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Abstract

Let F be a family of r-uniform hypergraphs. The feasible region Ω(F) of F is
the set of points (x, y) in the unit square such that there exists a sequence of F-free
r-uniform hypergraphs whose shadow density approaches x and whose edge density
approaches y. The feasible region provides a lot of combinatorial information, for
example, the supremum of y over all (x, y) ∈ Ω(F) is the Turán density π(F), and
Ω(∅) gives the Kruskal-Katona theorem.

We undertake a systematic study of Ω(F), and prove that Ω(F) is completely
determined by a left-continuous almost everywhere differentiable function; and more-
over, there exists an F for which this function is not continuous. We also extend some
old related theorems. For example, we generalize a result of Fisher and Ryan to hy-
pergraphs and extend a classical result of Bollobás by almost completely determining
the feasible region for cancellative triple systems.

1 Introduction

Given a set V and an integer r > 0, let
(
V
r

)
= {W ⊂ V : |W | = r}. An r-uniform hyper-

graph (henceforth r-graph) H with vertex set X is a subset of
(
X
r

)
, and we denote X by

V (H). Let v(H) = |V (H)|. The shadow of an r-graph H is

∂H =

{
A ∈

(
V (H)

r − 1

)
: ∃B ∈ H such that A ⊂ B

}
.

The classical Kruskal-Katona theorem gives a tight upper bound for |H| as a function of
|∂H|. The following technically simpler version of the Kruskal-Katona theorem serves as
a good starting point for the work in this paper.

Theorem 1.1 (see Lovász [14]). Let H be an r-graph, and suppose that |∂H| =
(
z
r−1
)

for

some real number z ≥ r. Then |H| ≤
(
z
r

)
.

Let F be a family of r-graphs. Then H is F-free if it does not contain any member
of F as a (not necessarily induced) subgraph. The Turán number ex(n,F) of F is the
maximum number of edges in an F-free r-graph on n vertices. The Turán density of F
is π(F) = limn→∞ ex(n,F)/

(
n
r

)
. Determining π(F) for r ≥ 3 is known to be notoriously

hard in general, and we refer the reader to a survey by Keevash [8] for results before 2011.
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In this paper, we combine the Kruskal-Katona theorem and the hypergraph Turán
problem by considering the following more general question.

If H is F-free, what are the possible values of |H| for fixed |∂H|? (∗)

In particular, if we let F = ∅, then the upper bound for |H| in (∗) follows from the
Kruskal-Katona theorem. If F 6= ∅, then (∗) is closely related to the hypergraph Turán
problem. In fact, ex(n,F) gives a universal upper bound for |H| no matter what |∂H| is,
and it is tight for some (at least one) values of |∂H|. However, the upper bound given by
ex(n,F) gives us a rather limited picture of the relationship between the shadow and size
of an F-free hypergraph. Our objective in this work is to provide a much more detailed
view of this relationship.

An analogous question has been studied extensively in extremal graph theory. Given
two graphs H and G, let n(H;G) denote the number of copies of H in G. The density of

H in G is ρ(H;G) = n(H;G)/
(v(G)
v(H)

)
. For fixed graphs H1 and H2 and (large) graph G,

the following problem is a cornerstone of extremal graph theory:

What are the possible values of ρ(H2;G) if ρ(H1;G) is fixed? (?)

Even for (H1, H2) = (K2,Kt) with t ≥ 3, question (?) is known to be highly nontrivial
and was asymptotically solved for t = 3 by Razborov [22], t = 4 by Nikiforov [18], and for
all t only recently by Reiher [23]. We refer the reader to [16, 3, 21] for the history of (?).

The main difficulty in (?) is to determine the lower bound for ρ(H2;G). However, it
will be shown later that the main difficulty in (∗) is to determine the upper bound for |H|.
In order to state our results formally we need some definitions.

Definition 1.2 (Feasible Region). Fix r ≥ 3.

(a) Given an r-graph H, its edge density is d(H) = |H|/
(
v(H)
r

)
and its shadow density is

d(∂H) = |∂H|/
(
v(H)
r−1
)
.

(b) An r-graph sequence (Hk)∞k=1 is good if v(Hk)→∞ as k →∞ and both limk→∞ d(Hk)
and limk→∞ d(∂Hk) exist.

(c) Let (Hk)∞k=1 be a good sequence of F-free r-graphs, and (x, y) ∈ [0, 1]2. Then (Hk)∞k=1

realizes (x, y) if limk→∞ d(∂Hk) = x and limk→∞ d(Hk) = y.

(d) The feasible region Ω(F) of F is the collection of all points (x, y) ∈ [0, 1]2 that can
be realized by a good sequence of F-free r-graphs.

As mentioned earlier, the upper bound given by ex(n,F) gives us a rather limited
picture of Ω(F), since it only determines

sup{y : ∃x ∈ [0, 1] such that (x, y) ∈ Ω(F)}.

As indicated by (∗), in this paper we study Ω(F). Our results are of two flavors.

• We prove some general results about the shape of Ω(F). Our main results here
are Theorems 1.11 and 1.12 which state that the boundary of Ω(F) is completely
determined by a left-continuous almost everywhere differentiable function g(F) with
at most countably many jump discontinuities, and give examples showing that g(F)
can indeed be discontinuous.

• We study Ω(F) for some specific choices of F for which ex(n,F) has been investigated
by many researchers. We focus on two specific families: cancellative hypergraphs
and hypergraphs without expansions of cliques. Our results, which go beyond de-
termining just the Turán density, are summarized in Corollaries 1.16 and 1.18 (see
Figures 6 and 7).
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Regarding our results on the shape of Ω(F), there are (at least) two previous works of
a similar flavor: Razborov [22] determined the closure of the set of points defined by
the homomorphism density of the edge and the triangle in finite graphs (and showed
that the boundary is almost everywhere differentiable) and Hatami-Norine [7] constructed
examples which show that the restrictions of the boundary to certain hyperplanes of the
region defined by the homomorphism densities of a list of given graphs can have nowhere
differentiable parts.

Our work can be viewed as a continuation of a long line of research in asymptotic
extremal combinatorics perhaps beginning with the seminal work of Erdős-Lovász-Spencer
[4] and continuing today in different guises such as the graph limits paradigm of Lovász
[15] or the method of Flag algebras of Razborov [21].

1.1 General results about Ω(F)

In this section we state some general results about feasible regions.

