, B, C such that $A \cap B, B \cap C, C \cap A$ are each nonempty, and $A \cap B \cap C = \emptyset$. Let \mathcal{A} be a family of *r*-element subsets of an *n*-element set, containing no triangle. Our main result implies that for $r \geq 3$ and $n \geq 3r/2$, we have $|\mathcal{A}| \leq {\binom{n-1}{r-1}}$. This settles a longstanding conjecture of Erdős [7], by improving on earlier results of Bermond, Chvátal, Frankl, and Füredi. We also show that equality holds if and only if \mathcal{A} consists of all *r*-element subsets containing a fixed element.

Analogous results are obtained for nonuniform families.

1 Introduction.

Throughout this paper, X is an n-element set. For any nonnegative integer r, we write $X^{(r)}$ for the family of all r-element subsets of X. Define $X^{(\leq r)} = \bigcup_{0 \leq i \leq r} X^{(i)}$ and $X^{(\geq r)} = \bigcup_{r \leq i \leq n} X^{(i)}$. For $\mathcal{A} \subset X^{(\leq n)}$ and $x \in X$, we let $\mathcal{A}_x = \{A \in \mathcal{A} : x \in A\}$.

A triangle is a family of three sets A, B, C such that $A \cap B, B \cap C, C \cap A$ are each nonempty, and $A \cap B \cap C = \emptyset$. Let f(r, n) denote the maximum size of a family $\mathcal{A} \subset X^{(r)}$ containing no triangle.

^{*}Department of Mathematics, Statistics, & Computer Science, University of Illinois at Chicago, 851 S. Morgan Street, Chicago, IL 60607-7045; email: mubayi@math.uic.edu

[†]Department of Combinatorics and Optimization, University of Waterloo, Waterloo, ON N2L 3G1, Canada; E-mail: jverstra@math.uwaterloo.ca

²⁰⁰⁰ Mathematics Subject Classification: 05C35, 05C65, 05D05 Keywords: *Extremal set theory, intersecting family, Baranyai's theorem* Accepted, Combinatorica

A special case of Turán's theorem (proved by Mantel) implies that $f(2, n) = \lfloor n^2/4 \rfloor$. Motivated by this result, Erdős [7] asked for the determination of f(r, n) for r > 2, and conjectured that

$$f(r,n) = \binom{n-1}{r-1} \quad \text{for} \quad n \ge 3r/2.$$
(1)

(Actually, in [7] it is stated more as a question, and $n \ge 3r/2$ is not explicitly mentioned, but later, e.g. in [3, 10], (1) is referred to as a conjecture of Erdős'.)

This conjecture attracted quite a few researchers. It was proved by Chvátal [3] for r = 3. In fact, he proved the more general statement that if $n \ge r+2 \ge 5$, $\mathcal{A} \subset X^{(r)}$, and $|\mathcal{A}| > \binom{n-1}{r-1}$, then \mathcal{A} contains r sets A_1, \ldots, A_r such that every r-1 of them have nonempty intersection, but $\bigcap_i A_i = \emptyset$. This configuration is also called an (r-1)-dimensional simplex. Chvátal generalized (1) as follows.

Conjecture 1 (Chvátal) Let $r \ge d + 1 \ge 3$, $n \ge r(d+1)/d$ and $\mathcal{A} \subset X^{(r)}$. If \mathcal{A} contains no *d*-dimensional simplex, then $|\mathcal{A}| \le {\binom{n-1}{r-1}}$. Equality holds only when $\mathcal{A} = X_x^{(r)}$, for some $x \in X$.

Recently Csákány and Kahn [6] gave a different proof of the r = 3 case of (1) using Homology theory. Frankl [9] settled (1) for $3r/2 \leq n \leq 2r$, and then Bermond and Frankl [2] proved (1) for infinitely many n, r, where $n < r^2$. About five years later, Frankl [10] settled (1) for $n > n_0(r)$, where $n_0(r)$ is an unspecified but exponentially growing function of r. In 1987, Frankl and Füredi [11] proved Conjecture 1 for $n > n_0(r)$. Frankl [10] had earlier verified Conjecture 1 for $(d+1)r/d \leq n < 2r$, using Katona's permutation method. Thus both (1) and Conjecture 1 remained open in the range $2r \leq n < n_0(r)$, where $n_0(r)$ is exponential in r. Also, the uniqueness of the extremal configuration remained open for $3r/2 \leq n < n_0(r)$ in both (1) and Conjecture 1.

Our main result settles (1) for all $n \ge 3r/2$ while also characterizing the extremal examples. A nontrivial intersecting family of size d+1 is a family of d+1 distinct sets A_1, \ldots, A_{d+1} that have pairwise nonempty intersection, but $\cap_i A_i = \emptyset$.

Theorem 2 Let $r \ge d+1 \ge 3$ and $n \ge (d+1)r/d$. Suppose that $\mathcal{A} \subset X^{(r)}$ contains no nontrivial intersecting family of size d+1. Then $|\mathcal{A}| \le \binom{n-1}{r-1}$. Equality holds if and only if $\mathcal{A} = X_x^{(r)}$ for some $x \in X$.

Note that the special case d = 2 above implies (1). Every d-dimensional simplex is a nontrivial intersecting family of size d + 1, and in this sense Theorem 2 can be thought of as a solution to a weakening of Conjecture 1.

A hypergraph \mathcal{F} satisfies H_d , the Helly property of order d, if every subfamily of \mathcal{F} with empty intersection contains a subcollection of at most d sets with empty intersection. A related problem is to determine the maximum size of an $\mathcal{F} \in X^{(r)}$ that satisfies H_d . Theorem 2 implies that for d = 2, such an \mathcal{F} satisfies $|\mathcal{F}| \leq {n-1 \choose r-1}$, however, stronger results for this problem were obtained by several authors (see Bollobás and Duchet [4, 5], Tuza [15, 16], and Mulder [13]).

The proof of Theorem 2 actually gives a little more: we may allow $r \leq d \leq \min\{\binom{2r-2}{r-1}, \binom{n-1}{r-1}\}$. Theorem 2 is not valid when r = 3 and $d \geq 10$ however, as the next result attests (see Section 4):

Theorem 3 Let $\mathcal{A} \subset X^{(3)}$ contain no non-trivial intersecting family of size $d + 1 \ge 8$. Then

$$|\mathcal{A}| \le \left(\left\lfloor \frac{(d+2)}{3} \right\rfloor^{-1} + \left\lfloor \frac{(d+3)}{3} \right\rfloor^{-1} + \left\lfloor \frac{(d+4)}{3} \right\rfloor^{-1} \right)^{-1} \binom{n}{2} \le \frac{1}{3} \left(\left\lceil \frac{d}{3} \right\rceil + \frac{1}{d+3} \right) \binom{n}{2}$$

Furthermore, for $d + 1 \ge 11$ and infinitely many n, there exists such a family \mathcal{A} with $|\mathcal{A}| \ge (\frac{1}{3} \lceil \frac{d}{3} \rceil - \frac{1}{3}) \binom{n}{2}$.

