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Abstract

A triangle is a family of three sets A,B,C such that A∩B, B∩C, C∩A are each nonempty,
and A ∩ B ∩ C = ∅. Let A be a family of r-element subsets of an n-element set, containing
no triangle. Our main result implies that for r ≥ 3 and n ≥ 3r/2, we have |A| ≤

(
n−1
r−1

)
. This

settles a longstanding conjecture of Erdős [7], by improving on earlier results of Bermond,
Chvátal, Frankl, and Füredi. We also show that equality holds if and only if A consists of all
r-element subsets containing a fixed element.

Analogous results are obtained for nonuniform families.

1 Introduction.

Throughout this paper, X is an n-element set. For any nonnegative integer r, we write X(r) for

the family of all r-element subsets of X. Define X(≤r) = ∪0≤i≤rX
(i) and X(≥r) = ∪r≤i≤nX(i).

For A ⊂ X(≤n) and x ∈ X, we let Ax = {A ∈ A : x ∈ A}.

A triangle is a family of three sets A,B, C such that A∩B, B ∩C, C ∩A are each nonempty, and

A∩B ∩C = ∅. Let f(r, n) denote the maximum size of a family A ⊂ X(r) containing no triangle.
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A special case of Turán’s theorem (proved by Mantel) implies that f(2, n) = bn2/4c. Motivated

by this result, Erdős [7] asked for the determination of f(r, n) for r > 2, and conjectured that

f(r, n) =

(
n− 1
r − 1

)
for n ≥ 3r/2. (1)

(Actually, in [7] it is stated more as a question, and n ≥ 3r/2 is not explicitly mentioned, but

later, e.g. in [3, 10], (1) is referred to as a conjecture of Erdős’.)

This conjecture attracted quite a few researchers. It was proved by Chvátal [3] for r = 3. In

fact, he proved the more general statement that if n ≥ r + 2 ≥ 5, A ⊂ X(r), and |A| >
(n−1
r−1

)
,

then A contains r sets A1, . . . , Ar such that every r− 1 of them have nonempty intersection, but

∩iAi = ∅. This configuration is also called an (r − 1)-dimensional simplex. Chvátal generalized

(1) as follows.

Conjecture 1 (Chvátal) Let r ≥ d + 1 ≥ 3, n ≥ r(d + 1)/d and A ⊂ X(r). If A contains no

d-dimensional simplex, then |A| ≤
(n−1
r−1

)
. Equality holds only when A = X

(r)
x , for some x ∈ X.

Recently Csákány and Kahn [6] gave a different proof of the r = 3 case of (1) using Homology

theory. Frankl [9] settled (1) for 3r/2 ≤ n ≤ 2r, and then Bermond and Frankl [2] proved

(1) for infinitely many n, r, where n < r2 . About five years later, Frankl [10] settled (1) for

n > n0(r), where n0(r) is an unspecified but exponentially growing function of r. In 1987, Frankl

and Füredi [11] proved Conjecture 1 for n > n0(r). Frankl [10] had earlier verified Conjecture 1

for (d + 1)r/d ≤ n < 2r, using Katona’s permutation method. Thus both (1) and Conjecture 1

remained open in the range 2r ≤ n < n0(r), where n0(r) is exponential in r. Also, the uniqueness

of the extremal configuration remained open for 3r/2 ≤ n < n0(r) in both (1) and Conjecture 1.

Our main result settles (1) for all n ≥ 3r/2 while also characterizing the extremal examples. A

nontrivial intersecting family of size d + 1 is a family of d + 1 distinct sets A1, . . . , Ad+1 that have

pairwise nonempty intersection, but ∩iAi = ∅.

Theorem 2 Let r ≥ d+1 ≥ 3 and n ≥ (d+1)r/d. Suppose that A ⊂ X(r) contains no nontrivial

intersecting family of size d + 1. Then |A| ≤
(n−1
r−1

)
. Equality holds if and only if A = X

(r)
x for

some x ∈ X.

Note that the special case d = 2 above implies (1). Every d-dimensional simplex is a nontrivial

intersecting family of size d + 1, and in this sense Theorem 2 can be thought of as a solution to a

weakening of Conjecture 1.
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A hypergraph F satisfies Hd, the Helly property of order d, if every subfamily of F with empty

intersection contains a subcollection of at most d sets with empty intersection. A related problem

is to determine the maximum size of an F ∈ X(r) that satisfies Hd. Theorem 2 implies that for

d = 2, such an F satisfies |F| ≤
(n−1
r−1

)
, however, stronger results for this problem were obtained

by several authors (see Bollobás and Duchet [4, 5], Tuza [15, 16], and Mulder [13]).