Proposition 1.3. The region Ω(F) is closed for all r ≥ 3 and all (possibly infinite)
families F of r-graphs.

Definition 1.4 (Projection of the feasible region). The projection of Ω(F) on the x-axis
is

projΩ(F) = {x : ∃y ∈ [0, 1] such that (x, y) ∈ Ω(F)} .

Note that it is not necessarily true that projΩ(F) = [0, 1] in general. Later we will
present an example of F , which shows projΩ(F) = [0, (`)r−1/`

r−1] for ` ≥ 3. On the
other hand, by removing edges one by one from H one can reduce the edge density of ∂H
continuously (in the limit sense) to 0. This yields the following observation.

Observation 1.5. For every family F of r-graphs with r ≥ 3 there exists ĉ ∈ [0, 1] such
that projΩ(F) = [0, ĉ].

Proposition 1.3 enables us to define the following function.

Definition 1.6 (Boundary of the feasible region). Given a family F of r-graphs with
r ≥ 3, let g(F) : projΩ(F)→ [0, 1] be defined by

g(F)(x) = max {y : (x, y) ∈ Ω(F)} ,

for all x ∈ projΩ(F).

Here we abuse notation by writing g(F , x) for g(F)(x). Our next result shows that
Ω(F) is determined by projΩ(F) and g(F).

Proposition 1.7. Let r ≥ 3 and let F be a family of r-graphs. If (x0, y0) ∈ Ω(F), then
(x0, y) ∈ Ω(F) for all y ∈ [0, y0].

Combining the Kruskal-Katona theorem with some further observations yields the
following universal upper bound for g(F , x).

Proposition 1.8. Let r ≥ 3 and F be a family of r-graphs. Then g(F , x) ≤ xr/(r−1) for
all x ∈ projΩ(F). In particular, projΩ(∅) = [0, 1] and g(∅, x) = xr/(r−1) for all x ∈ [0, 1].

In [7], Hatami and Norin considered the region defined by the homomorphism densities
of a list of given graphs, which is a more general version of (?) (that generalizes (?) from
two graphs H1, H2 to more graphs). They constructed examples which show that the
restrictions of the boundary to certain hyperplanes can have nowhere differential parts.
However, we will show in the next result that g(F) is well-behaved.
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Figure 1: Upper bounds for g(F , x) when r = 3, 4, 5 given by Proposition 1.8.

Definition 1.9 (Left/right continuity). Let f : R → R. Then f is left-continuous (resp.
right-continuous) at x if for any ε > 0 there exists δ > 0 such that |f(x′)−f(x)| < ε for all
x′ ∈ (x−δ, x) (resp. |f(x′)−f(x)| < ε for all x′ ∈ (x, x+δ)). If f is left-continuous (resp.
right-continuous) at all x ∈ R, then we say f is left-continuous (resp. right-continuous).

Definition 1.10 (Types of discontinuities). Let f : R→ R and x ∈ R be a discontinuity of
f . If limx→x− f(x) and limx→x+ f(x) exist, then f is said to have the discontinuity of the
first kind at x. Otherwise, the discontinuity is said to be of the second kind. Furthermore,
suppose that x is a discontinuity of the first kind of f . Then x is a removable discontinuity
if limx→x− f(x) = limx→x+ f(x). Otherwise, x is a jump discontinuity.

Theorem 1.11. For any r ≥ 3 and any family F of r-graphs, g(F) is left-continuous,
has at most countably many jump discontinuities, and is almost everywhere differentiable.

Furthermore, the next result shows that g(F) can indeed be discontinuous.

Theorem 1.12. There exists a family D of 3-graphs with projΩ(D) = [0, 1] and g(D, 2/3) =
2/9, but there exists an absolute constant δ0 > 0 such that g(D, 2/3 + ε) < 2/9− δ0 for all
ε ∈ (0, 10−8).

Actually, Theorem 1.12 can be extended to r ≥ 4, and the condition that ε < 10−8 is
not necessary (for all r ≥ 3). The proof for these extensions can be found in [12].

2
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x

Figure 2: The function g(D) is discontinuous at x = 2/3.
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1.2 Cancellative hypergraphs

In this section we consider the feasible region of cancellative hypergraphs, which is perhaps
the first example of an extremal hypergraph problem that was well understood. Our results
are summarized in Corollary 1.16 stated at the end of this section.

Definition 1.13. Let Tr be the collection of all r-graphs on at most 2r − 1 vertices with
3 edges A,B,C such that A4B ⊂ C. An r-graph is cancellative iff it is Tr-free.

For r = 2 the family T2 comprises only one graph K3. For r = 3 the family T3 comprises
two hypergraphs K3−

4 and F5, where K3−
4 is the 3-graph on 4 vertices with exactly 3 edges,

and F5 is the 3-graph on 5 vertices with edge set {123, 124, 345}.
Let [n] = {1, 2, ..., n}. Fix ` ≥ r ≥ 2. Let V1 ∪ · · · ∪ V` be a partition of [n] with each

part of size either bn/`c or dn/`e. The generalized Turán graph Tr(n, `) is the collection
of all r-sets that intersect each Vi on at most one vertex. Notice that T2(n, `) is just the
ordinary Turán graph. Let

tr(n, `) = |Tr(n, `)| ≈
(
`

r

)(n
`

)r
.

In [2], Bollobás proved that ex(n, T3) ≤ t3(n, 3) and T3(n, 3) is the unique T3-free
3-graph on n vertices with exactly t3(n, 3) edges. Therefore, g(T3, x) ≤ 2/9 for all x ∈
projΩ(T3). Later, Keevash and the second author [9] proved a stability theorem for T3-free
hypergraphs. The first author [10] gave a new proof to both the exact and the stability
result for T3-free hypergraphs. Moreover, [10] proves that a T3-free 3-graphH on n-vertices
satisfies the inequality

4

(
3|H|/|∂H|

n− 3|H|/|∂H|

)2

|∂H| ≤ n2 − 2|∂H|,

which implies

g(T3, x) ≤
√

2(1− x)x3 + x2 − x
3x− 1

, for all x ∈ projΩ(T3). (1)

2
3 10

2/9

1/2

x

y

Figure 3: Ω(T3) is contained in the dark area above according to (1).

Our next result concerns cancellative r-graphs for r ≥ 3, and improves the bound in
Proposition 1.8 as well as that in (1) for x ∈ [0, 2/3].

