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Abstract

Given integers `, n, the `th power of the path Pn is the ordered graph P `
n with vertex set

v1 < v2 < · · · < vn and all edges of the form vivj where |i − j| ≤ `. The Ramsey number

r(P `
n, P

`
n) is the minimum N such that every 2-coloring of

(
[N ]
2

)
results in a monochromatic copy

of P `
n. It is well-known that that r(P 1

n , P
1
n) = (n − 1)2 + 1. For ` > 1, Balko-Cibulka-Král-

Kynčl proved that r(P `
n, P

`
n) < c`n

128` and asked for the growth rate for fixed `. When ` = 2,
we improve this upper bound substantially by proving r(P 2

n , P
2
n) < cn19.5. Using this result,

we determine the correct tower growth rate of the k-uniform hypergraph Ramsey number of a
(k+1)-clique versus an ordered tight path. Finally, we consider an ordered version of the classical
Erdős-Hajnal hypergraph Ramsey problem, improve the tower height given by the trivial upper
bound, and conjecture that this tower height is optimal.

1 Introduction

Let Kn be the complete graph on n vertices. An ordered path Ps is the graph whose vertices are
ordered as v1 < · · · < vs and its edges are v1v2, v2v3, . . . , vs−1vs. The Ramsey number r(Ps, Pn) is
the minimum N such that every red/blue coloring of

(
[N ]
2

)
results in a red copy of Ps or a blue copy

of Pn. Note that Ps usually stands for the (unordered) path but since we only consider ordered
paths in this paper, we have taken the liberty to use Ps for the ordered path (similarly, Kn refers
to the ordered or unordered clique). A similar comment applies to the notation r(Ps, Pn) that we
have employed here. Usually this stands for unordered Ramsey numbers but since we exclusively
consider ordered Ramsey numbers in this paper, we have chosen to keep this notation and hope
that there will be no confusion. Further, there is not yet a standard notation for ordered Ramsey
numbers in the literature as these numbers have only recently been considered systematically ([1]
uses “R”, [4] uses “r<”, [12] uses “OR”, [13] uses “N” and [14] and the current paper use “r”).

Let f(s, n) be the minimum N such that every sequence of N distinct real numbers contains an
increasing subsequence of length s or a decreasing subsequence of length n. The famous Erdős-
Szekeres monotone subsequence theorem [10] states that f(s, n) = (s− 1)(n− 1) + 1. This function
is closely related to r(Ps, Pn). Indeed, it is trivial that r(Ps, Pn) ≥ f(s, n) while several proofs for
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f(s, n) ≤ (s−1)(n−1) also give the same upper bound for r(Ps, Pn) (see [13] for a further discussion
about this). Consequently, it is well-known that r(Ps, Pn) = (s− 1)(n− 1) + 1. This implies that
for fixed s, the Ramsey number r(Ps, Pn) is a polynomial function in n (in fact a linear function).
On the other hand, r(n, n) = r(Kn,Kn) has exponential growth rate. We begin by considering the
case of ordered graphs that are denser than paths but sparser than cliques.

Definition 1. Given ` ≥ 1, the `th power P `
s of a path Ps has ordered vertex set v1 < · · · < vs

and edge set {vivj : |i− j| ≤ `}. The Ramsey number r(P `
s , P

`
n) is the minimum N such that every

red/blue coloring of
(
[N ]
2

)
results in a red copy of P `

s or a blue copy of P `
n.

Note that P 1
s = Ps. Conlon-Fox-Lee-Sudakov [4] asked whether r(P `

n, P
`
n) is polynomial in n for

every fixed ` ≥ 1. Actually, the problem in [4] is about the Ramsey number of ordered graphs with
bandwidth at most ` but P `

n contains all such graphs so an upper bound for P `
n provides an upper

bound for the bandwidth problem. This question was answered by Balko-Cibulka-Král-Kynčl [1]
who proved an upper bound c`n

128` and asked (Problem 2 of [1]) for the growth rate of r(P `
n, P

`
n)

(subsequently, a different proof was also sketched in [4]). The proof of our first result gives a slightly
worse polynomial growth rate of r(P `

n, P
`
n) than in [1] for large ` but a much better one for small

`, in particular for ` = 2. Note that the bound in [1] for ` = 2 is cn256.

Theorem 2. There is an absolute constant c > 0 such that r(P 2
n , P

2
n) < cn19.487 for all n > 1.