The proof of Theorem 2 actually gives a little more: we may allow r ≤ d ≤ min{
(2r−2

r−1

)
,
(n−1
r−1

)
}.

Theorem 2 is not valid when r = 3 and d ≥ 10 however, as the next result attests (see Section 4):

Theorem 3 Let A ⊂ X(3) contain no non-trivial intersecting family of size d + 1 ≥ 8. Then

|A| ≤
(⌊

(d + 2)
3

⌋−1

+
⌊
(d + 3)

3

⌋−1

+
⌊
(d + 4)

3

⌋−1
)−1(

n

2

)
≤ 1

3

(⌈
d

3

⌉
+

1
d + 3

)(
n

2

)
.

Furthermore, for d + 1 ≥ 11 and infinitely many n, there exists such a family A with |A| ≥
(1
3d

d
3e −

1
3)
(n
2

)
.

We conjecture that for r ≥ 4 and n sufficiently large, the phenomenon exhibited by Theorem 3

does not arise:

Conjecture 4 Let r ≥ 4, d ≥ 2, and let A ⊂ X(r) contain no non-trivial intersecting family of

size d+1. Then, provided n is sufficiently large, |A| ≤
(n−1
r−1

)
with equality if and only if A = X

(r)
x

for some x ∈ X.

The following table summarizes the above results for r = 3:

Size Lower Bound Upper Bound

3 ≤ d + 1 ≤ 7
(n−1

2

) (n−1
2

)
d + 1 = 8

(n−1
2

) (n
2

)
d + 1 = 9

(n−1
2

)
12
11

(n
2

)
d + 1 = 10

(n−1
2

)
6
5

(n
2

)
d + 1 ≥ 11 1

3(dd
3e − 1)

(n
2

)
1
3(dd

3e+ 1
d+3)

(n−1
2

)
It would be interesting to determine the exact bounds for d + 1 ≥ 11. In the course of the proof

of the lower bound in Theorem 3, it is proved that a Steiner (n, 3, k − 1)-system, when it exists,

contains no non-trivial intersecting family of size 3k + 1 whenever k ≥ 2. We conjecture that this

is the extremal family for r = 3 and k ≥ 2:
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Conjecture 5 Let n be sufficiently large and let k ≥ 2. Let A ⊂ X(3) contain no non-trivial

intersecting family of size 3k + 1, and suppose there exists a Steiner (n, 3, k − 1)-system. Then

|A| ≤ 1
3(k − 1)

(n
2

)
, with equality if and only if A is such a Steiner system.

Non-uniform families: It is natural to consider these extremal problems for families that are not

uniform. Perhaps the most basic statement in this context is the analogue of the Erdős-Ko-Rado

Theorem.

If A ⊂ X(≤n) is intersecting, then |A| ≤ 2n−1.

The non-uniform analogue of Erdős’ conjecture about triangles in uniform families was asked by

Erdős and proved by Milner [7].

Theorem 6 (Milner) Suppose that A ⊂ X(≤n) is triangle free. Then |A| ≤ 2n−1 + n.

Since Milner’s proof has not been published, we give our own short proof of this result (see also

Lossers [12]). Our proof also yields that equality holds if and only if A = X
(≥2)
x ∪X(1) ∪ {∅} for

some x ∈ X; this fact seems not to have been mentioned in the previous literature. We also prove

the non-uniform analogue of Theorem 2 (see Section 4).

Theorem 7 Let d ≥ 2 and n > log2 d + log2 log2 d + 2. Suppose that A ⊂ X(≤n) contains no

non-trivial intersecting family of size d + 1. Then |A| ≤ 2n−1 + n. Equality holds if and only if

A = X
(≥2)
x ∪X(1) ∪ {∅} for some x ∈ X.

If n ≤ blog2 dc, then trivially the bound |A| ≤ 2n−1 + n in Theorem 7 does not hold. It can

be shown that this remains true for blog2 dc + 1 and blog2 dc + 2. However, once n > blog2 dc +

log2 log2 d + 2, Theorem 7 applies. It would be interesting to determine if the log2 log2 d term in

Theorem 7 can be replaced by an absolute constant.

2 Proof of Theorem 2.

We use the notation [n] = {1, . . . , n} and [a, b] = {a, a + 1, . . . , b − 1, b}. Let A be a family of

r-sets with |A| ≥
(n−1
r−1

)
, containing no non-trivial intersecting family of size d + 1. We prove that

A consists of all sets containing a fixed element of X. The proof, for n ≥ (d + 1)r/d, is split into

three parts;
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Part I n < 2r and n = k(n− r) + ` with k ∈ [2, d] and some ` ∈ [n− r − 1],

Part II n < 2r and n = k(n− r) with k ∈ [3, d + 1],

Part III n ≥ 2r ≥ 8.