Theorem 1.14. Let r ≥ 3 and x ∈ projΩ(Tr). Then

g(Tr, x) ≤
(
xr

r!

) 1
r−1

.

Moreover, equality holds for all x ∈ [0, (r − 1)!/rr−2].
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Figure 4: Upper bounds for g(Tr, x) when r = 3, 4 given by Theorem 1.14.

For r = 3, the bound given by Theorem 1.14 is not tight for any x ∈ (2/3, 1] according
to Bollobás’ theorem [2]. Our next result will present an improved bound for g(T3, x) for
x ∈ (2/3, 1].

Theorem 1.15. The inequality g(T3, x) ≤ x(1 − x) holds for all x ∈ [0, 1]. Moreover,
g(T3, (k − 1)/k) = (k − 1)/k2 when k ≡ 1 or 3 (mod 6).

Christian Reiher observed that the function x(1− x) in Theorem 1.15 can be replaced
by a piecewise linear function that always lies below x(1− x) (see Section 6 for details).

The lower bound for g(T3, (k−1)/k) when k ≡ 1 or 3 (mod 6) comes from the balanced
blow up of Steiner triple systems on k vertices, this will be explained in more detail in
Section 4.
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Figure 5: Ω(T3) is contained in the dark area above by Theorem 1.15.

Combining Theorems 1.14 and 1.15 yields the following result for g(T3, x), which pro-
vides a rather comprehensive picture of Ω(T3).
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Figure 6: Ω(T3) is contained in the dark area above according to Corollary 1.16.
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Corollary 1.16. We have g(T3, x) = x3/2/
√

6 for all x ∈ [0, 2/3], and g(T3, x) ≤ x(1−x)
for all x ∈ (2/3, 1]. Moreover, g(T3, (k − 1)/k) = (k − 1)/k2 for all integers k ≡ 1 or 3
(mod 6).

1.3 Hypergraphs without an expansion of a large clique

In this section we consider the feasible region of hypergraphs without expansion of cliques.
These hypergraphs were introduced by the second author in [17] as a way to generalize
Turán’s theorem to hypergraphs. Another reason for their importance is that they provide
the first (and still the only) explicitly defined examples which yield an infinite family of
numbers realizable as Turán densities for hypergraphs.

Let Kr`+1 be the collection of all r-graphs F with at most
(
`+1
2

)
edges such that for

some (`+ 1)-set S, which will be called the core of F , every pair {u, v} ⊂ S is covered by
an edge in F . Let the r-graph Hr

`+1 be obtained from the complete graph K` by adding
r − 2 new vertices into each edge. The graph Hr

`+1 is called the expansion of K`. It is an
easy observation that Hr

`+1 ∈ Kr`+1.
It was shown by the second author [17] that ex(n,Kr`+1) = tr(n, `) and Tr(n, `) is

the unique Kr`+1-free r-graph on n vertices with exactly tr(n, `) edges. In [19], Pikhurko
improved the result in [17] and proved that if n is sufficiently large then ex(n,Hr

`+1) =
tr(n, `) and Tr(n, `) is the unique Hr

`+1-free r-graph on n vertices with exactly tr(n, `)
edges.

In order to state our result, we need to extend the definition of shadows. Let H be an
r-graph and S ⊂ V (H). Then H[S] is the induced subgraph of H on S. For 1 ≤ i ≤ r− 1
the i-th shadow of H is

∂iH =

{
A ∈

(
V (H)

r − i

)
: ∃B ∈ H such that A ⊂ B

}
.

For i ≤ 0 we extend the definition of the i-th shadow ∂iH as follows.

∂iH =

{
A ∈

(
V (H)

r − i

)
: H[A] is a complete r-graph

}
. (2)

In particular, ∂1H = ∂H and ∂0H = H. By definition, ∂i+1H = ∂ (∂iH) for all 0 ≤ i ≤
r − 2, and ∂ (∂iH) ⊂ ∂i+1H for all i ≤ −1.

Our first result here relates the sizes of different shadows of a Kr`+1-free r-graph H.
This generalizes an important result of Fisher and Ryan [6] from graphs to hypergraphs.

Theorem 1.17. Let ` ≥ r ≥ 2 and H be a Kr`+1-free r-graph. Then

(
|∂r−`H|(

`
`

) ) 1
`

≤ · · · ≤

(
|∂−1H|(

`
r+1

) ) 1
r+1

≤

(
|H|(
`
r

)) 1
r

≤

(
|∂1H|(

`
r−1
)) 1

r−1

≤ · · · ≤

(
|∂r−1H|(

`
1

) ) 1
1

.

Using Theorem 1.17 we are able to determine g(Kr`+1) completely via the following
result. We will use (`)r to denote `(`− 1) · · · (`− r + 1).

Corollary 1.18. Let ` ≥ r ≥ 3. Then projΩ(Kr`+1) = [0, (`)r−1/`
r−1] and

g(Kr`+1, x) = (`− r + 1)

(
xr

(`)r

) 1
r−1

for all x ∈ [0, (`)r−1/`
r−1].
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(a) ` = 3, r = 3.
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(b) ` = 4, r = 4.

Figure 7: The region Ω(Kr`+1) determined by Corollary 1.18.

Determining Ω(Hr
`+1) is much more difficult than determining Ω(Kr`+1) because the

shadow density of an Hr
`+1-free r-graph can be greater than (`)r−1/`

r−1. An r-graph S
is called a star if all edges in S contain a fixed vertex, which is called the center of S. It
is easy to see that a star does not contain Hr

`+1 as a subgraph, and the shadow density
of a star can be arbitrarily close to 1. Still, we are able to determine g(Hr

`+1, x) for all
x ∈ [0, (`)r−1/`

r−1].

Theorem 1.19. Let ` ≥ r ≥ 3. Then projΩ(Hr
`+1) = [0, 1] and

g(Hr
`+1, x) = (`− r + 1)

(
xr

(`)r

) 1
r−1

for all x ∈ [0, (`)r−1/`
r−1].

2
3 10

2/9

1/2

(a) ` = 3, r = 3.

3
8

0

3/32

10

1/2

(b) ` = 4, r = 4.

Figure 8: The region Ω(Hr
`+1) is contained in the dark areas according to Theorem 1.19

and results in [17] and [20].