We conjecture that for $r \ge 4$ and n sufficiently large, the phenomenon exhibited by Theorem 3 does not arise:

Conjecture 4 Let $r \ge 4$, $d \ge 2$, and let $\mathcal{A} \subset X^{(r)}$ contain no non-trivial intersecting family of size d+1. Then, provided n is sufficiently large, $|\mathcal{A}| \le {\binom{n-1}{r-1}}$ with equality if and only if $\mathcal{A} = X_x^{(r)}$ for some $x \in X$.

The following table summarizes the above results for r = 3:

Size	Lower Bound	Upper Bound
$\boxed{3 \le d+1 \le 7}$	$\binom{n-1}{2}$	$\binom{n-1}{2}$
d + 1 = 8	$\binom{n-1}{2}$	$\binom{n}{2}$
d + 1 = 9	$\binom{n-1}{2}$	$\frac{12}{11}\binom{n}{2}$
d + 1 = 10	$\binom{n-1}{2}$	$\frac{6}{5}\binom{n}{2}$
$d+1 \ge 11$	$\frac{1}{3}(\left\lceil \frac{d}{3} \right\rceil - 1)\binom{n}{2}$	$\frac{1}{3}\left(\left\lceil\frac{d}{3}\right\rceil + \frac{1}{d+3}\right)\binom{n-1}{2}$

It would be interesting to determine the exact bounds for $d + 1 \ge 11$. In the course of the proof of the lower bound in Theorem 3, it is proved that a Steiner (n, 3, k - 1)-system, when it exists, contains no non-trivial intersecting family of size 3k + 1 whenever $k \ge 2$. We conjecture that this is the extremal family for r = 3 and $k \ge 2$: **Conjecture 5** Let n be sufficiently large and let $k \ge 2$. Let $\mathcal{A} \subset X^{(3)}$ contain no non-trivial intersecting family of size 3k + 1, and suppose there exists a Steiner (n, 3, k - 1)-system. Then $|\mathcal{A}| \le \frac{1}{3}(k-1)\binom{n}{2}$, with equality if and only if \mathcal{A} is such a Steiner system.

Non-uniform families: It is natural to consider these extremal problems for families that are not uniform. Perhaps the most basic statement in this context is the analogue of the Erdős-Ko-Rado Theorem.

If
$$\mathcal{A} \subset X^{(\leq n)}$$
 is intersecting, then $|\mathcal{A}| \leq 2^{n-1}$.

The non-uniform analogue of Erdős' conjecture about triangles in uniform families was asked by Erdős and proved by Milner [7].

Theorem 6 (Milner) Suppose that $\mathcal{A} \subset X^{(\leq n)}$ is triangle free. Then $|\mathcal{A}| \leq 2^{n-1} + n$.

Since Milner's proof has not been published, we give our own short proof of this result (see also Lossers [12]). Our proof also yields that equality holds if and only if $\mathcal{A} = X_x^{(\geq 2)} \cup X^{(1)} \cup \{\emptyset\}$ for some $x \in X$; this fact seems not to have been mentioned in the previous literature. We also prove the non-uniform analogue of Theorem 2 (see Section 4).

Theorem 7 Let $d \geq 2$ and $n > \log_2 d + \log_2 \log_2 d + 2$. Suppose that $\mathcal{A} \subset X^{(\leq n)}$ contains no non-trivial intersecting family of size d + 1. Then $|\mathcal{A}| \leq 2^{n-1} + n$. Equality holds if and only if $\mathcal{A} = X_x^{(\geq 2)} \cup X^{(1)} \cup \{\emptyset\}$ for some $x \in X$.

If $n \leq \lfloor \log_2 d \rfloor$, then trivially the bound $|\mathcal{A}| \leq 2^{n-1} + n$ in Theorem 7 does not hold. It can be shown that this remains true for $\lfloor \log_2 d \rfloor + 1$ and $\lfloor \log_2 d \rfloor + 2$. However, once $n > \lfloor \log_2 d \rfloor + \log_2 \log_2 d + 2$, Theorem 7 applies. It would be interesting to determine if the $\log_2 \log_2 d$ term in Theorem 7 can be replaced by an absolute constant.

2 Proof of Theorem 2.

We use the notation $[n] = \{1, ..., n\}$ and $[a, b] = \{a, a + 1, ..., b - 1, b\}$. Let \mathcal{A} be a family of r-sets with $|\mathcal{A}| \ge {n-1 \choose r-1}$, containing no non-trivial intersecting family of size d + 1. We prove that \mathcal{A} consists of all sets containing a fixed element of X. The proof, for $n \ge (d+1)r/d$, is split into three parts;

 $\begin{array}{ll} \text{Part I} & n < 2r \text{ and } n = k(n-r) + \ell \text{ with } k \in [2,d] \text{ and some } \ell \in [n-r-1], \\ \text{Part II} & n < 2r \text{ and } n = k(n-r) \text{ with } k \in [3,d+1], \\ \text{Part III} & n \geq 2r \geq 8. \end{array}$

Note that for $(d+1)r/d \le n \le 2r-1$, there exist $k \in [2,d]$ and $\ell \in [n-r-1]$ such that n = k(n-r) + l or n = (k+1)(n-r). Thus Parts I and II include all these values of n.

Part I uses Katona's permutation method, Part II uses Baranyai's Theorem [1] on partitioning $X^{(r)}$ into matchings, and in Part III we proceed by induction on n. Frankl [9] established the upper bound $|\mathcal{A}| \leq {\binom{n-1}{r-1}}$ for $(d+1)r/d \leq n \leq 2r-1$; however, it is substantially more difficult to establish the case of equality in Theorem 2, which we achieve in Parts I and II of our proof.

Part I:
$$n = k(n - r) + \ell$$
.

