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Abstract

Let F3,3 be the 3-graph on 6 vertices, labelled abcxyz, and 10 edges, one of which is abc, and

the other 9 of which are all triples that contain 1 vertex from abc and 2 vertices from xyz. We

show that for all n ≥ 6, the maximum number of edges in an F3,3-free 3-graph on n vertices is(
n
3

)
−

(⌊n/2⌋
3

)
−
(⌈n/2⌉

3

)
. This sharpens results of Zhou [9] and of the second author and Rödl [7].

1 Introduction

The Turán number ex(n, F ) is the maximum number of edges in an F -free r-graph on n vertices.1 It

is a long-standing open problem in Extremal Combinatorics to understand these numbers for general

r-graphs F . For ordinary graphs (r = 2) the picture is fairly complete, although there are still many

open problems, such as determining the order of magnitude for Turán numbers of bipartite graphs.

However, for r ≥ 3 there are very few known results. Having solved the problem for the complete

graph F = Kt, Turán [8] posed the natural question of determining ex(n, F ) when F = Kr
t is a

complete r-graph on t vertices. To date, no case with t > r > 2 of this question has been solved,

even asymptotically. Despite the lack of progress on the Turán problem for complete hypergraphs,

there are certain hypergraphs for which the problem has been solved asymptotically, or even exactly;

we refer the reader to the survey [5]. While it would be more satisfactory to have a general theory,

we may hope that this will develop out of the methods discovered in solving isolated examples.

The contribution of this paper is a short complete solution to the Turán problem for the following

3-graph. Let F3,3 be the 3-graph on 6 vertices, labelled abcxyz, and 10 edges, one of which is abc,

and the other 9 of which are all triples that contain 1 vertex from abc and 2 vertices from xyz. A

lower bound for ex(n, F3,3) is given by the following construction. Let B(n) denote the balanced

complete bipartite 3-graph, which is obtained by partitioning a set of n vertices into parts of size

⌊n/2⌋ and ⌈n/2⌉, and taking as edges all triples that are not contained within either part. Let

b(n) =

(
n

3

)
−

(
⌊n/2⌋
3

)
−

(
⌈n/2⌉
3

)
denote the number of edges in B(n). Since F3,3 is not 2-colourable, B(n) is F3,3-free. We prove the

following result.
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1An r-graph (or r-uniform hypergraph) G consists of a vertex set and an edge set, each edge being some r-set of

vertices. We say G is F -free if it does not have a (not necessarily induced) subgraph isomorphic to F .
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Theorem 1.1. For all n ≥ 6, we have ex(n, F3,3) = b(n).

The Turán problem for F3,3 was previously studied by the second author and Rödl [7], who

obtained the asymptotic result ex(n, F3,3) = (1+o(1))b(n). Another related problem is the following

result of Zhou [9]. Say that two vertices x, y in a 3-graph G are t-connected if there are vertices

a, b, c such that every triple with 2 vertices from abc and 1 from xy is an edge. Say that xyz is a

t-triple if xyz is an edge and each pair in xyz is t-connected. A 3-graph is a t-triple if it contains a

t-triple xyz. For example, K3
5 is a t-triple (this is the motivation for the definition). The result of

[9] is that the unique largest 3-graph on n vertices with no t-triple is complete bipartite. Note that

F3,3 is a t-triple, so Theorem 1.1 strengthens Zhou’s extremal result (but not the classification of the

extremal example; see Section 4).

Our proof uses the link multigraph method introduced by de Caen and Füredi [2]. There are

now a few examples where this method has been used to obtain asymptotic results, or exact results

for n sufficiently large. We used it in [6] to obtain an exact result for cancellative 3-graphs for all n,

and an exact result for the configuration F5 = {123, 124, 345} for n ≥ 33. However, until recently

there were no known applications to an exact result for all n with a single forbidden hypergraph.

The result in this paper gives such an application; another was given very recently by Goldwasser

[4], who obtained an exact result for F5 for all n.

In the next section we describe the link multigraph construction and state a lemma of Bondy and

Tuza that applies to such multigraphs. We use this to prove Theorem 1.1 in Section 3. The final

section contains some concluding remarks about the characterization of equality.

2 A multigraph lemma

The proof of Theorem 1.1 will use the following construction of a multigraph from a 3-graph G.

Suppose S is a set of vertices in G. The ‘link multigraph’ of S has vertex set X = V \ S and edge

set M =
∑

a∈S G(a)[X]. Here we write G(a) = {xy : axy ∈ G}, denote the restriction to X by [X],

and use summation to denote multiset union. Thus we obtain a multigraph M in which each pair of

vertices has multiplicity between 0 and |S|. Furthermore, we may regard each edge of M as being

‘coloured’ by a vertex in S (an edge may have several colours). We write w(xy) for the multiplicity

of the pair xy in M .

Now suppose M is any multigraph on n vertices (not necessarily as above). Write w(xy) for the

multiplicity of a pair xy in M , and write e(M) for the sum of w(xy) over all (unordered) pairs of

vertices in M . For any S ⊆ V (M) let i(S) denote the sum of w(xy) over all pairs of vertices that

contain at least one vertex of S. If S = {x} consists of a single vertex then i(S) = d(x) is the

weighted degree of x. Define

m(n) =

{
3n2

2 − n if n is even,
3n2−1

2 − n if n is odd.