The remainder of this paper is organized as follows. In Section 2 we will prove Propo-
sitions 1.3, 1.7, and 1.8, and Theorem 1.11. Section 3 will be devoted to prove Theorem
1.12. Then we will prove Theorems 1.14 and 1.15 in Section 4. In Section 5 we will
prove Theorem 1.17, Corollary 1.18, and Theorem 1.19. In Section 6 we will include some
remarks and open problems. We will omit the floor and ceiling signs when they are not
crucial in the proofs.

2 General theory

In this section we will prove several general results about the feasible region. First let us
present a simple but useful idea that will be used in our proofs.
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Fact 2.1. Let r ≥ 2. Suppose that H is an r-graph on n vertices, and every edge in H
contains an (r − 1)-subset that is not covered by any other edge in H. Then |H| ≤

(
n
r−1
)
.

Indeed, if every edge in H contains a unique (r − 1)-subset, then we can map every
edge E ∈ H to an (r − 1)-subset of E that is not covered by any other edge in H. This
map is an injection from H to

(
[n]
r−1
)

and it implies the upper bound in Fact 2.1. Actually,

it was shown by Bollobás [1] that |H| ≤
(
n−1
r−1
)
.

Algorithm 1 Remove edges with the edge density threshold d.
Input: An r-graph H and the density threshold d ∈ [0, 1].
Operation: If d(H) ≤ d or |H| ≤

(
n
r−1
)
, then do nothing and let H be the output.

Otherwise, by Fact 2.1, there exists E ∈ H such that every (r − 1)-subset of E is covered
by another edge in H. Remove E from the edge set of H, and let H denote the resulting
r-graph. Repeat this operation until d− 1/

(
n
r

)
< d(H) ≤ d.

Output: Either the original r-graph H or a subgraph H′ ⊂ H with d−1/
(
n
r

)
< d(H′) ≤ d,

and |∂H′| = |∂H|.

Notice that the Operation above does not change |∂H| since all (r − 1)-subsets of the
removed edge E are covered by some edge in H. Therefore, the output r-graph H′ satisfies
|∂H′| = |∂H|. On the other hand, since each step of the operation reduces |H| by exactly
one, d(H) can be reduced to some real number d′ with d− 1/

(
n
r

)
< d′ ≤ d.

2.1 Basic properties

In this section we will prove Propositions 1.3, 1.7, and 1.8, and Theorem 1.11. First we
prove Proposition 1.3.

Proof of Proposition 1.3. Let (x, y) be a limit point of Ω(F). For every positive integer k
we will specify a hypergraph Hk with v(Hk) ≥ k, |d(∂Hk) − x| ≤ 1/k and |d(Hk) − y| ≤
1/k. The resulting sequence (Hk)∞k=1 will be good and realize (x, y), so it will establish
(x, y) ∈ Ω(F). For the construction of Hk we first take a point (xk, yk) ∈ Ω(F) such that
|x−xk| ≤ 1/(2k) and |y−yk| ≤ 1/(2k). Every good sequence (Hk,m)∞m=1 realizing (xk, yk)
contains a hypergraph Hk with v(Hk) ≥ k, |d(∂Hk)−xk| ≤ 1/k and |d(Hk)−yk| ≤ 1/(2k).
By the triangle inequality, Hk has the desired properties.

Next we prove Proposition 1.7. Its proof uses Algorithm 1.

Proof of Proposition 1.7. Since (x0, y0) ∈ Ω(F), there exists a good sequence of F-free
r-graphs (Hk)∞k=1 for which limk→∞ d(∂Hk) = x0 and limk→∞ d(Hk) = y0. Now fix
y ∈ [0, y0). For every k ≥ 1 apply Algorithm 1 to Hk with edge density threshold y and
let H′k denote the r-graph that Algorithm 1 outputs. We claim that (H′k)

∞
k=1 is a good

sequence of F-free r-graphs that realizes (x0, y). Indeed, choose ε = (y0 − y)/2 > 0, by
the assumption that limk→∞ d(Hk) = y0, there exists k0 such that d(Hk) ∈ (y0− ε, y0 + ε)
for all k ≥ k0. Therefore, by Algorithm 1, y − 1/

(
v(Hk)
r

)
< d(H′k) ≤ y for all k ≥ k0,

and hence limk→∞ d(H′k) = y. On the other hand, since |∂H′k| = |∂Hk| for all k ≥ 1,
limk→∞ d(∂H′k) = x. Therefore, (H′k)

∞
k=1 is a good sequence of F-free r-graphs that

realizes (x0, y), and hence (x0, y) ∈ Ω(F).

Recall that ex(n,F1) ≤ ex(n,F2) whenever F2 ⊂ F1. By the definition of g(F), a
similar inequality also holds for g(F).

Observation 2.2. Let r ≥ 3. Suppose that F1 and F2 are two families of r-graphs with
F1 ⊂ F2. Then Ω(F2) ⊂ Ω(F1). In particular, g(F2, x) ≤ g(F1, x) for all x ∈ projΩ(F2).
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Now we are ready to prove Proposition 1.8.

Proof of Proposition 1.8. By Observation 2.2, it suffices to show that projΩ(∅) = [0, 1] and
g(∅, x) = xr/(r−1) for all x ∈ [0, 1]. The first part is easy, since the complete r-graph on n
vertices has shadow density 1, and it follows from Observation 1.5 that projΩ(∅) = [0, 1].

Now we consider the second part. First we show that g(∅, x) ≤ xr/(r−1) for all x ∈ [0, 1].
Let (Hk)∞k=1 be a good sequence of r-graph that realizes (x, y). For every k ≥ 1 let αk
denote the real number that satisfies |∂Hk| =

(
αkv(Hk)
r−1

)
. By the Kruskal-Katona theorem,

|Hk| ≤
(
αkv(Hk)

r

)
for all k ≥ 1. By assumption and limk→∞ v(Hk) =∞,

x = lim
k→∞

|∂Hk|(
v(Hk)
r−1

) = lim
k→∞

(
αkv(Hk)
r−1

)(
v(Hk)
r−1

) = lim
k→∞

(αk)
r−1,

which implies that limk→∞ αk = x1/(r−1). Therefore, by assumption,

y = lim
k→∞

|Hk|(
v(Hk)
r−1

) ≤ lim
k→∞

(
αkv(Hk)

r

)(
v(Hk)
r

) = lim
k→∞

(αk)
r = x

r
r−1 ,

and this proves that g(∅, x) ≤ xr/(r−1) for all x ∈ [0, 1].
Next we show that g(∅, x) ≥ xr/(r−1) for all x ∈ [0, 1]. Choose an arbitray x ∈ [0, 1]

and let α = x1/(r−1). Let Hn(α) denote the vertex disjoint union of a complete r-graph
on αn vertices and a set of (1− α)n isolated vertices. Then we claim that (Hk(α))∞k=1 is
a good sequence of r-graphs that realizes (x, xr/(r−1)). Indeed,

lim
k→∞

|∂Hk(α)|(
n
r−1
) = lim

k→∞

(
αn
r−1
)(

n
r−1
) = αr−1 = x,

and

lim
k→∞

|Hk(α)|(
n
r

) = lim
k→∞

(
αn
r

)(
n
r

) = αr = x
r

r−1 ,

and it follows from the definition that g(∅, x) ≥ xr/(r−1) for all x ∈ [0, 1].