In this part, we consider the case n < 2r and $n = k(n-r) + \ell$, for some $k \in [2, d]$ and $\ell \in [n-r-1]$. For convenience, let X = [n] and fix a (cyclic) permutation π of X. Let Q_i denote the interval $\{i, i+1, \ldots, i+r-1\}$ (modulo n), and let \mathcal{A}_{π} denote the subfamily of \mathcal{A} consisting of those sets $A \in \mathcal{A}$ such that $\pi(Q_i) = A$ for some i:

$$\mathcal{A}_{\pi} = \{\pi(Q_i) : \pi(Q_i) \in \mathcal{A}\}$$

Claim 1. Let π be any permutation. Then $|\mathcal{A}_{\pi}| \leq r$ with equality if and only if there exists m such that

$$\mathcal{A}_{\pi} = \{ \pi(Q_m), \pi(Q_{m+1}), \dots, \pi(Q_{m+r-1}) \}.$$

Proof. It is sufficient to prove Claim 1 for the identity permutation, since we may relabel X. Therefore $\mathcal{A}_{\pi} = \{Q_i : Q_i \in \mathcal{A}\}$. Without loss of generality, $Q_n \in \mathcal{A}_{\pi}$. For $j \in [n-r]$, let $P_j = \{i : i \equiv j \pmod{n-r}\} \cap [n]$, together with $\{n\}$ if $j \in [\ell+1, n-r]$. Thus $|P_j| \leq k+1 \leq d+1$. For each $j \in [n-r]$, there is an $i \in P_j$ such that $Q_i \notin \mathcal{A}_{\pi}$, otherwise $\bigcap_{i \in P_j} Q_i = \emptyset$. Thus $Q_i \notin \mathcal{A}_{\pi}$ for at least n-r values of i, so $|\mathcal{A}_{\pi}| \leq r$.

Equality holds only if there is a unique x_j such that $Q_{x_j(n-r)+j} \notin \mathcal{A}_{\pi}$ for all $j \in [n-r]$. We now show $x_1 \ge x_2 \ge \ldots \ge x_{n-r} \ge x_1 - 1$. Let us illustrate the proof of this fact using Figures 1 and 2 below, where $y_j = x_j(n-r) + j$, and the box (i, j) represents the integer (i-1)(n-r) + j: If $x_j < x_{j+1}$ for some $j \in [\ell]$, then, since $\ell \leq n-r-1$, the intersection of the k+1 intervals $Q_{(i-1)(n-r)+j}$, where (i, j) is a shaded box in Figure 1, is empty (this is the only place in Part I where we use $\ell \leq n-r-1$; the case $\ell = n-r-1$ is the content of Part II). This contradiction implies that $x_j \geq x_{j+1}$. In a similar way, $x_j \geq x_{j+1}$ for $j \in [\ell+1, n-r]$, using $Q_n \in \mathcal{A}_{\pi}$. Finally, if $x_{n-r} < x_1 - 1$, then the intersection of the intervals $Q_{(i-1)(n-r)+j}$, with (i, j) a shaded box in Figure 2, is empty, a contradiction. This proves that \mathcal{A}_{π} has the required form.

Without loss of generality, we assume that for the identity permutation ι , $\mathcal{A}_{\iota} = \{Q_1, Q_2, \ldots, Q_r\}$.

Claim 2. For each permutation π , $\mathcal{A}_{\pi} = \{\pi(Q_1), \pi(Q_2), \ldots, \pi(Q_r)\}.$

Proof. Each permutation π of $X \setminus \{r\}$ is a product of transpositions. Therefore it suffices to show that if τ is a transposition in which r is a fixed point, then

$$\mathcal{A}_{\tau} = \{\tau(Q_1), \tau(Q_2), \dots, \tau(Q_r)\}.$$

Suppose that τ transposes t and t + 1, with $r \notin \{t, t + 1\}$. Then Claim 1 implies that $\mathcal{A}_{\tau} = \{\tau(Q_m), \tau(Q_{m+1}), \ldots, \tau(Q_{m+r-1})\}$ for some $m \in [n]$. We show below that m = 1.

Case 1. $n \notin \{t, t+1\}$: Here $\tau(Q_1) = [r] = Q_1 \in \mathcal{A}$, and $\tau(Q_n) = \{1, ..., r-1, n\} = Q_n \notin \mathcal{A}$. Therefore m = 1. Case 2. t + 1 = n: In this case $\tau(Q_i) = Q_i \in \mathcal{A}$ for each $i \in [r] \setminus \{n - r\}$. Consequently $\tau(Q_{n-r}) \in \mathcal{A}$ as well, and therefore m = 1.

Case 3. t = n: If n < 2r - 1, then $\tau(Q_r) = Q_r \in \mathcal{A}$ and $\tau(Q_{r+1}) = Q_{r+1} \notin \mathcal{A}$. Therefore m = 1. If n = 2r - 1, then $\tau(Q_i) = Q_i \in \mathcal{A}$ for $i = 2, \ldots, r - 1$. This leaves the posibilities m = 1, 2, n. However, $\tau(Q_{r+1}) = Q_{r+1} \notin \mathcal{A}$, and $\tau(Q_n) = Q_n \notin \mathcal{A}$. Consequently, $\{\tau(Q_1), \tau(Q_r)\} \subset \mathcal{A}$ and m = 1 again.

We now complete Part I. For each $A \in \mathcal{A}$, there are $\frac{1}{2}r!(n-r)!$ families \mathcal{A}_{π} containing A. The total number of cyclic permutations of X is (n-1)!/2. By Claim 1, $|\mathcal{A}_{\pi}| \leq r$ and therefore

$$\frac{1}{2}r!(n-r)!|\mathcal{A}| \le \frac{1}{2}r(n-1)!.$$

This establishes the upper bound $|\mathcal{A}| \leq {\binom{n-1}{r-1}}$. By Claim 1, equality holds if and only if for every cyclic permutation π of X, we have $\mathcal{A}_{\pi} = \{\pi(Q_1), \pi(Q_2), \dots, \pi(Q_r)\}$. Set x = r. For any $A \subset (X \setminus \{x\})^{(r-1)}$, we may thus choose such a cyclic permutation π so that $\pi(Q_1) = A \cup \{x\}$. Therefore $A \cup \{x\} \in \mathcal{A}$, and $\mathcal{A} = X_x^{(r)}$ is the required family.

Part II:
$$n = k(n - r)$$
.

The argument here is different to that of Part I; we use a result of Baranyai [1], stating that the family $X^{(r)}$ may be partitioned into perfect matchings when r divides n. This result is only needed for the characterization of the extremal family \mathcal{A} . Recall that $\overline{\mathcal{A}} = \{X \setminus A : A \in \mathcal{A}\}$.

Claim 3. If $A \in X^{(n-r)} \setminus \overline{\mathcal{A}}$, then $(X \setminus A)^{(n-r)} \subset \overline{\mathcal{A}}$.