Our second result is an application of Theorem 2 to a hypergraph Ramsey problem. Indeed, this
hypergraph Ramsey problem is what motivated us to consider proving Theorem 2.

Definition 3. A k-uniform tight path of size s, denoted by Ps, comprises a set of s vertices that
are ordered as v1 < · · · < vs, and edges (vj , vj+1, . . . , vj+k−1) for j = 1, 2, . . . , s− k+ 1. The length
of Ps is the number of edges, s − k + 1. Given (ordered) k-graphs F1, F2, the Ramsey number
rk(F1, F2) or r(F1, F2) is the minimum N such that every red/blue coloring of the edges of the
complete N -vertex k-graph Kk

N , whose vertex set is [N ], contains a red copy of F1 or a blue copy
of F2.

The famous cups-caps theorem of Erdős and Szekeres [10] implies that r3(Ps, Pn) =
(
n+s−4
s−2

)
+1. The

author and Suk [14] considered the closely related problem of determining rk(Ps, n) := rk(Ps,K
k
n)

and showed that determining the tower height of r4(P5, n) is equivalent to the notorious conjecture
of Erdős-Hajnal and Rado on the tower height of r3(n, n). The results in [14] focused on fixed s and
large n and there are no nontrivial results for the opposite case, namely for rk(s, Pn). Given the
close connection between this problem and the problem of determining classical Ramsey numbers,
it would be of interest to obtain the growth rate in this range as well. Here we settle the first open
case. Recall that the tower function twri(x) is defined by twr1(x) = x and twri+1(x) = 2twri(x).

Theorem 4. For n large, r3(4, Pn) < n21 and more generally for each k ≥ 3, there exists c > 0
such that for n large,

twrk−2(n
c) < rk(k + 1, Pn) < twrk−2(n

62).

The main open problem here is to prove that r3(5, Pn) has polynomial growth rate and more
generally that r3(s, Pn) has polynomial growth rate for all fixed s ≥ 4. The corresponding results
for higher uniformity follow easily from the case k = 3.
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Our final topic considers a version of the well-known Erdős-Hajnal hypergraph Ramsey problem
with respect to tight paths. In order to shed more light on classical hypergraph Ramsey numbers,
Erdős and Hajnal [7] in 1972 considered the following more general parameter.

Definition 5. (Erdős-Hajnal [7]) For integers 2 ≤ k < s < n and 2 ≤ t ≤
(
s
k

)
, let rk(s, t;n) be

the minimum N such that every red/blue coloring of the edges of Kk
N results in a monochromatic

blue copy of Kk
n or has a set of s vertices which induces at least t red edges.

Note that by definition rk(s, n) = rk(s,
(
s
k

)
;n) so rk(s, t;n) includes classical Ramsey numbers. The

main conjecture of Erdős and Hajnal states that as t grows from 1 to
(
s
k

)
, there is a well-defined

value t1 = h
(k)
1 (s) at which rk(s, t1 − 1;n) is polynomial in n while rk(s, t1;n) is exponential in a

power of n, another well-defined value t2 = h
(k)
2 (s) at which it changes from exponential to double

exponential in a power of n and so on, and finally a well-defined value tk−2 = h
(k)
k−2(s) <

(
s
k

)
at

which it changes from twrk−2 to twrk−1 in a power of n. They were not able to offer a conjecture as

to what h
(k)
i (s) is in general, except when i = 1 (for which Erdős offered $500) and when s = k+ 1.

For the latter, they conjectured that h
(k)
i (k+ 1) = i+ 2. This was solved for all but three i recently

by the author and Suk [15] via the following result.

Theorem 6. (Mubayi-Suk [15]) For 4 ≤ t ≤ k− 2, there are positive c = c(k, t) and c′ = c′(k, t)
such that

twrt−1(c
′nk−t+1 log n) ≥ rk(k + 1, t; n) ≥

{
twrt−1(c n

k−t+1) if k − t is even

twrt−1(c n
(k−t+1)/2) if k − t is odd.

Here we consider the very same problem in the ordered setting by replacing Kk
n with Pn.

Definition 7. For integers 2 ≤ k < s < n and 2 ≤ t ≤
(
s
k

)
, let rk(s, t;Pn) be the minimum N such

that every red/blue coloring of the k-sets of [N ] results in a monochromatic blue copy of Pn or has
a set of s vertices which induces at least t red edges.