Note that for (d + 1)r/d ≤ n ≤ 2r − 1, there exist k ∈ [2, d] and ` ∈ [n − r − 1] such that

n = k(n− r) + l or n = (k + 1)(n− r). Thus Parts I and II include all these values of n.

Part I uses Katona’s permutation method, Part II uses Baranyai’s Theorem [1] on partitioning

X(r) into matchings, and in Part III we proceed by induction on n. Frankl [9] established the

upper bound |A| ≤
(n−1
r−1

)
for (d + 1)r/d ≤ n ≤ 2r − 1; however, it is substantially more difficult

to establish the case of equality in Theorem 2, which we achieve in Parts I and II of our proof.

Part I: n = k(n− r) + `.

In this part, we consider the case n < 2r and n = k(n−r)+`, for some k ∈ [2, d] and ` ∈ [n−r−1].

For convenience, let X = [n] and fix a (cyclic) permutation π of X. Let Qi denote the interval

{i, i + 1, . . . , i + r− 1} (modulo n), and let Aπ denote the subfamily of A consisting of those sets

A ∈ A such that π(Qi) = A for some i:

Aπ = {π(Qi) : π(Qi) ∈ A}.

Claim 1. Let π be any permutation. Then |Aπ| ≤ r with equality if and only if

there exists m such that

Aπ = {π(Qm), π(Qm+1), . . . , π(Qm+r−1)}.

Proof. It is sufficient to prove Claim 1 for the identity permutation, since we may relabel X.

Therefore Aπ = {Qi : Qi ∈ A}. Without loss of generality, Qn ∈ Aπ. For j ∈ [n − r], let

Pj = {i : i ≡ j (mod n−r)}∩ [n], together with {n} if j ∈ [`+1, n−r]. Thus |Pj | ≤ k+1 ≤ d+1.

For each j ∈ [n− r], there is an i ∈ Pj such that Qi 6∈ Aπ, otherwise
⋂

i∈Pj
Qi = ∅. Thus Qi 6∈ Aπ

for at least n− r values of i, so |Aπ| ≤ r.

Equality holds only if there is a unique xj such that Qxj(n−r)+j 6∈ Aπ for all j ∈ [n− r]. We now

show x1 ≥ x2 ≥ . . . ≥ xn−r ≥ x1 − 1. Let us illustrate the proof of this fact using Figures 1 and

2 below, where yj = xj(n− r) + j, and the box (i, j) represents the integer (i− 1)(n− r) + j:
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If xj < xj+1 for some j ∈ [`], then, since ` ≤ n − r − 1, the intersection of the k + 1 intervals

Q(i−1)(n−r)+j , where (i, j) is a shaded box in Figure 1, is empty (this is the only place in Part I

where we use ` ≤ n− r − 1; the case ` = n− r − 1 is the content of Part II). This contradiction

implies that xj ≥ xj+1. In a similar way, xj ≥ xj+1 for j ∈ [` + 1, n− r], using Qn ∈ Aπ. Finally,

if xn−r < x1 − 1, then the intersection of the intervals Q(i−1)(n−r)+j , with (i, j) a shaded box in

Figure 2, is empty, a contradiction. This proves that Aπ has the required form.

Without loss of generality, we assume that for the identity permutation ι, Aι = {Q1, Q2, . . . , Qr}.

Claim 2. For each permutation π, Aπ = {π(Q1), π(Q2), . . . , π(Qr)}.

Proof. Each permutation π of X\{r} is a product of transpositions. Therefore it suffices to show

that if τ is a transposition in which r is a fixed point, then

Aτ = {τ(Q1), τ(Q2), . . . , τ(Qr)}.

Suppose that τ transposes t and t + 1, with r 6∈ {t, t + 1}. Then Claim 1 implies that Aτ =

{τ(Qm), τ(Qm+1), . . . , τ(Qm+r−1)} for some m ∈ [n]. We show below that m = 1.

Case 1. n 6∈ {t, t + 1}: Here τ(Q1) = [r] = Q1 ∈ A, and τ(Qn) = {1, . . . , r − 1, n} = Qn 6∈ A.

Therefore m = 1.
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Case 2. t + 1 = n: In this case τ(Qi) = Qi ∈ A for each i ∈ [r] \ {n − r}. Consequently

τ(Qn−r) ∈ A as well, and therefore m = 1.

Case 3. t = n: If n < 2r − 1, then τ(Qr) = Qr ∈ A and τ(Qr+1) = Qr+1 6∈ A. Therefore m = 1.

If n = 2r − 1, then τ(Qi) = Qi ∈ A for i = 2, . . . , r − 1. This leaves the posibilities m = 1, 2, n.