Proof. Pick $A' \in (X \setminus A)^{(n-r)}$. We will show that $A' \in \overline{A}$. By Baranyai's Theorem, there is a partition of $X^{(n-r)}$ into perfect matchings $\mathcal{M}_1, \ldots, \mathcal{M}_t$ of size k, where $t = \frac{1}{k} \binom{n}{n-r}$. By relabelling X if necessary, we may assume that $\mathcal{M}_1 \supset \{A, A'\}$. Since \overline{A} has no perfect matching, and n = kr/(k-1),

$$|\overline{\mathcal{A}}| \le (k-1)t = \frac{k-1}{k} \binom{n}{n-r} = \frac{k-1}{k} \binom{n}{r} = \frac{k-1}{k} \frac{n}{r} \binom{n-1}{r-1} = \binom{n-1}{r-1}$$

Therefore $|\mathcal{A}| = |\overline{\mathcal{A}}| = \binom{n-1}{r-1}$, and $|\overline{\mathcal{A}} \cap \mathcal{M}_i| = k-1$ for all *i*. Since $\mathcal{M}_1 \supset \{A, A'\}$ and $A \notin \overline{\mathcal{A}}$, we must have $A' \in \overline{\mathcal{A}}$. Therefore Claim 3 is verified.

We now complete the proof of Theorem 2 for n = k(n-r). Let $\mathcal{B} = X^{(n-r)} \setminus \overline{\mathcal{A}}$. Then $n(\mathcal{B}) = \frac{k}{k-1}r \geq 2(n-r)$ as $k \geq 2$ and n < 2r. Furthermore, \mathcal{B} is an intersecting family, by Claim 3, and $|\mathcal{B}| = \binom{n}{n-r} - |\overline{\mathcal{A}}| = \binom{n-1}{n-r-1}$. By Theorem 1, $\mathcal{B} = X_x^{(n-r)}$ for some $x \in X$. This shows that $\mathcal{A} = X_x^{(r)}$, and Part II is complete.

Part III: $n \ge 2r$.

Throughout Part III, we assume $r \ge 4$. Addition of technical details in Claim 3 in the proof below accommodates the case r = 3. However, a short proof in this case was presented by weight counting techniques in Frankl and Füredi [11], which we revisit in Section 5.

We need the following notations.

For $\mathcal{A} \subset X^{(r)}$, let $V(\mathcal{A}) = \bigcup_{A \in \mathcal{A}} A$ and $n(\mathcal{A}) = |V(\mathcal{A})|$. For $Y \subset X$, we define $\mathcal{A} - Y = \{A \in \mathcal{A} : A \cap Y = \emptyset\}$. We also write $\overline{\mathcal{A}} = \{X \setminus A : A \in \mathcal{A}\}$. The following five definitions and the associated notations will be used repeatedly throughout the paper:

Sum of Families. The sum of families $\mathcal{A}_1, \mathcal{A}_2, \ldots, \mathcal{A}_t$, denoted $\sum_i \mathcal{A}_i$, is the family of all sets in each \mathcal{A}_i . Note that $\sum \mathcal{A}_i$ may have repeated sets, even if none of the \mathcal{A}_i have repeated sets.

Trace of a Set. The trace of a set Y in \mathcal{A} is defined by $\operatorname{tr}(Y) = \operatorname{tr}_{\mathcal{A}}(Y) = \{A \subset X : A \cup Y \in \mathcal{A}\}.$ We define $\operatorname{tr}(\mathcal{A}) = \sum_{x \in X} \operatorname{tr}(x).$

Degree of a Set. The edge neighborhood of a set Y is $\Gamma(Y) = \Gamma_{\mathcal{A}}(Y) = \{A \in \mathcal{A} : A \cap Y \neq \emptyset \text{ and } A \neq Y\}$, and the degree of Y is $\deg_{\mathcal{A}}(Y) = |\Gamma_{\mathcal{A}}(Y)|$. If $Y = \{y\}$, then we write y instead of $\{y\}$, and $\deg_{\mathcal{A}}(y) = |\Gamma_{\mathcal{A}}(y)| = |\mathcal{A}_y|$.

The families \mathcal{S}_x and \mathcal{L}_x . Let \mathcal{A} be an *r*-uniform family of sets in X and $x \in X$. Then we define

$$\mathcal{S}_x = \{ Y \in \operatorname{tr}(x) : |\operatorname{tr}(Y)| = 1 \}$$
 and $\mathcal{L}_x = \operatorname{tr}(x) \setminus \mathcal{S}_x.$

We write $S = \sum_{x \in X} S_x$ and $\mathcal{L} = \sum_{x \in X} \mathcal{L}_x = \operatorname{tr}(\mathcal{A}) \setminus S$. Note that if $A \in \mathcal{L}_x$, then there exists $y \neq x$ such that $A \in \mathcal{L}_y$.

Paths and Connectivity. A path in \mathcal{A} is a family \mathcal{P} of sets A_1, A_2, \ldots such that $A_i \cap A_j \neq \emptyset$ if and only if $|i - j| \leq 1$. Family \mathcal{A} is connected if every pair of vertices in $V(\mathcal{A})$ is contained in some path in \mathcal{A} . A component of \mathcal{A} is a maximal non-empty connected subfamily of \mathcal{A} .

We begin with the following simple lemma. Recall that $\mathcal{B} - S = \{A \in \mathcal{B} : A \cap S = \emptyset\}$.

Lemma 8 Let \mathcal{B}_0 be a finite family of sets. Then there exist disjoint sets $S_0, S_1, \ldots, S_{t-1} \in V(\mathcal{B}_0)$, such that the families $\mathcal{B}_i = \mathcal{B}_0 - \bigcup_{j=0}^{i-1} S_j$ for $i = 1, \ldots, t$ satisfy

- (1) $S_i \in \mathcal{B}_i$ and $\deg_{\mathcal{B}_i}(S_i) < d-1$ for every i < t,
- (2) $\deg_{\mathcal{B}_t}(S) \ge d-1 \text{ for every } S \in \mathcal{B}_t.$

Proof. For $i \ge 0$, if there exists a $T \in \mathcal{B}_i$ with $\deg_{\mathcal{B}_i}(T) < d-1$, then set $S_i = T$. Form \mathcal{B}_{i+1} and repeat for i+1. If there is no such T, then set i = t and stop. \Box

For $n \geq 2r - 1$, we proceed by induction on n. The base case n = 2r - 1 has been proved in Part I. Suppose that $n \geq 2r$, $|\mathcal{A}| = \binom{n-1}{r-1}$, and \mathcal{A} contains no nontrivial intersecting family of size d + 1. We will prove that $\mathcal{A} = X_y^{(r)}$ for some $y \in X$. This implies that if $\mathcal{A}' \subset X^{(r)}$ contains no nontrivial intersecting family of size d + 1, then $|\mathcal{A}'| \leq \binom{n-1}{r-1}$, by the following argument: If $|\mathcal{A}'| > \binom{n-1}{r-1}$, then \mathcal{A}' contains an r-set R in addition to $X_y^{(r)}$ by our assumption. Now consider the subfamily consisting of all r-sets of $X_y^{(r)}$ intersecting R as well as R itself. This is clearly a nontrivial intersecting family, and it has size

$$1 + \binom{n-1}{r-1} - \binom{n-1-r}{r-1} > 1 + r > d+1.$$

Consequently, $|\mathcal{A}'| \leq {\binom{n-1}{r-1}}$ as claimed.