Of course, rk(s,
(
s
k

)
;Pn) = rk(s, Pn). We will focus our attention on the smallest case s = k + 1.

Our main contribution here is the following conjecture which parallels the Erdős-Hajnal conjecture
for cliques.

Conjecture 8. For 3 ≤ t ≤ k, there are positive c = c(k, t) and c′ = c′(k, t) such that

twrt−2(n
c) < rk(k + 1, t;Pn) < twrt−2(n

c′).

This conjecture seems more difficult than the original problem of Erdős and Hajnal. For over 40
years the gaps in the bounds for the Erdős-Hajnal problem were between exponential and tower
functions. Theorem 6 shows that the correct growth rate is a tower function. For Conjecture 8 the
gap is again between an exponential and a tower function but unfortunately the constructions used
for Theorem 6 fail.

Using standard arguments, it is easy to prove an upper bound of the form twrt−1(n
c) in Conjecture 8

(see [15] for details). We improve this upper bound to the tower height given by Conjecture 8.
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Theorem 9. For all 3 ≤ t ≤ k there exists c = c(k) such that rk(k + 1, t;Pn) < twrt−2(cn
2k).

We make some further modest progress towards Conjecture 8 in the cases t = 3 and (k, t) = (4, 4) by
proving sharper bounds. Note that Theorem 4 determines the correct tower height of rk(k+1, t;Pn)
when t = k + 1; it is k − 2 = t− 3 so the formula differs from that in Conjecture 8.

Theorem 10. The following bounds hold:

(a) rk(k + 1, 3;Pn) ≤ 16n for n ≥ k ≥ 3

(b) 2n− 2 ≤ r3(4, 3;Pn) ≤ 3n− 4 for n ≥ 3

(c) r4(5, 4;Pn) ≥ 2n−2 + 1 for n ≥ 2.

We are not ready to offer a conjecture about the tower growth rate of rk(s, t;Pn) as t grows from
2 to

(
s
k

)
for s > k + 1.

In all our results where we find either a long (ordered) blue Pn or a small red structure (The-
orems 4, 9, 10) our proof actually finds an ordered blue hypergraph that contains Pn. We call
this hypergraph a broom (see Definition 11). Using brooms we can load the induction hypothesis
suitably to carry out the induction step. Perhaps this is one of the main new ideas in this work.

2 Proof of Theorem 2

We will prove Theorem 2 by using bounds on the Ramsey multiplicity problem introduced by
Erdős [6]. This problem asks for the largest α = α(`) such that every 2-edge coloring of KN yields
at least (α− o(1))N ` monochromatic copies of K`. Erdős [6] observed that α(`) > 0 for all ` ≥ 4.
The best known bounds for α(`) for large ` are very far apart and can be found in [2, 18]. We will
use the specific result α(4) > 0.0287/4! = 0.00119583 that was recently proved using Flag Algebras
in [16] (see also [17]). Note that log2(1/α(4)) < 9.7434. After this paper was written, we learned
that the approach of using ramsey multiplicity for ordered Ramsey problems was also used in [4].

Proof of Theorem 2. Let α = α(4) be the constant from the Ramsey multiplicity problem above.
Let ε = 10−9 and choose c such that every red/blue coloring of

(
[N ]
2

)
for N > c results in at least

(α− ε)N4 monochromatic copies of K4. We will prove that

r(P 2
a , P

2
b ) ≤ c(ab)9.7435

for all a, b ≥ 2. This immediately gives the bounds we seek by letting a = b = n.

We will proceed by induction on a+ b. If a = 2 then the trivial upper bound is b < c(2b)9.7435 and
the same holds if b = 2. For the induction step, suppose we have a red/blue coloring of

(
[N ]
2

)
with

N = c(ab)9.7435 > c. By the choice of c, we obtain at least (α− ε)N4 monochromatic copies of K4.

Assume without loss of generality that half of these copies are red. To each such copy with vertex
set x0 < x1 < x2 < x3 associate the middle pair of vertices x1, x2. By the pigeonhole principle there
exists a set Y = y1 < y2 that is the middle pair for at least ((α−ε)/2)N4/

(
N−2
2

)
> (α−2ε)N2 = βN2

red copies of K4. Let L be the set of smallest vertices y0 in these red K4s and let R be the set of
largest vertices y3 in these red K4s. Note that all edges between Y and L ∪ R are red and that
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|L||R| is the number of the red copies of K4 that we are working with. If |L| = γN < βN , then,
since L and R are disjoint, |R| ≤ (1− γ)N and so

βN2 ≤ |L||R| ≤ γ(1− γ)N2 < β(1− β)N2.