However, τ(Qr+1) = Qr+1 6∈ A, and τ(Qn) = Qn 6∈ A. Consequently, {τ(Q1), τ(Qr)} ⊂ A and

m = 1 again.

We now complete Part I. For each A ∈ A, there are 1
2r!(n − r)! families Aπ containing A. The

total number of cyclic permutations of X is (n− 1)!/2. By Claim 1, |Aπ| ≤ r and therefore

1
2r!(n− r)!|A| ≤ 1

2r(n− 1)!.

This establishes the upper bound |A| ≤
(n−1
r−1

)
. By Claim 1, equality holds if and only if for

every cyclic permutation π of X, we have Aπ = {π(Q1), π(Q2), . . . , π(Qr}. Set x = r. For any

A ⊂ (X\{x})(r−1), we may thus choose such a cyclic permutation π so that π(Q1) = A ∪ {x}.
Therefore A ∪ {x} ∈ A, and A = X

(r)
x is the required family.

Part II: n = k(n− r).

The argument here is different to that of Part I; we use a result of Baranyai [1], stating that

the family X(r) may be partitioned into perfect matchings when r divides n. This result is only

needed for the characterization of the extremal family A. Recall that A = {X\A : A ∈ A}.

Claim 3. If A ∈ X(n−r)\A, then (X\A)(n−r) ⊂ A.

Proof. Pick A′ ∈ (X\A)(n−r). We will show that A′ ∈ A. By Baranyai’s Theorem, there

is a partition of X(n−r) into perfect matchings M1, . . . ,Mt of size k, where t = 1
k

( n
n−r

)
. By

relabelling X if necessary, we may assume that M1 ⊃ {A,A′}. Since A has no perfect matching,

and n = kr/(k − 1),

|A| ≤ (k − 1)t =
k − 1

k

(
n

n− r

)
=

k − 1
k

(
n

r

)
=

k − 1
k

n

r

(
n− 1
r − 1

)
=

(
n− 1
r − 1

)
.

Therefore |A| = |A| =
(n−1
r−1

)
, and |A ∩Mi| = k − 1 for all i. Since M1 ⊃ {A,A′} and A 6∈ A, we

must have A′ ∈ A. Therefore Claim 3 is verified.
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We now complete the proof of Theorem 2 for n = k(n − r). Let B = X(n−r)\A. Then n(B) =
k

k−1r ≥ 2(n − r) as k ≥ 2 and n < 2r. Furthermore, B is an intersecting family, by Claim 3,

and |B| =
( n
n−r

)
− |A| =

( n−1
n−r−1

)
. By Theorem 1, B = X

(n−r)
x for some x ∈ X. This shows that

A = X
(r)
x , and Part II is complete.

Part III: n ≥ 2r.

Throughout Part III, we assume r ≥ 4. Addition of technical details in Claim 3 in the proof

below accommodates the case r = 3. However, a short proof in this case was presented by weight

counting techniques in Frankl and Füredi [11], which we revisit in Section 5.

We need the following notations.

For A ⊂ X(r), let V (A) =
⋃

A∈A A and n(A) = |V (A)|. For Y ⊂ X, we define A− Y = {A ∈ A :

A∩Y = ∅}. We also write A = {X\A : A ∈ A}. The following five definitions and the associated

notations will be used repeatedly throughout the paper:

Sum of Families. The sum of families A1,A2, . . . ,At, denoted
∑

iAi, is the family of all sets in

each Ai. Note that
∑
Ai may have repeated sets, even if none of the Ai have repeated sets.

Trace of a Set. The trace of a set Y in A is defined by tr(Y ) = trA(Y ) = {A ⊂ X : A∪Y ∈ A}.
We define tr(A) =

∑
x∈X tr(x).

Degree of a Set. The edge neighborhood of a set Y is Γ(Y ) = ΓA(Y ) = {A ∈ A : A ∩ Y 6=
∅ and A 6= Y }, and the degree of Y is degA(Y ) = |ΓA(Y )|. If Y = {y}, then we write y instead

of {y}, and degA(y) = |ΓA(y)| = |Ay|.

The families Sx and Lx. Let A be an r-uniform family of sets in X and x ∈ X. Then we define

Sx = {Y ∈ tr(x) : |tr(Y )| = 1} and Lx = tr(x)\Sx.

We write S =
∑

x∈X Sx and L =
∑

x∈X Lx = tr(A)\S. Note that if A ∈ Lx, then there exists

y 6= x such that A ∈ Ly.

Paths and Connectivity. A path in A is a family P of sets A1, A2, . . . such that Ai ∩ Aj 6= ∅
if and only if |i− j| ≤ 1. Family A is connected if every pair of vertices in V (A) is contained in

some path in A. A component of A is a maximal non-empty connected subfamily of A.