2.2 Continuity and differentiability

In this section we will prove Theorem 1.11 and some other related corollaries. We will use
the following theorem in our proofs.

Theorem 2.3 (see Section 3 of Chapter 3, [24]). Let f : R→ R be a monotone function.
Then f has at most countably many discontinuities of the first kind and no discontinuity
of the second kind. Moreover, f is almost everywhere differentiable.

The following lemma is the main tool in our proofs.

Lemma 2.4. Let r ≥ 3 and F be a family of r-graphs. Then

(g(F , x+ h))
r−1
r ≤ (g(F , x))

r−1
r +

(g(F , x))
r−1
r

x
h

for all x ∈ projΩ(F) \ {0} and all h ≥ 0 with x+ h ∈ projΩ(F).

10



Proof. Suppose that x+ h ∈ projΩ(F). Choose

α =

(
x+ h

x

) 1
r−1

− 1.

Let (Hk)∞k=1 be a good sequence of F-free r-graphs that realizes (x+ h, g(F , x+ h)). For
every k ≥ 1 let nk = v(Hk) and let H′k be obtained from Hk by adding a set of αnk
isolated vertices and let n′k = (1 + α)nk. Then,

lim
k→∞

|∂H′k|( n′k
r−1
) = lim

k→∞

|∂Hk|(
(1+α)nk
r−1

) =
x+ h

(1 + α)r−1
= x,

and

lim
k→∞

|H′k|(
n′k
r

) = lim
k→∞

|Hk|(
(1+α)nk

r

) =
g(F , x+ h)

(1 + α)r
=

(
x

x+ h

) r
r−1

g(F , x+ h).

Therefore, (H′k)
∞
k=1 a good sequence of F-free r-graphs that realizes(

x,

(
x

x+ h

) r
r−1

g(F , x+ h)

)
.

Consequently,

g(F , x) ≥
(

x

x+ h

) r
r−1

g(F , x+ h), (3)

which gives

(g(F , x+ h))
r−1
r ≤ (g(F , x))

r−1
r +

(g(F , x))
r−1
r

x
h.

Corollary 2.5. Let r ≥ 3 and F be a family of r-graphs. Then for any x ∈ projΩ(F)\{0}
and any δ > 0, there exists ε > 0 such that g(F , x′) > g(F , x)− δ for all x′ ∈ (x− ε, x).

Proof. We may assume that δ < 1. Choose ε = δx/3 and let x′ ∈ (x − ε, x). Then (3)
gives

g(F , x′) ≥
(
x′

x

) r
r−1

g(F , x)

=

(
1− x− x′

x

) r
r−1

g(F , x)

≥
(

1− 2ε

x

)
g(F , x) = g(F , x)− 2g(F , x)ε

x
> g(F , x)− δ,

where the second inequality follows from the fact that (1− x)a ≥ 1− ax for all x ∈ [0, 1]
and all a ≥ 1.

Proposition 1.3 together with Corollary 2.5 will show that g(F) does not contain
removable discontinuities.

Corollary 2.6. Let r ≥ 3 and F be a family of r-graphs. Then g(F) does not contain
removable discontinuities.
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Proof. Suppose that x0 ∈ projΩ(F) is a removable discontinuity of g(F). Then x0 >
0 and limx→x−0

g(F , x) = limx→x+0
g(F , x) 6= g(F , x0). Let y0 = limx→x−0

g(F , x). By

Proposition 1.3, (x0, y0) ∈ Ω(F), and by the definition of g(F), g(F , x0) > y0. Letting
δ = (g(F , x0)− y0)/2 in Corollary 2.5, we obtain

y0 = lim
x→x−0

g(F , x) > g(F , x0)− δ =
g(F , x0) + y0

2
> y0,

a contradiction.

Now we are ready to prove Theorem 1.11.

Proof of Theorem 1.11. First we show that g(F) is almost everywhere differentiable. Let

f(x) = (g(F , x))
r−1
r − x. It follows from Lemma 2.4 and Theorem 1.8 that

(g(F , x+ h))
r−1
r ≤ (g(F , x))

r−1
r +

(g(F , x))
r−1
r

x
h

≤ (g(F , x))
r−1
r +

(
x

r
r−1

) r−1
r

x
h

= (g(F , x))
r−1
r + h,

which implies that f is decreasing on projΩ(F). By Theorem 2.3, f is almost everywhere
differentiable, and so is g(F).

Next, we show that g(F) has at most countably many jump discontinuities. By Theo-
rem 2.3, f has at most countably many discontinuities of the first kind, and so does g(F)

since g(F , x) = (f(x) + x)r/(r−1) for all x ∈ projΩ(F). Corollary 2.5 shows that g(F)
does not have a removable discontinuity, therefore, g(F) has at most countably many
jump discontinuities.

Finally, we show that g(F) is left-continuous. Let x0 ∈ projΩ(F) be a discon-
tinuity of g(F). By the previous result, x0 can only be a jump discontinuity. Let
y−0 = limx→x−0

g(F , x) and y+0 = limx→x+0
g(F , x). By Proposition 1.3, (x0, y

−
0 ) ∈ Ω(F)

and (x0, y
+
0 ) ∈ Ω(F). So, it suffices to show that y−0 > y+0 . Indeed, suppose that y+0 > y−0 .

Then, by the definition of g(F) we would have g(F , x0) = y+0 . Letting δ = (y+0 − y
−
0 )/2 in

Corollary 2.5, we obtain

y−0 = lim
x→x−0

g(F , x) > g(F , x0)− δ =
y−0 + y+0

2
> y−0 ,

a contradiction, and this completes the proof.