Consequently, |L| ≥ βN and similarly |R| ≥ βN . By induction and log2(1/α) < 9.7434,

|L| ≥ βN = βc(ab)9.7435 > c(1/2)9.7435(ab)9.7435 ≥ r(P 2
ba/2c, P

2
b ).

Now we apply the induction hypothesis to find either a red P 2
ba/2c or a blue P 2

b in L. If the latter
occurs we are done so we get the former. The same argument applies to R. Therefore, we obtain
two red copies of P 2

ba/2c, one in L and the other in R. Consider these two copies together with Y .
Since the distance between vertices in L and vertices in R is at least 3, and Y is connected to all
vertices in L ∪R by red edges, this yields a red copy of P 2

2ba/2c+2 which contains a red copy of P 2
a

because 2ba/2c+ 2 ≥ a.

3 Proof of Theorem 4

Definition 11. The (ordered) broom Bk
a,m is the k-graph with vertices v1 < v2 < · · · < va < w1 <

· · · < wm such that v1, . . . , va is a tight k-graph path and we also have all the edges va−k+2 · · · vawj

for all j ∈ [m].

We will omit the superscript k in Bk
a,m in all future usage as it will be obvious from the context.

For example, in the proof below k = 3.

Theorem 12. r3(4, Pn) < 6nm where m = r(P 2
n , P

2
n).

Proof. Recall that we are using the notation Pn for a 3-uniform tight path and P 2
n for the square

of a 2-uniform (i.e. graph) ordered path. We will prove that every red/blue coloring χ of
(
[N ]
3

)
,

where N = 6nm yields either a red K3
4 , or a blue Pn. Assume that there is no red K3

4 . We will
show that there there is a blue Pn or a blue Ba,m for all 2 ≤ a ≤ n within the first 6am vertices.
Since Pn ⊂ Bn,m this will prove the result. Let us show that there is a blue Pn or a blue Ba,m in
[6am] by induction on a. For the base case a = 2, we seek a pair of vertices v1 < v2 and at least
m vertices w > v2 within [12m] such that v1v2w is blue. If we cannot find these m vertices for any
pair v1, v2, then the number of blue edges is at most

(
12m
2

)
(m − 2) < 1/4

(
12m
3

)
so the number of

red edges is more than (3/4)
(
12m
3

)
and a simple averaging argument shows that we would have a

red K3
4 , contradiction.

Now for the induction step, assume that we have a blue copy of Ba−1,m in [6(a− 1)m] and we wish
to augment this to a blue copy of Ba,m in [6am]. Suppose that the vertex set of the blue Ba−1,m is

v1 < v2 < · · · < va−1 < w1 < · · · < wm.

Define the red/blue coloring φ of the complete graph on {w1, . . . , wm} by φ(wiwj) = χ(va−1wiwj).
By definition of m, we get a copy H of a monochromatic P 2

n under φ with vertices z1 < · · · < zn.
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Suppose H is red under φ. The four vertices va−1, zi, zi+1, zi+2 have three red edges, so χ(zizi+1zi+2)
is blue for all i. We conclude that z1 < · · · < zn is a blue Pn.

Next, suppose H is blue under φ. Fix i and consider the three vertices zi, zi+1, zi+2. If there are at
least m edges zizi+1y with y ≤ 6am and χ(zizi+1y) is blue, then we can use these edges to form a
blue copy of Ba,m in [6am] with vertices

v2 < · · · < va−1 < zi < zi+1 < Y

where Y is the set of these y. So the number of such y is at most m, and the same is true for
the pairs zi+1, zi+2 and zi, zi+2. Since 6am − 6(a − 1)m = 6m > 3m there is a vertex y such that
χ(zizi+1y) = χ(zizi+2y) = χ(zi+1zi+2y) and these are all red. Therefore χ(zizi+1zi+2) is blue. Since
this argument applies for each i, we obtain a blue Pn under χ with vertices z1 < · · · < zn.