We begin with the following simple lemma. Recall that B − S = {A ∈ B : A ∩ S = ∅}.
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Lemma 8 Let B0 be a finite family of sets. Then there exist disjoint sets S0, S1, . . . , St−1 ∈ V (B0),

such that the families Bi = B0 − ∪i−1
j=0Sj for i = 1, . . . , t satisfy

(1) Si ∈ Bi and degBi
(Si) < d− 1 for every i < t,

(2) degBt
(S) ≥ d− 1 for every S ∈ Bt.

Proof. For i ≥ 0, if there exists a T ∈ Bi with degBi
(T ) < d− 1, then set Si = T . Form Bi+1 and

repeat for i + 1. If there is no such T , then set i = t and stop. 2

For n ≥ 2r − 1, we proceed by induction on n. The base case n = 2r − 1 has been proved in

Part I. Suppose that n ≥ 2r, |A| =
(n−1
r−1

)
, and A contains no nontrivial intersecting family of size

d + 1. We will prove that A = X
(r)
y for some y ∈ X. This implies that if A′ ⊂ X(r) contains

no nontrivial intersecting family of size d + 1, then |A′| ≤
(n−1
r−1

)
, by the following argument: If

|A′| >
(n−1
r−1

)
, then A′ contains an r-set R in addition to X

(r)
y by our assumption. Now consider

the subfamily consisting of all r-sets of X
(r)
y intersecting R as well as R itself. This is clearly a

nontrivial intersecting family, and it has size

1 +

(
n− 1
r − 1

)
−
(

n− 1− r

r − 1

)
> 1 + r > d + 1.

Consequently, |A′| ≤
(n−1
r−1

)
as claimed.

Our approach is to show that there exists a vertex x ∈ X with degA(x) ≤
(n−2
r−2

)
. Subsequently,

the family A − {x} has size at least
(n−1
r−1

)
−
(n−2
r−2

)
=
(n−2
r−1

)
. By induction, equality holds and

A− {x} = X
(r)
y for some y ∈ X; it is easy to see that every set in A containing x also contains y

and A is the required family. Let us show that deg(x) ≤
(n−2
r−2

)
if |Lx| is a maximum.

Claim 1. |Lx| >
(n−3
r−2

)
.

Proof. Note that r|A| =
∑

y deg(y) =
∑

y |Sy| +
∑

y |Ly|. By the choice of x, this is at most

|S|+ n|Lx|. Also, S ∩ Lx = ∅, so |S| ≤
( n
r−1

)
− |Lx|. Consequently

(n− 1)|Lx| ≥ r|A| −
(

n

r − 1

)
= r

(
n− 1
r − 1

)
−
(

n

r − 1

)
> (n− 1)

(
n− 3
r − 2

)
,

where the last inequality follows from a short computation and the fact that r ≥ 4. Dividing by

n− 1, we obtain |Lx| >
(n−3
r−2

)
.

Applying Lemma 8 to Lx = B0, let (S0, S1, . . . , St−1) be the sets in V (Lx) satisfying (1) and (2),

and let Bi be as in Lemma 8. Note that Bt 6= ∅, since otherwise

|Lx| ≤
t−1∑
i=0

(degBi
(Si) + 1) ≤ t(d− 1) ≤ n− 1

r − 1
(r − 2) < n− 1, (2)
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contradicting Claim 1. Let K0,K1, . . . ,Ks be the components of Bt. We let K′
i denote the union

of Ki and the family of all sets in Sx intersecting V (Ki).

Claim 2. The family K′
i is an intersecting family.

Proof. Suppose, for a contradiction, that K′
i contains disjoint sets A0, B0. Since Ki is connected,

Ki ∪ {A0, B0} is also connected. Choose a path A0, A1, A2, . . . , B0 in Ki ∪ {A0, B0} (possibly

A2 = B0). Then A1 ∈ Ki. Lemma 8 part (2) implies that degKi
(A1) ≥ d − 1, hence (if d ≥ 4)

there exist sets C1, C2, . . . , Cd−3 ∈ Ki\{A0, A2} each of which intersects A1. By definition of Lx,

there exists y ∈ X\{x} such that A1 ∈ Ly. Consequently,

{A0 ∪ x,A1 ∪ x,A2 ∪ x,C1 ∪ x, . . . , Cd−3 ∪ x,A1 ∪ y}

is a non-trivial intersecting family of size d + 1 in A, since A0 ∩A2 = ∅, a contradiction.

Claim 3. Lx = K0 and n(Lx) ≥ n− 2.

Proof. We first show t = s = 0, so that Lx = K0. For a contradiction, suppose t > 0 or s > 0.