The proof of Theorem 1.11 also gives the following corollary.

Corollary 2.7. Let r ≥ 3 and F be a family of r-graphs. Suppose that x0 ∈ projΩ(F)
is a discontinuity of g(F). Then both limx→x−0

g(F , x) and limx→x+0
g(F , x) exist and

limx→x−0
g(F , x) > limx→x+0

g(F , x). In particular, if g(F) is increasing on [c1, c2] for

some c2 > c1 ≥ 0, then g(F) is continuous on [c1, c2].

3 A point of discontinuity

In this section we will prove Theorem 1.12 by defining a family D of 3-graphs, and showing
that g(D) is discontinuous at x = 2/3.

12
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Figure 9: The function g(D) is discontinuous at x = 2/3.

First we define a 3-graph Sn on [n] as follows. Fix u ∈ [n], let

Sn =

{
uvw : vw ∈

(
[n] \ {u}

2

)}
,

and note that Sn is a star with |Sn| =
(
n−1
2

)
.

Definition 3.1. Let D be the collection of all 3-graphs F ∈ K3
4 such that F 6⊂ Sn for all

n ≥ 4.

Note that D 6= ∅ as H3
4 ∈ D. Since Sn is D-free and limn→∞ |∂Sn|/

(
n
2

)
= 1, by

Observation 1.5, projΩ(D) = [0, 1].
Since T3(n, 3) is K3

4-free, ex(n,D) ≥ t3(n, 3). On the other hand, ex(n,D) ≤ ex(n,H3
4 ),

which, by [20], is at most t3(n, 3) when n is sufficiently large. Therefore, we obtain the
following result.

Theorem 3.2. Let n be sufficiently large. Then ex(n,D) = t3(n, 3) and T3(n, 3) is the
unique D-free 3-graph with n vertices and t3(n, 3) edges.

Theorem 3.2 implies that g(D, x) ≤ 2/9 for all x ∈ [0, 1] and equality holds for x = 2/3.
Therefore, in order to prove Theorem 1.12 it suffices to prove the following result.

Theorem 3.3. There exists an absolute constant δ0 > 0 such that the following is true for
all ε ∈ (0, 10−8) and sufficiently large n. Suppose that H is a D-free 3-graph on n vertices
with |∂H| = (1/3 + ε)n2. Then |H| ≤ (1/27− δ0)n3.

The proof of Theorem 3.3 uses a stability result for D-free 3-graphs, which can be
easily obtained from a stability theorem for Hr

`+1-free r-graphs proved by Pikhurko [20].

Theorem 3.4 (Stability). For every ξ > 0 there exists δ > 0 (we may assume that δ ≤ ξ)
and n0 = n0(ξ) such that the following holds for all n ≥ n0. Suppose that H is a D-free
3-graph on n vertices with |H| ≥ (1/27 − δ)n3. Then V (H) has a partition V1 ∪ V2 ∪ V3
such that all but at most ξn3 edges in H have exactly one vertex in each Vi.

Now we are ready to prove Theorem 3.3.

Proof of Theorem 3.3. We prove Theorem 3.3 by contradiction. Suppose that for all con-
stant δ > 0 and all integers n0 there exists ε = ε(δ) ∈ (0, 10−8) such that there exists a
3-graph H on n > n0 vertices for some n with |∂H| = (1/3 + ε)n2 and |H| > (1/27− δ)n3.

Choose ξ > 0 to be sufficiently small, and let δ > 0 and n0 = n0(ξ) be given by
Theorem 3.4 and note that we may assume that δ ≤ ξ. By assumption, there exists
ε ∈ (0, 10−8) and a D-free 3-graphs H on n > n0 vertices with |∂H| = (1/3 + ε)n2 and
|H| > (1/27− δ)n3. Apply Theorem 3.4 to H. We obtain a partition V (H) = V1 ∪V2 ∪V3

13



such that all but at most ξn3 edges in H have exactly one vertex in each Vi. Let H′ denote
the induced 3-partite 3-graph of H on V1 ∪ V2 ∪ V3, that is,

H′ = {E ∈ H : |E ∩ Vi| = 1 for all i ∈ [3]} .

Note that

|H′| > n3

27
− δn3 − ξn3. (4)

Claim 3.5.
∣∣|Vi| − n

3

∣∣ < 4(δ + ξ)1/2n for all i ∈ [3].

Proof. Fix 1 ≤ i ≤ 3 and let α = |Vi|. Then |H′| ≤ α(n− α)2/4 and (4) gives

α(n− α)2

4
>
n3

27
− δn3 − ξn3,

which implies n/3− 4(δ + ξ)1/2n < α < n/3 + 4(δ + ξ)1/2n.

Let G = ∂H and G′ = ∂H′. Note that H′ ⊂ H, G′ ⊂ G, and G′ is 3-partite. Let
K be a 3-partite subgraph of G with the maximum number of edges among all 3-partite
subgraphs of G, and let X1, X2, X3 denote the three parts of K.

Claim 3.6. |K| ≥ |G′| > n2

3 − 5(δ + ξ)1/2n2.

Proof. Counting the number of edges in H′ we obtain

|G′|
(n

3
+ 4(δ + ξ)1/2n

)
Claim 3.5
> 3|H′|

(4)
>
n3

9
− 3 (δ + ξ)n3,

which implies |G′| > n2/3− 5(δ + ξ)1/2n2. Since G′ is also a 3-partite subgraph of G, by
the maximality of K, we obtain |K| ≥ |G′|.

Claim 3.7.
∣∣|Xi| − n

3

∣∣ < 4 (δ + ξ)1/4 n for all i ∈ [3].

Proof. Fix i ∈ [3] and let α′ = |Xi|. By Claim 3.6,

α′(n− α′) +
(n− α′)2

4
≥ |K| ≥ |G′| > n2

3
− 5(δ + ξ)1/2n2,

which implies n/3− 4 (δ + ξ)1/4 n < α′ < n/3 + 4 (δ + ξ)1/4 n.

For uv ∈ K the degree of uv in H is d(uv) := |{E ∈ H : {u, v} ⊂ E}|. Our next claim
shows that most edges in K have a large degree.

Claim 3.8. The number of edges in K that have degree at most 10 in H is at most
n2/40000.