Proof of Theorem 4. The case k = 3 of Theorem 4 follows immediately from Theorem 2 and
Theorem 12. The lower bound for general k follows from the lower bound for rk(Pk+1, Pn) in [12, 13]
(see also [5]). The upper bound for general k follows from the upper bound when k = 3 (as a base
case) and the standard pigeonhole argument for hypergraph Ramsey numbers due to Erdős and
Rado (see the proof on pages 421-423 in [9] for the original argument, or [11], or Section 2 of [3],
or Section 2 of [15]). Applying this argument from k = 3 to k = 4 raises the exponent of n by a
factor of 3 (from slightly less than 20.5 to slightly less than 61.5) and subsequent applications do
not affect the exponent of n.

4 Proof of Theorem 9

Let fk(n) be the minimum N such that every red/blue coloring of
([N ]

k

)
results in a blue Pn or a

set S of k + 1 vertices with at least 3 red edges, one of which consists of the smallest k vertices in
S. Let Hk(3) denote the set of ordered k-graphs with three red edges as described above. We will
abuse notation by saying a copy of Hk(3) when we mean a copy of some H ∈ Hk(3).

Theorem 13. fk(n) ≤ 2n2 for all n > k ≥ 3.

Proof. We will prove that every red/blue coloring χ of
([N ]

k

)
, where N = 2n2 yields either a red

Hk(3) or a blue Pn. Assume that there is no red Hk(3). We will show that there is a blue Pn or
a blue Bn−1,n. Since Pn ⊂ Bn−1,n this will prove the result. We will prove that there is a blue
Bn−1,n by showing that there is a blue Ba,n in [2an] for all 1 ≤ a ≤ n− 1 by induction on a. The
base case a = 1 is trivial since B1,n is just a collection of n+ 1 vertices (with no edge since k ≥ 3)
and 2n > n+ 1.

Now for the induction step, assume that we have a blue copy B of Ba−1,n in [2(a−1)n] and we wish
to augment this to a blue copy of Ba,n in [2an]. Suppose that the vertex set of the blue Ba−1,n is

v1 < v2 < · · · < va−1 < w1 < · · · < wn.

Let V = {v1, . . . , va−1} and W = {w1, . . . , wn}. For each 0 ≤ j ≤ k, let Sj = {va−j , . . . , va−1}
denote the j largest vertices of V .
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Claim. For every i ∈ [k] and P ∈
(
W
i

)
, χ(Sk−i ∪ P ) is blue.

Proof of Claim. Let us proceed by induction on i. The base case i = 1 is trivial, due to the
definition of B. Indeed, if a − 1 ≥ k − 1, then all k-sets of the form Sk−1 ∪ {w} for w ∈ W are
blue. If a− 1 < k − 1 there is nothing to check. For the induction step, let i ≥ 2 and suppose for
contradiction that χ(Sk−i ∪ P ) is red for some P ∈

(
W
i

)
.

Let P1, P2 be two distinct (i − 1)-sets contained in P . Note that i ≥ 2 means that that
(

i
i−1
)
≥ 2

so such P1, P2 exist. Suppose that there are n vertices w′1 < w′2 < · · · < w′n ≤ 2an such that
w′1 > wn and χ(Sk−i ∪ P1 ∪ {w′i}) is blue. Then V ∪ P1 ∪ {w′1, . . . , w′n} is a blue Ba+i−2,n which
contains a blue Ba,n in [2an] as required. Indeed, it suffices to check that χ(Sk−j ∪Qj) is blue for

all j ≤ i − 1, where Qj is the set of j smallest vertices of P1. But Qj ∈
(
W
j

)
and j < i so this is

true by induction on i. We conclude that the number of such vertices w′i is at most n− 1 and the
same assertion holds for P1 replaced by P2. This gives at most 2n − 2 vertices between wn and
2an. Since wn ≤ 2(a − 1)n = 2an − 2n, there exists a w such that wn < w ≤ 2an such that both
χ(Sk−i ∪ P1 ∪ {w}) and χ(Sk−i ∪ P2 ∪ {w}) are red. This means that we have a red copy of Hk(3)
in Sk−i ∪ P ∪ {w}, contradiction.

Now we simply apply the Claim with i = k to conclude that all k-sets of
(
W
k

)
are blue, and this is

a blue clique with n vertices which contains a blue Pn.