Lemma 2.1. (Bondy-Tuza [1]) Suppose M is a multigraph on n vertices with 0 ≤ w(xy) ≤ 4 for

every pair xy and w(xy) + w(xz) + w(yz) ≤ 10 for every triple xyz. Then e(M) ≤ m(n).

Note the following two examples where equality holds in Lemma 2.1. (There are other similar

examples; all cases where equality holds were characterized in [1] and [3].)
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1. Define a multigraph M1(n) on n vertices as follows. Let A ∪ B be a balanced partition of the

vertex set. Let crossing pairs have multiplicity 4 and pairs inside each part have multiplicity

2. If n is even then e(M1(n)) = 2
(
n
2

)
+ 2(n/2)2 = 3n2/2 − n. If n is odd then e(M1(n)) =

2
(
n
2

)
+ 2n2−1

4 = 3n2−1
2 − n.

2. Define a multigraph M2(n) on n vertices as follows. Let all pairs have multiplicity 3 except for a

maximum size matching of multiplicity 4. If n is even then e(M2(n)) = 3
(
n
2

)
+n/2 = 3n2/2−n.

If n is odd then e(M2(n)) = 3
(
n
2

)
+ n−1

2 = 3n2−1
2 − n.

The following two calculations will also be useful. Note that M2(n − 1) can be obtained from

M2(n) by deleting a vertex, which can be any vertex if n is even, but must be the vertex not incident

to an edge of multiplicity 4 when n is odd. Then m(n)−m(n− 1) is equal to the number of edges

removed, which is 3(n− 2) + 4 = 3(n− 1) + 1 when n is even, or 3(n− 1) when n is odd.

Next consider a copy of B(n) with parts A and B. Construct a copy of B(n − 4) by removing

vertices wx from A and yz from B. Then we have b(n) − b(n − 4) = i(wxyz), where similarly to

our multigraph notation, we let i(S) denote the number of edges that contain at least one vertex of

S. We can count i(wxyz) as follows. There are 4 edges of B(n) contained in wxyz. Next consider

edges with 2 vertices in wxyz. The 4 crossing pairs wy, wz, xy, xz form an edge with each of the

n − 4 vertices of V \ {w, x, y, z}, so contribute 4(n − 4) edges. The pairs wx and yz form an edge

with any of the vertices in the other part, so contribute n − 4 edges (this holds whether n is even

or odd). Finally, note that the link multigraph of wxyz in B(n) is precisely M1(n − 4). Thus the

number of edges with 1 vertex in wxyz is m(n− 4). Then we have

b(n)− b(n− 4) = m(n− 4) + 5(n− 4) + 4.

3 Proof of Theorem 1.1

We start with the lower bound. We have already described the construction B(n), which is 2-

colourable. It is easy to check that F3,3 is not 2-colourable (we leave the details to the reader), hence

B(n) is F3,3-free. This shows that ex(n, F3,3) ≥ b(n) for all n ≥ 6.

The main task in the proof is to establish the upper bound. We prove the following statement

by induction on n:

• Suppose G is an F3,3-free 3-graph on n ≥ 1 vertices. Then e(G) ≤ b(n), unless n = 5, in which

case e(G) ≤ 10.

Note that this statement is trivial for n ≤ 5, as B(n) is complete for n ≤ 4 so b(n) =
(
n
3

)
for these

values of n, and for n = 5 the statement allows e(K3
5 ) = 10 edges. Furthermore, the bound holds

for n = 6, as B(6) is obtained by deleting 2 edges from K3
6 , and it is clear that if one only deletes

one edge from K3
6 then there is a copy of F3,3. Moreover, B(6) is the unique F3,3-free 3-graph on 6

vertices with
(
6
3

)
− 2 = 18 edges. To see this, we exhibit appropriate edges in the complement of F3,3

as defined above: xab and yac are not in F3,3 and intersect in 1 vertex, whereas xab and xac are not

in F3,3 and intersect in 2 vertices.

Now suppose for a contradiction that n ≥ 7 with n ̸= 9 and G is an F3,3-free 3-graph on n

vertices with e(G) = b(n) + 1. (We will need to modify the argument in the case n = 9.) We start
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by finding a copy of K3
4 in G. For this we use the following averaging argument. Given a 3-graph

H on m vertices, let d(H) = e(H)
(
m
3

)−1
denote the density of H. A simple calculation shows that

d(G) is the average of d(G \ v) over all vertices v of G. Note that deleting a vertex from B(n) leaves

a complete bipartite 3-graph on n − 1 vertices; it is not necessarily balanced, but certainly has at

most b(n−1) edges. It follows that d(B(n)) ≤ d(B(n−1)), i.e. d(B(n)) is non-increasing in n. Since

d(B(n)) → 3/4 as n → ∞ we have d(B(n)) ≥ 3/4 for all n. Since e(G) > b(n) we have d(G) > 3/4.