Proof. Suppose not. Then the assumption that |G| = |∂H| = (1/3 + ε)n2 together with
Claims 3.6 and 3.7 imply

|H|
Claim 3.7
≤ 1

3

(
|K| − n2

40000

)(n
3

+ 4(δ + ξ)1/4n
)

+
10n2

40000
+ (|G| − |K|)n

Claim 3.6
≤ 1

3

(
n2

3
− n2

40000

)(n
3

+ 4(δ + ξ)1/4n
)

+
n2

4000
+ εn3 + 5(δ + ξ)1/4n3

<
n3

27
− n3

500000
,

which contradicts the assumption that |H| > (1/27− δ)n3. Here we used the fact that δ, ξ
are sufficiently small, n is sufficiently large, and ε < 10−8.
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The next claim shows that ifG has a large complete 4-partite subgraph, then it contains
many edges that have degree at most 10 in H. This is the only place where we use the
definition of D.

Claim 3.9. Let v1v2 ∈ G and U1, U2 ⊂ V (H) \ {v1, v2}. Let

L = {{u1, u2} : u1 ∈ U1, u2 ∈ U2 and d(u1u2) ≥ 10} .

Suppose that v1 and v2 are adjacent to all vertices in U1 ∪ U2. Then L is an intersecting
family, and hence |L| < n.

Proof. Let u1u2 ∈ L and

Ev1v2 = {E ∈ H : {v1, v2} ⊂ E} .

We claim that every set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 6= ∅. Indeed, suppose that there
exists Ev1v2 ∈ Ev1v2 with Ev1v2 ∩ {u1, u2} = ∅. Since d(u1u2) ≥ 10, there exists Eu1u2 ∈ H
such that {u1, u2} ∈ Eu1u2 and Eu1u2 ∩ Ev1v2 = ∅. Let Ev1u1 , Ev1u2 , Ev2u1 , and Ev2u2 be
edges in H that cover v1u1, v1u2, v2u1, v2u2, respectively, and let F1 denote the 3-graph
with edge set

{Ev1v2 , Ev1u1 , Ev1u2 , Ev2u1 , Ev2u2 , Eu1u2}.

Note that F1 ⊂ H and F1 ∈ K3
4. However, since Eu1u2 ∩ Ev1v2 = ∅, F1 6⊂ Sn for any

n, and hence F1 ∈ D, which is a contradiction. Therefore, every set E ∈ Ev1v2 satisfies
E ∩ {u1, u2} 6= ∅.

Suppose that L contains another edge w1w2 that is disjoint from u1u2. Then, the same
argument as above implies that every set E ∈ Ev1v2 satisfies E ∩ {w1, w2} 6= ∅. Therefore,
every set E ∈ Ev1v2 satisfies E ∩ {u1, u2} 6= ∅ and E ∩ {w1, w2} 6= ∅, which is impossible
since E is a 3-set. Therefore, L is intersecting and it follows from the Erdős-Ko-Rado
theorem [5] that |L| < n.

Our goal in the rest of the proof is to find v1v2 ∈ G and U1, U2 ⊂ V (H) \ {v1, v2} with
|U1||U2| large, such that v1 and v2 are adjacent to all vertices in U1 ∪U2. Then, by Claim
3.9, many edges in the induced subgraph of K on U1 ∪ U2 would have degree at most 10,
which contradicts Claim 3.8.

Let
B = {uv ∈ G : {u, v} ⊂ Xi for some i ∈ [3]} ,

and

M =

{
{u, v} ∈

(
V (H)

2

)
\K : u ∈ Xi, v ∈ Xj for some i, j ∈ [3] and i 6= j

}
.

Sets in B are called bad edges of K and sets in M are called missing edges of K. For
v ∈ V (H) let dM (v) denote the number of missing edges that contain v. By Claim 3.6,

|M | ≤ 5(δ + ξ)1/2n2. (5)

On the other hand, the assumption |G| = n2/3 + εn2 implies

|B| ≥ |M |+ εn2. (6)

Let Bi be the collection of bad edges in G that are completely contained in Xi for i ∈ [3].
Without loss of generality, we may assume that |B1| ≥ |B|/3. Let ∆ denote the maximum
degree of B1.
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Case 1: ∆ < n/100.
Then there exits a set M ′ of at least |B1|/(2∆) > 15|B|/n pairwise disjoint edges in B1.
Fix uv ∈ B1. Let Ui(uv) = NK(u) ∩ NK(v) ∩ X2 for i ∈ {2, 3} and let Kuv denote the
induced subgraph of K on U2(uv)∪U3(uv). By Claim 3.9, all but at most n edges in Kuv

have degree at most 10 in H. It follows that

|U2(uv)||U3(uv)|
Claim 3.8
≤ n2

40000
+ n+ |M |

(5)

≤ n2

40000
+ n+ 5(δ + ξ)1/2n2 <

n2

30000
.

Therefore, by Claim 3.7,

|NK(u) ∩NK(v)| < n

3
+ 4(δ + ξ)1/4n+

n2/30000

n/3 + 4(δ + ξ)1/4n
<
n

3
+ 4(δ + ξ)1/4n+

n

10000
,

and it follows from Inclusion-Exclusion and Claim 3.7 that

dK(u) + dK(v) = |NK(u) ∪NK(v)|+ |NK(u) ∩NK(v)|

≤ 2
(n

3
+ 4(δ + ξ)1/4n

)
+
n

3
+ 4(δ + ξ)1/4n+

n

10000

<
101n

100
. (7)

Note that
dK(u) + dM (u) + dK(v) + dM (v) = 2 (|X2|+ |X3|) ,

which implies

|M | ≥
∑
uv∈M ′

(dM (u) + dM (v)) ≥ 15|B|
n

(2 (|X2|+ |X3|)− dK(u)− dK(v))

Claim 3.7 and (7)
>

15|B|
n

(
4n

3
− 102n

100

)
> 4|B|

(6)
> |M |,

a contradiction.

Case 2: ∆ ≥ n/100.
Then choose a vertex v1 ∈ X1 with degree ∆. Let Ni = NK(v1) ∩Xi for 1 ≤ i ≤ 3. The
maximality of K implies that |N2| ≥ ∆ and |N3| ≥ ∆, since otherwise we could move v1
into V2 or V3 to get a larger 3-partite subgraph of G. Choose v2 ∈ N1 and let Ui(v1v2) =
NK(v2) ∩ Ni for i ∈ {2, 3}. Similar to Case 1, we have |U2(v1v2)||U3(v1v2)| ≤ n2/30000.
Therefore, v2 is not adjacent (in K) to at least n/200 vertices in N2 ∪N3, which implies

|M | ≥
∑
u∈N1

dM (u) ≥ n

100
× n

200
=

n2

20000
> 5(δ + ξ)1/2n2

(5)

≥ |M |,

a contradiction.