Our approach is to show that there exists a vertex $x \in X$ with $\deg_{\mathcal{A}}(x) \leq \binom{n-2}{r-2}$. Subsequently, the family $\mathcal{A} - \{x\}$ has size at least $\binom{n-1}{r-1} - \binom{n-2}{r-2} = \binom{n-2}{r-1}$. By induction, equality holds and $\mathcal{A} - \{x\} = X_y^{(r)}$ for some $y \in X$; it is easy to see that every set in \mathcal{A} containing x also contains y and \mathcal{A} is the required family. Let us show that $\deg(x) \leq \binom{n-2}{r-2}$ if $|\mathcal{L}_x|$ is a maximum.

Claim 1. $|\mathcal{L}_x| > \binom{n-3}{r-2}$.

Proof. Note that $r|\mathcal{A}| = \sum_{y} \deg(y) = \sum_{y} |\mathcal{S}_{y}| + \sum_{y} |\mathcal{L}_{y}|$. By the choice of x, this is at most $|\mathcal{S}| + n|\mathcal{L}_{x}|$. Also, $\mathcal{S} \cap \mathcal{L}_{x} = \emptyset$, so $|\mathcal{S}| \leq {n \choose r-1} - |\mathcal{L}_{x}|$. Consequently

$$(n-1)|\mathcal{L}_x| \ge r|\mathcal{A}| - \binom{n}{r-1} = r\binom{n-1}{r-1} - \binom{n}{r-1} > (n-1)\binom{n-3}{r-2},$$

where the last inequality follows from a short computation and the fact that $r \ge 4$. Dividing by n-1, we obtain $|\mathcal{L}_x| > \binom{n-3}{r-2}$.

Applying Lemma 8 to $\mathcal{L}_x = \mathcal{B}_0$, let $(S_0, S_1, \ldots, S_{t-1})$ be the sets in $V(\mathcal{L}_x)$ satisfying (1) and (2), and let \mathcal{B}_i be as in Lemma 8. Note that $\mathcal{B}_t \neq \emptyset$, since otherwise

$$|\mathcal{L}_x| \le \sum_{i=0}^{t-1} (\deg_{\mathcal{B}_i}(S_i) + 1) \le t(d-1) \le \frac{n-1}{r-1}(r-2) < n-1,$$
(2)

contradicting Claim 1. Let $\mathcal{K}_0, \mathcal{K}_1, \ldots, \mathcal{K}_s$ be the components of \mathcal{B}_t . We let \mathcal{K}'_i denote the union of \mathcal{K}_i and the family of all sets in \mathcal{S}_x intersecting $V(\mathcal{K}_i)$.

Claim 2. The family \mathcal{K}'_i is an intersecting family.

Proof. Suppose, for a contradiction, that \mathcal{K}'_i contains disjoint sets A_0, B_0 . Since \mathcal{K}_i is connected, $\mathcal{K}_i \cup \{A_0, B_0\}$ is also connected. Choose a path $A_0, A_1, A_2, \ldots, B_0$ in $\mathcal{K}_i \cup \{A_0, B_0\}$ (possibly $A_2 = B_0$). Then $A_1 \in \mathcal{K}_i$. Lemma 8 part (2) implies that $\deg_{\mathcal{K}_i}(A_1) \geq d - 1$, hence (if $d \geq 4$) there exist sets $C_1, C_2, \ldots, C_{d-3} \in \mathcal{K}_i \setminus \{A_0, A_2\}$ each of which intersects A_1 . By definition of \mathcal{L}_x , there exists $y \in X \setminus \{x\}$ such that $A_1 \in \mathcal{L}_y$. Consequently,

$$\{A_0 \cup x, A_1 \cup x, A_2 \cup x, C_1 \cup x, \dots, C_{d-3} \cup x, A_1 \cup y\}$$

is a non-trivial intersecting family of size d + 1 in \mathcal{A} , since $A_0 \cap A_2 = \emptyset$, a contradiction.

Claim 3. $\mathcal{L}_x = \mathcal{K}_0 \text{ and } n(\mathcal{L}_x) \ge n-2.$

Proof. We first show t = s = 0, so that $\mathcal{L}_x = \mathcal{K}_0$. For a contradiction, suppose t > 0 or s > 0. By Claim 2, $\mathcal{K}_i \subset \mathcal{K}'_i$ is an intersecting family of (r-1)-sets. Therefore, for $n(\mathcal{K}_i) \ge 2(r-1)$, the Erdős-Ko-Rado theorem shows $|\mathcal{K}_i| \le \binom{n(\mathcal{K}_i)-1}{r-2} \le \binom{n(\mathcal{K}_i)}{r-2}$. If $n(\mathcal{K}_i) \le 2r-3$, then $|\mathcal{K}_i| \le \binom{n(\mathcal{K}_i)}{r-1}$, and this is at most $\binom{n(\mathcal{K}_i)}{r-2}$. Since $n(\mathcal{K}_i) \ge r-1$ for $i \le s$, convexity of binomial coefficients yields

$$\sum_{i=0}^{s} |\mathcal{K}_{i}| \leq \sum_{i=0}^{s} \binom{n(\mathcal{K}_{i})}{r-2} = \binom{n(\mathcal{K}_{0})}{r-2} + \sum_{i=1}^{s} \binom{n(\mathcal{K}_{i})}{r-2} \leq \binom{\left[\sum_{i=0}^{s} n(\mathcal{K}_{i})\right] - s(r-1)}{r-2} + \sum_{i=1}^{s} \binom{r-1}{r-2}.$$

Recalling that $n(\mathcal{L}_x) = \sum_{i=0}^{s} n(\mathcal{K}_i) + t(r-1)$, we obtain

$$\sum_{i=0}^{s} |\mathcal{K}_i| \le \binom{n(\mathcal{L}_x) - s(r-1) - t(r-1)}{r-2} + s(r-1)$$

By the argument giving the first two inequalities of (2), and $d-1 \leq r-1$, we have

$$|\mathcal{L}_x| = \sum_{i=0}^{s} |\mathcal{K}_i| + \sum_{i=0}^{t-1} (\deg_{\mathcal{B}_i}(S_i) + 1) \le \binom{n(\mathcal{L}_x) - (s+t)(r-1)}{r-2} + s(r-1) + t(r-1).$$

If $s + t \ge 1$ then, by convexity of binomial coefficients,

$$|\mathcal{L}_x| \le \binom{n(\mathcal{L}_x) - (r-1)}{r-2} + (r-1) \le \binom{n-r}{r-2} + (r-1).$$

As $n \ge 2r$ and $r \ge 4$, this contradicts Claim 1. Thus s = t = 0, and \mathcal{L}_x consists of one component, \mathcal{K}_0 .