Averaging again, we see that there is a set abcd of 4 vertices where d(G[abcd]) > 3/4. This implies

that all 4 triples in abcd are edges of G, as desired.

Note that G \ {a, b, c, d} is an F3,3-free 3-graph on n− 4 vertices with e(G)− i(abcd) edges. By

induction this is at most b(n − 4) (since n ̸= 9), so we obtain i(abcd) ≥ b(n) − b(n − 4) + 1. Now

we count the edges incident to abcd according to the number of vertices of abcd they contain. There

are 4 such edges contained in abcd. To estimate edges with one vertex in abcd let M be the link

multigraph of abcd in G. Note that there is no triangle xyz in M such that each pair xy, xz, yz

is coloured by the same set of 3 colours from abcd: this would give a copy of F3,3. This implies

that w(xy) + w(xz) + w(yz) ≤ 10 for every triple xyz in M . Thus we can apply Lemma 2.1 to

get e(M) ≤ m(n − 4). We conclude that the number of edges with 2 vertices in abcd is at least

b(n)− b(n− 4)+ 1− 4−m(n− 4) = 5(n− 4)+ 1. It follows that there is some e ∈ V (G) \ {a, b, c, d}
such that all 6 pairs from abcd form an edge with e. Thus abcde forms a copy of K3

5 in G.

For each x ∈ abcde we have i(abcde \ x) ≥ b(n)− b(n− 4) + 1, so

Σ :=
∑

x∈abcde
i(abcde \ x) ≥ 5(b(n)− b(n− 4) + 1) = 5(m(n− 4) + 5(n− 3)).

We can also count Σ according to the intersection of edges with abcde. Edges with at least 2 vertices

in abcde are counted 5 times, and edges with 1 vertex in abcde are counted 4 times. By Lemma 2.1,

for each x ∈ abcde the link multigraph of abcde \ x restricted to V (G) \ {a, b, c, d, e} has at most

m(n−5) edges. By averaging, there are at most 5
4m(n−5) edges with 1 vertex in abcde. Since these

are counted 4 times they contribute at most 5m(n− 5) to Σ. Also, abcde is complete, so we have 10

edges inside abcde.

Writing Z for the number of edges with 2 vertices in abcde, we obtain

5(m(n− 4) + 5(n− 3)) = 5(b(n)− b(n− 4) + 1) ≤ Σ ≤ 5(10 + Z +m(n− 5)),

so Z ≥ m(n−4)−m(n−5)+5(n−5). Recall that m(n−4)−m(n−5) is 3(n−5)+1 when n is even,

or 3(n− 5) when n is odd. Thus Z ≥ 8(n− 5). It follows that there is some f ∈ V (G) \ {a, b, c, d, e}
such that at least 8 pairs from abcde form an edge with f . Thus abcdef is obtained from K3

6 by

deleting at most 2 edges, and if 2 edges are deleted they cannot be disjoint, as they both contain f .

As noted above, this implies that abcdef contains F3,3, so we have a contradiction.

It remains to prove the bound for n = 9. Again we start by choosing abcd as a copy of K3
4 in G.

Since b(5) =
(
5
3

)
− 1, we obtain i(abcd) ≥ b(n)− b(n− 4). Then the same calculation as above shows

that there are at least 5(n− 4) edges with 2 vertices in abcd. Furthermore, equality can only hold if

deleting abcd leaves
(
5
3

)
edges, i.e. a copy of K3

5 . If equality does not hold then we can find a copy

of K3
5 as above, so either way we have a copy of K3

5 . Let X be the vertex set of this K3
5 . Now note

that for any Y spanning a copy of K3
4 we either have i(Y ) ≥ b(n)− b(n− 4) + 1 or G \ Y spans K3

5 .

Also, there cannot be 3 vertices x1, x2, x3 in X such that G \ (X \ xi) spans K3
5 for 1 ≤ i ≤ 3, as
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then x1, x2, x3 together with any 3 vertices of G \X spans a copy of F3,3. Now we can modify the

second calculation above to get 3(b(n)− b(n− 4) + 1) + 2(b(n)− b(n− 4)) ≤ 5(10 + Z +m(n− 5)),

so Z ≥ 8(n− 5)− 2 = 30 > 7(n− 5). It follows that there is some f ∈ V (G) \ {a, b, c, d, e} such that

at least 8 pairs from abcde form an edge with f . As above, this creates a copy of F3,3, so we have a

contradiction. This proves the theorem. �

4 Concluding remarks

The obvious unanswered question from this paper is to characterise the extremal examples for the

problem: is it true that for n ≥ 6, equality can only be achieved by B(n)? In the original version of

this paper, we had proved Lemma 2; however, a referee pointed out that it had been proved earlier

by Bondy and Tuza [1] (and generalised by Füredi and Kündgen [3]). Indeed, both papers also

characterize the extremal examples in Lemma 2, and using this characterization, one can extend our

proof to show that equality holds for n ≥ 6 only for B(n). We recently learned that Goldwasser and

Hansen have independently characterised the extremal example using the same proof, so we omit

the details in this paper.
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