Proof of Theorem 9. Let fk(k+1, t;Pn) be the minimum N such that every red/blue coloring of([N ]
k

)
results in a blue Pn or a set S of k+ 1 vertices with at least t red edges, one of which consists

of the smallest k vertices in S. We observe that fk(k + 1, t;Pn) < 2(fk−1(k,t−1;Pn−1)

k
). Indeed, this

follows from the standard pigeonhole argument for hypergraph Ramsey numbers due to Erdős and
Rado (see the proof on pages 421-423 in [9] for the original argument, or [11], or Section 2 of [3]
or Section 2 of [15]). When applying this argument, we must note that the initial red edge in the
(k − 1)-graph gives rise to two red edges in the k-graph, one of which is again an initial edge. We
apply this recurrence t − 3 times until we have a (k − t + 3)-graph. As k ≥ t, Theorem 13 now
applies to give fk−t+3(k − t+ 4, 3;Pn) = fk−t+3(n) ≤ 2n2 and this yields the result.

5 Proof of Theorem 10

Let us first prove the t = 3 case of Theorem 10 by improving the quadratic bound in Theorem 13
to a linear bound. Let F (3) be the collection of ordered k-graphs with k + 1 vertices and at least
three edges.

Proof of Theorem 10 (a). We are to show that rk(k + 1, 3;Pn) ≤ 16n for all n ≥ k ≥ 3. We
will prove that every red/blue coloring χ of

(
[N ]
3

)
, where N = 16n yields either a red H ∈ F (3) or

a blue Pn. Assume that there is no red H ∈ F (3). We will show that there is a blue Bn−1,6. As
Pn ⊂ Bn−1,6 this will prove the result. We will prove that there is a blue Bn−1,6 by showing that
there is a blue Ba,6 for all k − 1 ≤ a < n within the first 16(a+ 1) vertices by induction on a. For
the base case a = k − 1, we seek k − 1 vertices v1 < · · · < vk−1 and at least 6 vertices w > vk−1
within [16k] such that v1 · · · vk−1w is blue. If we cannot find these 6 vertices for any (k − 1)-set
v1 < · · · < vk−1, then the number of blue edges in [16k] is at most 5

(
16k
k−1
)
. A short calculation
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shows that this is less than ((k − 1)/(k + 1))
(
16k
k

)
since k ≥ 3. Consequently, the number of red

edges is more than (2/(k + 1))
(
16k
k

)
and an easy averaging argument then implies that there is a

red H ∈ F (3), contradiction.

Now for the induction step, assume that we have a blue copy of Ba−1,6 in [16a] and we wish to
augment this to a blue copy of Ba,6 in [16(a+ 1)]. Suppose that the vertex set of the blue Ba−1,6 is

v1 < v2 < · · · < va−1 < w1 < · · · < w6.

For q ∈ {k − 1, k − 2, k − 3}, let Sq = {va−q, . . . , va−1} be the greatest q vertices among the vi.
Define the red/blue coloring φ of the complete graph on {w1, . . . , w6} by φ(wiwj) = χ(Sk−2wiwj).
Since r(3, 3) ≤ 6, we obtain a monochromatic triangle T under φ. If T is red, then T ∪ Sk−2 yields
a red member of F (3) which is a contradiction, so T is blue. Assume for simplicity that T = w1 <
w2 < w3. Fix 1 ≤ i < j ≤ 3. If there are at least 6 edges Sk−3wiwjy with w3 < y ≤ 16(a+ 1) and
χ(Sk−3wiwjy) is blue, then we can use these edges to form a blue copy of Ba,m in [16(a+ 1)] with
vertices

v2 < · · · < va−1 < wi < wj < Y

where Y is the set of these y. So the number of such y is at most 5, and the same is true for all
three pairs {i, j}. Since 16(a + 1) − 16a = 16 > 15 there is a vertex y such that χ(Sk−3w1w2y) =
χ(Sk−3w1w3y) = χ(Sk−3w2w3y) and these are all red. This gives a red member of F (3), contradic-
tion.

Proof of Theorem 10 (b). For the lower bound, consider the ordering of 2n− 3 points

v1, v
′
1 < v2, v

′
2 < · · · < vn−2, v

′
n−2 < vn−1.

For all i < j, color the triples viv
′
ivj red. Color all other triples blue. No blue path Pq can contain

both vi and v′i unless they appear at the end of Pq. If no such pair is in Pq then clearly q ≤ n− 1.
If vi, v

′
i are both in Pq, then they lie at the end of the path, and q ≤ (i − 1) + 2 = i + 1 ≤ n − 1.