We now show that $n(\mathcal{L}_x) \ge n-2$. By the arguments above, $|\mathcal{K}_0| \le \binom{n(\mathcal{K}_0)}{r-2}$. Therefore, by Claim 1, $n(\mathcal{K}_0) = n(\mathcal{L}_x) \ge n-2$. This completes the proof of Claim 3.

We now complete Part III and the proof of Theorem 2, by showing that $\deg(x) \leq \binom{n-2}{r-2}$. By Claim 2, \mathcal{K}'_0 is an intersecting family. Since $n(\mathcal{K}_0) \geq n-2 > n-r+1$, $\operatorname{tr}(x) = \mathcal{K}'_0$ so $\operatorname{tr}(x)$ is itself an intersecting family of (r-1)-sets. As $n-1 \geq n(\mathcal{K}'_0) \geq n(\mathcal{K}_0) \geq n-2 \geq 2(r-1)$, the Erdős-Ko-Rado theorem implies that

$$\deg(x) = |\mathcal{K}'_0| = |\operatorname{tr}(x)| \le \binom{n-2}{r-2}.$$

This completes the proof of Theorem 2. \Box

3 Proof of Theorem 3.

Part III of the proof of Theorem 2 can be extended to the case r = 3 and $2 \le d \le 6$ by addition of some technical details. However, Chvátal [3] and Frankl and Füredi [11] already settled the case r = 3 and d = 2 so we do not consider this case here. In fact, from the proof below, it follows that for $2 \le d \le 6$ and $n \ge 15$, a family $\mathcal{A} \subset X^{(3)}$ containing no non-trivial intersecting family of size d + 1 has at most $\binom{n-1}{2}$ members, with the equality as in Theorem 2.

We now prove Theorem 3, employing the weight counting methods of Frankl and Füredi.

Proof of Theorem 3. Let $\mathcal{A} \subset X^{(3)}$ and suppose \mathcal{A} contains no non-trivial intersecting family of size d + 1. Following Frankl and Füredi, the weight of a set $A \in \mathcal{A}$ is defined by

$$\omega(A) = \sum_{\{x,y\}\subset A} \frac{1}{|\mathrm{tr}\{x,y\}|}.$$

Then

$$\sum_{A \in \mathcal{A}} \omega(A) = \sum_{A \in \mathcal{A}} \sum_{\{x,y\} \subset A} \frac{1}{|\operatorname{tr}(x,y)|}$$
$$\leq \sum_{\{x,y\} \in X} \sum_{A \in \mathcal{A} \atop \{x,y\} \in A} \frac{1}{|\operatorname{tr}(x,y)|} \leq \sum_{\{x,y\} \in X} 1 = \binom{n}{2}$$

Equality holds if and only if every pair in X is contained in some set in \mathcal{A} .

As \mathcal{A} contains no non-trivial intersecting family of size d + 1, $|\operatorname{tr}\{x, y\}| = 1$ for some $\{x, y\} \in A$ or $\sum_{x,y \in A} |\operatorname{tr}\{x, y\}| \le d + 2$. This implies that for all $A \in \mathcal{A}$,

$$\omega(A) \ge \min\left\{1 + \frac{2}{n-2}, \left\lfloor \frac{(d+2)}{3} \right\rfloor^{-1} + \left\lfloor \frac{(d+3)}{3} \right\rfloor^{-1} + \left\lfloor \frac{(d+4)}{3} \right\rfloor^{-1}\right\}.$$

For $d \ge 7$, the second term is smaller (in fact, less than 1). Therefore

$$\sum_{A \in \mathcal{A}} \omega(A) \ge \left(\left\lfloor \frac{(d+2)}{3} \right\rfloor^{-1} + \left\lfloor \frac{(d+3)}{3} \right\rfloor^{-1} + \left\lfloor \frac{(d+4)}{3} \right\rfloor^{-1} \right) |\mathcal{A}|.$$

Together with $\sum_{A \in \mathcal{A}} \omega(A) \leq {n \choose 2}$, this gives the upper bound on $|\mathcal{A}|$ in Theorem 3, which is for $d \geq 7$.

For the lower bound in Theorem 3, it suffices to show that every non-trivial intersecting family of size $d + 1 \ge 11$ contains a pair in at least $\lceil \frac{d}{3} \rceil$ of its edges. Then a Steiner $(n, 3, \lceil \frac{d}{3} \rceil - 1)$ -system, for those *n* for which such a structure exists, does not contain such an intersecting family.

Lemma 9 Let $\mathcal{F} \subset X^{(3)}$ be a non-trivial intersecting family with $|\mathcal{F}| \ge 11$. Then there exist distinct elements $x, y \in X$ such that

$$|\mathrm{tr}_{\mathcal{F}}\{x,y\}| \ge \frac{1}{3}(|\mathcal{F}|-1).$$

Proof. For $a, b \in X$, we let $d(a, b) = |\operatorname{tr}_{\mathcal{F}}\{a, b\}|$. First suppose that there exist $x, y \in X$ with $d(x, y) \geq 3$. Now let $u, v, w \in \operatorname{tr}_{\mathcal{F}}\{x, y\}$. Throughout the proof, we assume $d(x, y) \leq \lceil \frac{1}{3}(|\mathcal{F}| - 1) \rceil - 1$, otherwise we are done. Let $L_x = \operatorname{tr}_{\mathcal{F}}(x) - \{y\} = \{A \in \operatorname{tr}_{\mathcal{F}}(x) : y \notin A\}$ and let $L_y = \operatorname{tr}_{\mathcal{F}}(y) - \{x\} = \{A \in \operatorname{tr}_{\mathcal{F}}(y) : x \notin A\}$ Since \mathcal{F} is an intersecting family,

Case 1: L_x contains a matching of size three.