By Claim 2, Ki ⊂ K′
i is an intersecting family of (r− 1)-sets. Therefore, for n(Ki) ≥ 2(r− 1), the

Erdős-Ko-Rado theorem shows |Ki| ≤
(n(Ki)−1

r−2

)
≤
(n(Ki)

r−2

)
. If n(Ki) ≤ 2r − 3, then |Ki| ≤

(n(Ki)
r−1

)
,

and this is at most
(n(Ki)

r−2

)
. Since n(Ki) ≥ r− 1 for i ≤ s, convexity of binomial coefficients yields

s∑
i=0

|Ki| ≤
s∑

i=0

(
n(Ki)
r − 2

)
=

(
n(K0)
r − 2

)
+

s∑
i=1

(
n(Ki)
r − 2

)
≤
(

[
∑s

i=0 n(Ki)]− s(r − 1)
r − 2

)
+

s∑
i=1

(
r − 1
r − 2

)
.

Recalling that n(Lx) =
∑s

i=0 n(Ki) + t(r − 1), we obtain

s∑
i=0

|Ki| ≤
(

n(Lx)− s(r − 1)− t(r − 1)
r − 2

)
+ s(r − 1).

By the argument giving the first two inequalities of (2), and d− 1 ≤ r − 1, we have

|Lx| =
s∑

i=0

|Ki|+
t−1∑
i=0

(degBi
(Si) + 1) ≤

(
n(Lx)− (s + t)(r − 1)

r − 2

)
+ s(r − 1) + t(r − 1).

If s + t ≥ 1 then, by convexity of binomial coefficients,

|Lx| ≤
(

n(Lx)− (r − 1)
r − 2

)
+ (r − 1) ≤

(
n− r

r − 2

)
+ (r − 1).
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As n ≥ 2r and r ≥ 4, this contradicts Claim 1. Thus s = t = 0, and Lx consists of one component,

K0.

We now show that n(Lx) ≥ n− 2. By the arguments above, |K0| ≤
(n(K0)

r−2

)
. Therefore, by Claim

1, n(K0) = n(Lx) ≥ n− 2. This completes the proof of Claim 3.

We now complete Part III and the proof of Theorem 2, by showing that deg(x) ≤
(n−2
r−2

)
. By

Claim 2, K′
0 is an intersecting family. Since n(K0) ≥ n − 2 > n − r + 1, tr(x) = K′

0 so tr(x) is

itself an intersecting family of (r − 1)-sets. As n − 1 ≥ n(K′
0) ≥ n(K0) ≥ n − 2 ≥ 2(r − 1), the

Erdős-Ko-Rado theorem implies that

deg(x) = |K′
0| = |tr(x)| ≤

(
n− 2
r − 2

)
.

This completes the proof of Theorem 2. 2

3 Proof of Theorem 3.

Part III of the proof of Theorem 2 can be extended to the case r = 3 and 2 ≤ d ≤ 6 by addition of

some technical details. However, Chvátal [3] and Frankl and Füredi [11] already settled the case

r = 3 and d = 2 so we do not consider this case here. In fact, from the proof below, it follows

that for 2 ≤ d ≤ 6 and n ≥ 15, a family A ⊂ X(3) containing no non-trivial intersecting family of

size d + 1 has at most
(n−1

2

)
members, with the equality as in Theorem 2.

We now prove Theorem 3, employing the weight counting methods of Frankl and Füredi.

Proof of Theorem 3. Let A ⊂ X(3) and suppose A contains no non-trivial intersecting family

of size d + 1. Following Frankl and Füredi, the weight of a set A ∈ A is defined by

ω(A) =
∑

{x,y}⊂A

1
|tr{x, y}|

.

Then ∑
A∈A

ω(A) =
∑
A∈A

∑
{x,y}⊂A

1
|tr(x, y)|

≤
∑

{x,y}∈X

∑
A∈A

{x,y}∈A

1
|tr(x, y)|

≤
∑

{x,y}∈X

1 =

(
n

2

)
.

Equality holds if and only if every pair in X is contained in some set in A.
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As A contains no non-trivial intersecting family of size d + 1, |tr{x, y}| = 1 for some {x, y} ∈ A

or
∑

x,y∈A |tr{x, y}| ≤ d + 2. This implies that for all A ∈ A,

ω(A) ≥ min
{
1 + 2

n−2 ,
⌊
(d+2)

3

⌋−1
+
⌊
(d+3)

3

⌋−1
+
⌊
(d+4)

3

⌋−1}
.

For d ≥ 7, the second term is smaller (in fact, less than 1). Therefore

∑
A∈A

ω(A) ≥
(⌊

(d+2)
3

⌋−1
+
⌊
(d+3)

3

⌋−1
+
⌊
(d+4)

3

⌋−1)
|A|.