Hence there is no blue Pn. If we have four points with two red edges, then two of these triples must
be viv

′
ia and viv

′
ib for some vi < a, b. But then there cannot be any other red edge among these

points.

For the upper bound, we will prove the following stronger statement by induction on n:

r3(4, 3;Bn−1,2) ≤ 3n− 3.

Since Pn ⊂ Bn−1,2, this will prove the upper bound. The base case n = 3 is true due to the

following simple argument. Suppose we have a red/blue coloring of
(
[6]
3

)
. If there are two edges of

the form 12i that are blue then we have a blue B2,2 so there is at most one such edge. This means
that there are 2 < i < j < k ≤ 6 such that 12x is red for all x ∈ S = {i, j, k}. If any edge of the
form 1xy or 2xy is red for x, y ∈ S, then {1, 2, x, y} has three red edges, so all such edges are blue.
This means that 1ij and 1ik are both blue, giving a blue B2,2.

Now for the induction step, assume that N = 3n − 3 and we have a red/blue coloring χ of the
triples of [N ] with no four points containing three red edges. By induction, we obtain a blue Bn−2,2
in [N − 3]. Say the vertices of this Bn−2,2 are

v1 < · · · < vn−2 < vn−1 < v′n−1.
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Let S = {N − 2, N − 1, N}. If there are two blue edges of the form vn−2vn−1x and vn−2vn−1y
for x, y ∈ S, then we have obtained a blue copy of Bn−1,2 with x = vn and y = v′n. So at
most one of these edges is blue. The same applies to vn−2v

′
n−1x and vn−2v

′
n−1y. Since |S| = 3,

there is w ∈ S such that both vn−2vn−1w and vn−2v
′
n−1w are red. Now consider the four vertices

vn−2, vn−1, v
′
n−1, w. We have identified two red edges among them so vn−2vn−1v

′
n−1 and vn−1v

′
n−1w

are blue. If there exists z ∈ S − {w} such that χ(vn−1v
′
n−1z) is blue, then we obtain a copy of

Bn−1,2 as follows:

v2 < · · · < vn−2 < vn−1 < v′n−1 < w < z or v2 < · · · < vn−2 < vn−1 < v′n−1 < z < w.

Therefore χ(vn−1v
′
n−1a) = χ(vn−1v

′
n−1b) and both are red, where S = {a, b, w} with a < b. If

χ(vn−2vn−1x) is blue for some x ∈ {a, b}, then we obtain the blue Bn−1,2

v1 < · · · < vn−2 < vn−1 < v′n−1 < x.

Hence χ(vn−2vn−1x) is red for both x ∈ {a, b}. The four vertices vn−2, vn−1, v
′
n−1, x contain the

two red edges vn−2vn−1x and vn−1v
′
n−1x so χ(vn−2v

′
n−1x) is blue for x ∈ {a, b}. This gives us

v1 < · · · < vn−2 < v′n−1 < a < b

which is a blue Bn−1,2, and the proof of r3(4, 3;Bn−1,2) ≤ 3n− 3 is complete.

Observe that r3(4, 3;Pn) ≤ r3(4, 3;Bn−1,2) − 1 by taking an optimal construction for r3(4, 3;Pn),
adding a new largest vertex v and coloring all triples containing v with blue.

Proof of Theorem 10 (c). We are to show that r4(5, 4;Pn) ≥ 2n−2 + 1. Let us proceed by
induction on n. The case n = 2 is trivial, so assume we have a construction for n− 1 that uses the
vertices [2n−3]. To obtain the construction for n, take a copy of the construction for n− 1 among
the vertices {2n−3 +1, . . . , 2n−2}. It remains to color 4-sets that intersect both halves of [2n−2]. We
color all the 4-sets that have exactly two points in each half red and all other 4-sets blue. Let us
first argue that no 5 points contain 4 red edges. If all 5 points lie in one half then we are done by
induction. If the distribution of points is 4 + 1 then we again have at most one red edge and if the
distribution is 3+2 then we have exactly three red edges. The other cases are of course symmetric.
Next we argue that there is no blue Pn. Such a blue Pn cannot have two points in both halves as
the 2 + 2 edges are red so all but one point must lie in one half. This gives a blue Pn−1 in one half
which cannot exist by induction.
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