In this case, L_x consists of three stars with distinct centers in X. By (*), every pair in L_y intersects all three centers. This implies $L_y = \emptyset$. As \mathcal{F} is a non-trivial intersecting family, there is a triple in \mathcal{F} disjoint from x. Since $L_y = \emptyset$ and $d(x, y) \ge 3$, this triple must be $\{u, v, w\}$ and d(x, y) = 3. Since \mathcal{F} is intersecting, the centers of the three stars must also be u, v, w. Now every $F \in \mathcal{F} - \{y\}$ with $F \neq \{u, v, w\}$ contains x. Therefore, assuming $d(x, u) \ge d(x, v) \ge d(x, w)$, we find

 $A \cap B \neq \emptyset$ for every $A \in L_x$ and $B \in L_y$ (*).

$$d(x, u) \ge \frac{1}{3}(|\mathcal{F}| - 4) + 1 = \frac{1}{3}(|\mathcal{F}| - 1).$$

This completes the proof in Case 1.

Case 2: L_x and L_y contain no matching of size three.

It is not hard to see by (*) that $|L_x| + |L_y| \le 2(\lceil \frac{1}{3}(|\mathcal{F}| - 1)\rceil - 1) + 1$, with equality if and only if L_x consists of a pair of stars of size $\lceil (|\mathcal{F}| - 1)/3 \rceil - 1$ with distinct centers a, b and L_y consists of the pair $\{a, b\}$. Then $|\mathcal{F}| - |L_x| - |L_y| - d(x, y) \ge 2$, unless $|\mathcal{F}| = 3k + 2$, $k \ge 3$ and L_x and L_y are as described above. By (*), any triple in $\mathcal{F} - \{x, y\}$ contains u, v and w. This shows $|\mathcal{F} - \{x, y\}| = 1$, and therefore $|\mathcal{F}| = 3k + 2$, $k \ge 3$. In this case, $\{u, v, w\} \in \mathcal{F}$ and $a, b \in \{u, v, w\}$, since \mathcal{F} is intersecting. Therefore $d(a, x) \ge 4$ (and also $d(b, x) \ge 4$), completing the proof in Case 2.

If every pair $a, b \in X$ has $d(a, b) \leq 2$, then the arguments in Cases 1 and 2 still apply to give a contradiction with $|\mathcal{F}| \geq 11$, since in this case $|\mathcal{F}| = 8$. This completes the proof of the Lemma. \Box

4 Proof of Theorem 7.

Let \mathcal{A} be a family of subsets of X containing no non-trivial intersecting family of size d + 1. We prove Theorem 7 by showing that $\mathcal{A}' = \mathcal{A} \cap X^{(\geq 2)}$ has size at most $2^{n-1} - 1$, with equality if and only if $\mathcal{A}' = X_x^{(\geq 2)}$ for some $x \in X$. Theorem 7 is proved in two parts. Part I deals with the case d = 2, by induction on $n \geq 1$. In Part II, we use Part I to prove Theorem 7 for $d \geq 3$.

Part I: d = 2

Theorem 7 is easily verified for $n \leq 3$. Now let $n \geq 4$ and $w \in X$.

Case 1: For every partition of $X \setminus \{w\}$ into two non-empty sets Y and Z, there exists a set $A \in \mathcal{A}' - \{w\}$ such that $A \cap Y \neq \emptyset$ and $A \cap Z \neq \emptyset$. Then, for each partition of $X \setminus \{w\}$ into sets Y and Z, either $Y \cup \{w\} \notin \mathcal{A}$ or $Z \cup \{w\} \notin \mathcal{A}'$ – otherwise \mathcal{A}' contains a triangle. Therefore $\deg_{\mathcal{A}'}(w) \leq 2^{n-2}$. By induction, $\mathcal{A}'' = \mathcal{A}' - \{w\}$ has size at most $2^{n-2} - 1$, with equality if and only if $\mathcal{A}'' = (X \setminus \{w\})_x^{(\geq 2)}$ for some $x \in X - \{w\}$. Thus

$$|\mathcal{A}'| = \deg_{\mathcal{A}'}(w) + |\mathcal{A}''| \le 2^{n-2} + (2^{n-2} - 1) = 2^{n-1} - 1.$$

Now suppose that equality holds above. We will show that every set in \mathcal{A}' containing w also contains x. Suppose on the contrary that $w \in S \in \mathcal{A}'$ and $x \notin S$. Among all such S, choose the one of minimum size, call it S_0 . Let T be another set containing w. By the choice of S_0 , either $T \supset S_0$, or there exist $t \in T - S$, and $s \in S - T$ (possibly t = x). In the latter case, $\{x, s, t\}, S, T$ form a triangle (replace $\{x, s, t\}$ by $\{s, t\}$ if t = x). We may therefore assume that every set in \mathcal{A}' containing w also contains S_0 . Hence $2^{n-2} = \deg_{\mathcal{A}'}(w) \leq 2^{n-|S_0|-1}$ from which we conclude that $S_0 = \{s\}$, and $E \cup \{w\} \in \mathcal{A}'$ for every $E \subset X \setminus \{w, s\}$. Since $|X| \geq 4$, there exist distinct a, b for which $\{w, s, a\}$ and $\{w, s, b\}$ lie in \mathcal{A}' . Together with $\{x, a, b\}$ (or just $\{a, b\}$ if a = x or b = x) this once again forms a triangle.

Case 2: There exists a partition of $X \setminus \{w\}$ into two nonempty sets Y and Z such that no member of \mathcal{A}' in $X \setminus \{w\}$ contains an element of both Y and Z. By induction, at most $2^{|Y|} - 1$ elements of \mathcal{A}' are contained in $Y \cup \{w\}$, and similarly for Z. The number of sets which contain an element of Y and an element of Z is, by the choice of Y and Z, at most $2^{n-1} - 1 - (2^{|Y|} - 1) - (2^{|Z|} - 1)$. Therefore

$$|\mathcal{A}'| \le (2^{|Y|} - 1) + (2^{|Z|} - 1) + (2^{n-1} - 1 - (2^{|Y|} - 1) - (2^{|Z|} - 1)) = 2^{n-1} - 1.$$

If equality holds, then by induction there exist $y \in Y \cup \{w\}, z \in Z \cup \{w\}$ with $(Y \cup \{w\})_y^{(\geq 2)} \cup (Z \cup \{w\})_z^{(\geq 2)} \subset \mathcal{A}'$. Since $|X| \geq 4$, we may assume by symmetry that $|Y| \geq 2$. We next show that y = w. Observe that for every set $S \subset X \setminus \{w\}$ containing an element of both Y and Z, we have $S \cup \{w\} \in \mathcal{A}'$. If $y \neq w$, then $\{y, a\} \in \mathcal{A}'$ for some $a \in Y \setminus \{y\}$. The set $\{y, a\}$ together with $\{y, w\}$ and $\{w, a, b\}$ for some $b \in Z$ forms a triangle. Consequently y = w, and z = w as well unless $Z = \{z\}$. But in this case $(Z \cup \{w\})_z^{(\geq 2)} = (Z \cup \{w\})_w^{(\geq 2)}$, therefore $\mathcal{A}' = X_w^{(\geq 2)}$.