Together with
∑

A∈A ω(A) ≤
(n
2

)
, this gives the upper bound on |A| in Theorem 3, which is for

d ≥ 7.

For the lower bound in Theorem 3, it suffices to show that every non-trivial intersecting family of

size d + 1 ≥ 11 contains a pair in at least dd
3e of its edges. Then a Steiner (n, 3, dd

3e − 1)-system,

for those n for which such a structure exists, does not contain such an intersecting family.

Lemma 9 Let F ⊂ X(3) be a non-trivial intersecting family with |F| ≥ 11. Then there exist

distinct elements x, y ∈ X such that

|trF{x, y}| ≥ 1
3
(|F| − 1).

Proof. For a, b ∈ X, we let d(a, b) = |trF{a, b}|. First suppose that there exist x, y ∈ X

with d(x, y) ≥ 3. Now let u, v, w ∈ trF{x, y}. Throughout the proof, we assume d(x, y) ≤
d1

3(|F| − 1)e − 1, otherwise we are done. Let Lx = trF (x)− {y} = {A ∈ trF (x) : y 6∈ A} and let

Ly = trF (y)− {x} = {A ∈ trF (y) : x 6∈ A} Since F is an intersecting family,

A ∩B 6= ∅ for every A ∈ Lx and B ∈ Ly (∗).

Case 1: Lx contains a matching of size three.

In this case, Lx consists of three stars with distinct centers in X. By (∗), every pair in Ly intersects

all three centers. This implies Ly = ∅. As F is a non-trivial intersecting family, there is a triple

in F disjoint from x. Since Ly = ∅ and d(x, y) ≥ 3, this triple must be {u, v, w} and d(x, y) = 3.

Since F is intersecting, the centers of the three stars must also be u, v, w. Now every F ∈ F −{y}
with F 6= {u, v, w} contains x. Therefore, assuming d(x, u) ≥ d(x, v) ≥ d(x,w), we find

12



d(x, u) ≥ 1
3
(|F| − 4) + 1 =

1
3
(|F| − 1).

This completes the proof in Case 1.

Case 2: Lx and Ly contain no matching of size three.

It is not hard to see by (∗) that |Lx|+ |Ly| ≤ 2(d1
3(|F|−1)e−1)+1, with equality if and only if Lx

consists of a pair of stars of size d(|F| − 1)/3e− 1 with distinct centers a, b and Ly consists of the

pair {a, b}. Then |F| − |Lx| − |Ly| − d(x, y) ≥ 2, unless |F| = 3k + 2, k ≥ 3 and Lx and Ly are as

described above. By (∗), any triple in F−{x, y} contains u, v and w. This shows |F −{x, y}| = 1,

and therefore |F| = 3k + 2, k ≥ 3. In this case, {u, v, w} ∈ F and a, b ∈ {u, v, w}, since F is

intersecting. Therefore d(a, x) ≥ 4 (and also d(b, x) ≥ 4), completing the proof in Case 2.

If every pair a, b ∈ X has d(a, b) ≤ 2, then the arguments in Cases 1 and 2 still apply to give a

contradiction with |F| ≥ 11, since in this case |F| = 8. This completes the proof of the Lemma.

2

4 Proof of Theorem 7.

Let A be a family of subsets of X containing no non-trivial intersecting family of size d + 1. We

prove Theorem 7 by showing that A′ = A∩X(≥2) has size at most 2n−1 − 1, with equality if and

only if A′ = X
(≥2)
x for some x ∈ X. Theorem 7 is proved in two parts. Part I deals with the case

d = 2, by induction on n ≥ 1. In Part II, we use Part I to prove Theorem 7 for d ≥ 3.

Part I: d = 2

Theorem 7 is easily verified for n ≤ 3. Now let n ≥ 4 and w ∈ X.

Case 1: For every partition of X\{w} into two non-empty sets Y and Z, there exists a set

A ∈ A′ − {w} such that A ∩ Y 6= ∅ and A ∩ Z 6= ∅. Then, for each partition of X\{w} into sets

Y and Z, either Y ∪ {w} 6∈ A or Z ∪ {w} 6∈ A′ – otherwise A′ contains a triangle. Therefore

degA′(w) ≤ 2n−2. By induction, A′′ = A′ − {w} has size at most 2n−2 − 1, with equality if and

only if A′′ = (X\{w})(≥2)
x for some x ∈ X − {w}. Thus

|A′| = degA′(w) + |A′′| ≤ 2n−2 + (2n−2 − 1) = 2n−1 − 1.
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Now suppose that equality holds above. We will show that every set in A′ containing w also

contains x. Suppose on the contrary that w ∈ S ∈ A′ and x 6∈ S. Among all such S, choose the

one of minimum size, call it S0. Let T be another set containing w. By the choice of S0, either

T ⊃ S0, or there exist t ∈ T − S, and s ∈ S − T (possibly t = x). In the latter case, {x, s, t}, S, T

form a triangle (replace {x, s, t} by {s, t} if t = x). We may therefore assume that every set in A′

containing w also contains S0. Hence 2n−2 = degA′(w) ≤ 2n−|S0|−1 from which we conclude that

S0 = {s}, and E ∪ {w} ∈ A′ for every E ⊂ X\{w, s}. Since |X| ≥ 4, there exist distinct a, b for

which {w, s, a} and {w, s, b} lie in A′. Together with {x, a, b} (or just {a, b} if a = x or b = x)

this once again forms a triangle.