Part II: $d \ge 3$

Define a function f on the positive integers by f(1) = f(2) = f(3) = 1, and for $n \ge 4$,

$$f(n) = \max\{0, f(n-3) + d - 2^{n-4}\}.$$
 (*)

It is easy to see that if $n \ge 4$, and $f(n) \ge 0$, then

$$f(n) = 1 + \left(\left\lceil \frac{n}{3} \right\rceil - 1 \right) d - \sum_{i=0}^{\lfloor (n-4)/3 \rfloor} 2^{n-4-3i}.$$

Set $n_d = \log_2 d + \log_2 \log_2 d + 2$. An easy calculation now shows that f(n) = 0 whenever $n \ge n_d$ and $f(n) > f(n-3) + d - 2^{n-4}$ when $n > n_d$. In this part of the proof, we proceed by induction on $n \ge 1$, with the following hypothesis: Let $\mathcal{A}' \subset X^{(\ge 2)}$ contain no non-trivial intersecting family of size d+1. Then $|\mathcal{A}'| \le 2^{n-1} - 1 + f(n)$.

For $n \leq 3$, the result is true as

$$|\mathcal{A}'| \le |X^{(\ge 2)}| = 2^n - n - 1 \le 2^{n-1} - 1 + f(n).$$

Now suppose that $n \ge 4$. By Part I, we may assume \mathcal{A}' contains a triangle $\mathcal{F} = \{F_1, F_2, F_3\}$, otherwise the proof is complete.

Let x, y, z be elements in $F_1 \cap F_2$, $F_2 \cap F_3$ and $F_3 \cap F_1$ respectively. Then at most d sets in \mathcal{A}' intersect $\{x, y, z\}$ in at least two points, otherwise \mathcal{F} together with another d-2 of these sets forms a non-trivial intersecting family of size d+1. The total number of sets in \mathcal{A}' intersecting $\{x, y, z\}$ is therefore at most $3 \cdot 2^{n-3} + d$. Let $\mathcal{A}'' = \mathcal{A}' - \{x, y, z\}$. Then

$$|\mathcal{A}'| \le |\mathcal{A}''| + 3 \cdot 2^{n-3} + d.$$

As \mathcal{A}'' contains no non-trivial family of size d + 1, the induction hypothesis shows $|\mathcal{A}''| \leq 2^{n-4} - 1 + f(n-3)$. This gives

$$\begin{aligned} |\mathcal{A}'| &\leq 2^{n-4} - 1 + f(n-3) + 3 \cdot 2^{n-3} + d \\ &= 2^{n-1} - 1 + f(n) - (f(n) - f(n-3) - d + 2^{n-4}) \\ &\leq 2^{n-1} - 1 + f(n), \quad (**) \end{aligned}$$

where the last inequality follows from (*). By the choice of n_d , we know that f(n) = 0 for $n \ge n_d$, so $|\mathcal{A}'| \le 2^{n-1} - 1$ for $n \ge n_d$, completing the proof of the upper bound in Theorem 7.

Now suppose that $|\mathcal{A}'| = 2^{n-1} - 1$ and $n > n_d$. Then the inequality (**) is strict. This gives the contradiction $|\mathcal{A}'| < 2^{n-1} - 1$. Consequently \mathcal{A}' contains no triangle and Part I of the proof applies to give the case of equality. \Box

5 Acknowledgments

Most of the work for this paper was done while both authors were Postdoctoral Researchers in the Theory Group at Microsoft Research. The authors also thank a referee for very helpful comments and minor corrections on an earlier draft, and Yi Zhao for carefully reading the proof of Theorem 7.

References

- Baranyai, Zs., On the factorization of the complete uniform hypergraph. Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős on his 60th birthday), Vol. I, pp. 91–108. *Colloq. Math. Soc. Janos Bolyai*, 10 North-Holland, Amsterdam, 1975.
- [2] Bermond, J.-C., Frankl, P., On a conjecture of Chvátal on *m*-intersecting hypergraphs. Bull. London Math. Soc. 9 (1977), no. 3, 310–312.
- [3] Chvátal, V., An extremal set-intersection theorem. J. London Math. Soc. (2) 9 (1974/75), 355–359.
- [4] Bollobás, B., Duchet, P., On Helly families of maximal size. J. Combin. Theory Ser. B 35 (1983), no. 3, 290–296.
- [5] Bollobás, B., Duchet, P., Helly families of maximal size. J. Combin. Theory Ser. A 26 (1979), no. 2, 197–200.
- [6] Csákány, R., Kahn, J., A homological approach to two problems on finite sets. (English. English summary) J. Algebraic Combin. 9 (1999), no. 2, 141–149.
- [7] Erdős, P., Topics in combinatorial analysis. Proc. Second Louisiana Conf. on Comb., Graph Theory and Computing (R. C. Mullin et al., Eds.) pp 2–20, Louisiana State Univ., Baton Rouge 1971.
- [8] Erdős, P., Ko, H., Rado R., Intersection theorems for systems of finite sets. Quart. J. Math. Oxford Ser. (2) 12 (1961) 313–320.
- [9] Frankl, P., On Sperner families satisfying an additional condition. J. Combinatorial Theory Ser. A 20 (1976), no. 1, 1–11.
- [10] Frankl, P., On a problem of Chvátal and Erdős on hypergraphs containing no generalized simplex. J. Combin. Theory Ser. A 30 (1981), no. 2, 169–182.
- [11] Frankl, P., Füredi, Z., Exact solution of some Turán-type problems. J. Combin. Theory Ser. A 45 (1987), no. 2, 226–262.
- [12] O. P. Lossers, P. Erdos and E. Milner: P. 190, Canad. Math Bull 16 (1973), 145-146.
- [13] Mulder, H. M., The number of edges in a k-Helly hypergraph. Combinatorial mathematics (Marseille-Luminy, 1981), 497–501, North-Holland Math. Stud., 75, North-Holland, Amsterdam, 1983.

- [14] Ray-Chaudhuri, D., Wilson, R., The existence of resolvable block designs. Survey of combinatorial theory (*Proc. Internat. Sympos.*, Colorado State Univ., Fort Collins, Colo., 1971), pp. 361–375. North-Holland, Amsterdam, 1973.
- [15] Tuza, Zs., Helly-type hypergraphs and Sperner families. European J. Combin. 5 (1984), no. 2, 185–187.
- [16] Tuza, Zs., Helly property in finite set systems. J. Combin. Theory Ser. A 62 (1993), no. 1, 1–14.