Case 2: There exists a partition of X\{w} into two nonempty sets Y and Z such that no member

of A′ in X\{w} contains an element of both Y and Z. By induction, at most 2|Y |− 1 elements of

A′ are contained in Y ∪ {w}, and similarly for Z. The number of sets which contain an element

of Y and an element of Z is, by the choice of Y and Z, at most 2n−1 − 1− (2|Y | − 1)− (2|Z| − 1).

Therefore

|A′| ≤ (2|Y | − 1) + (2|Z| − 1) + (2n−1 − 1− (2|Y | − 1)− (2|Z| − 1)) = 2n−1 − 1.

If equality holds, then by induction there exist y ∈ Y ∪ {w}, z ∈ Z ∪ {w} with (Y ∪ {w})(≥2)
y ∪

(Z ∪ {w})(≥2)
z ⊂ A′. Since |X| ≥ 4, we may assume by symmetry that |Y | ≥ 2. We next show

that y = w. Observe that for every set S ⊂ X\{w} containing an element of both Y and Z, we

have S ∪ {w} ∈ A′. If y 6= w, then {y, a} ∈ A′ for some a ∈ Y \{y}. The set {y, a} together with

{y, w} and {w, a, b} for some b ∈ Z forms a triangle. Consequently y = w, and z = w as well

unless Z = {z}. But in this case (Z ∪ {w})(≥2)
z = (Z ∪ {w})(≥2)

w , therefore A′ = X
(≥2)
w .

Part II: d ≥ 3

Define a function f on the positive integers by f(1) = f(2) = f(3) = 1, and for n ≥ 4,

f(n) = max{0, f(n− 3) + d− 2n−4}. (∗)

It is easy to see that if n ≥ 4, and f(n) ≥ 0, then

f(n) = 1 +
(⌈

n

3

⌉
− 1

)
d−

b(n−4)/3c∑
i=0

2n−4−3i.

Set nd = log2 d + log2 log2 d + 2. An easy calculation now shows that f(n) = 0 whenever n ≥ nd

and f(n) > f(n− 3) + d− 2n−4 when n > nd.
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In this part of the proof, we proceed by induction on n ≥ 1, with the following hypothesis: Let

A′ ⊂ X(≥2) contain no non-trivial intersecting family of size d + 1. Then |A′| ≤ 2n−1 − 1 + f(n).

For n ≤ 3, the result is true as

|A′| ≤ |X(≥2)| = 2n − n− 1 ≤ 2n−1 − 1 + f(n).

Now suppose that n ≥ 4. By Part I, we may assume A′ contains a triangle F = {F1, F2, F3},
otherwise the proof is complete.

Let x, y, z be elements in F1 ∩ F2, F2 ∩ F3 and F3 ∩ F1 respectively. Then at most d sets in A′

intersect {x, y, z} in at least two points, otherwise F together with another d − 2 of these sets

forms a non-trivial intersecting family of size d + 1. The total number of sets in A′ intersecting

{x, y, z} is therefore at most 3 · 2n−3 + d. Let A′′ = A′ − {x, y, z}. Then

|A′| ≤ |A′′|+ 3 · 2n−3 + d.

As A′′ contains no non-trivial family of size d + 1, the induction hypothesis shows |A′′| ≤ 2n−4 −
1 + f(n− 3). This gives

|A′| ≤ 2n−4 − 1 + f(n− 3) + 3 · 2n−3 + d

= 2n−1 − 1 + f(n)− (f(n)− f(n− 3)− d + 2n−4)

≤ 2n−1 − 1 + f(n), (∗∗)

where the last inequality follows from (∗). By the choice of nd, we know that f(n) = 0 for n ≥ nd,

so |A′| ≤ 2n−1 − 1 for n ≥ nd, completing the proof of the upper bound in Theorem 7.

Now suppose that |A′| = 2n−1 − 1 and n > nd. Then the inequality (∗∗) is strict. This gives

the contradiction |A′| < 2n−1 − 1. Consequently A′ contains no triangle and Part I of the proof

applies to give the case of equality. 2
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