Christian Reiher pointed out that the conclusion in Theorem 3.3 still holds even if we
replace the assumption |∂H| = (1/3 + ε)n2, ε ∈ (0, 10−8) by |∂H| ≥ t2(n, 3) + 1. In fact
he proved the following stronger stability theorem for D, which immediately implies the
stronger version of Theorem 3.3.

Lemma 3.10 (Reiher). For every ε > 0 there are δ > 0 and n0 such that every D-
free 3-graph H on n ≥ n0 vertices with |H| ≥ (1/27 − δ)n3 admits a partition V (H) =
U1 ∪ U2 ∪ U3 ∪ U4 such that

• every edge E ∈ H not incident with U4 has exactly one vertex in each of U1, U2, U3,
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• the sets U1, U2, U3 are independent in ∂H,

• every vertex in U4 is incident with at most (1/18 + ε)n2 edges in H and at most
(1/2 + ε)n edges in ∂H,

• and |U4| ≤ εn.

4 Cancellative hypergraphs

In this section we will prove Theorems 1.14 and 1.15. First let us present some useful
lemmas.

Let H be an r-graph. The link LH(v) of v in H is an (r − 1)-graph on V (H) and

LH(v) =

{
A ∈

(
V (H)

r − 1

)
: {v} ∪A ∈ H

}
.

Let dH(v) = |LH(v)|. For a subset S ⊂ V (H) let σH(S) =
∑

v∈S dH(v). When it is clear
from context we will omit the subscript H.

Lemma 4.1. Let r ≥ 3 and let H be a cancellative r-graph. Then, for any v ∈ V (H) the
link L(v) is a cancellative (r − 1)-graph.

Proof. Suppose that there exist A,B,C ∈ L(v) such that A4B ⊂ C. Let A′ = A ∪ {v},
B′ = B ∪ {v} and C ′ = C ∪ {v}, and note that A′, B′, C ′ ∈ H. Then, A′4B′ ⊂ C ′, which
is a contradiction.

Lemma 4.2. Let r ≥ 3 and let H be a cancellative r-graph. Suppose that {u, v} ⊂ V (H)
is covered by an edge in H. Then L(u) ∩ L(v) = ∅.

Proof. Suppose that there exists E ∈ L(u) ∩ L(v). Let A = E ∪ {u} and B = E ∪ {v},
and note that A,B ∈ H. Then A4B = {u, v}, which by assumption is covered by another
edge C in H, a contradiction.

Lemma 4.2 gives the following corollary.

Corollary 4.3. Let r ≥ 3 and H be a cancellative r-graph. Let S ⊂ V (H) and suppose
that (∂r−2H)[S] is a complete graph. Then,

σH(S) =
∑
v∈S

dH(v) ≤ |∂H|.

Proof. Suppose that S = {v1, . . . , vs}. Lemma 4.2 implies that the links L(v1), . . . , L(vs)
are pairwise edge disjoint. Since

⋃s
i=1 L(vi) ⊂ ∂H, we have

∑
v∈S dH(v) ≤ |∂H|.

4.1 Proof of Theorem 1.14

In this section we will prove Theorem 1.14, but instead of proving it directly we will prove
the following stronger statement.

Theorem 4.4. Let r ≥ 2 and let H be a cancellative r-graph. Then

|H| ≤
(
|∂H|
r

) r
r−1

.

First we show that Theorem 4.4 implies Theorem 1.14.
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Proof of Theorem 1.14. Let us consider the lower bound first. Let α ∈ [0, 1] and let Hn(α)
be the vertex disjoint union of Tr(αn, r) and a set of (1− α)n isolated vertices. It is clear
that Tr 6⊂ Hn(α). Let

x = lim
n→∞

|∂Hn(α)|(
n
r−1
) = lim

n→∞

r (αn/r)r−1(
n
r−1
) =

αr−1(r − 1)!

rr−2
,

and

y = lim
n→∞

|Hn(α)|(
n
r

) = lim
n→∞

(αn/r)r(
n
r

) =
αr(r − 1)!

rr−1
.

Then, y = (xr/r!)1/(r−1). Letting α vary from 0 to 1, we obtain g(Tr, x) ≥ (xr/r!)1/(r−1)

for all x ∈ [0, (r − 1)!/rr−2].
Next we prove the upper bound. Suppose that (Hk)∞k=1 is a good sequence of can-

cellative r-graphs that realizes (x, y). Let xk = (r − 1)!|∂Hk|/ (v(Hk))r−1 and yk =
r!|Hk|/ (v(Hk))r for all k ≥ 1. Then Theorem 4.4 gives

yk (v(Hk))r

r!
≤

(
xk (v(Hk))r−1

r(r − 1)!

) r
r−1

,

which implies

yk ≤
(

(xk)
r

r!

) 1
r−1

.

Letting k →∞, we obtain y ≤ (xr/r!)1/r−1, and this completes the proof.

Now we prove Theorem 4.4. We will use the following fact.

Fact 4.5. Let X be a collection of non-negative real numbers and a ∈ [0, 1]. Then

∑
x∈X

xa ≤ |X|
(∑

x∈X x

|X|

)a
= |X|1−a

(∑
x∈X

x

)a
, (8)

and (∑
x∈X

x

)2

≤ |X|
∑
x∈X

x2. (9)

Proof of Theorem 4.4. We proceed by induction on r. When r = 2, this is just Mantel’s
theorem, so we may assume that r ≥ 3.

By Lemma 4.1, L(v) is a cancellative (r − 1)-graph for all v ∈ V (H). Therefore, by
the induction hypothesis,

d(v) ≤
(
|∂L(v)|
r − 1

) r−1
r−2

. (10)

It follows that

|H| = 1

r

∑
v∈V (H)

d(v) =
1

r

∑
v∈V (H)

(d(v))
1

r−1 (d(v))
r−2
r−1

(10)

≤ 1

r(r − 1)

∑
v∈V (H)

(d(v))
1

r−1 |∂L(v)|. (11)
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Notice that ∑
v∈V (H)

(d(v))
1

r−1 |∂L(v)| =
∑

v∈V (H)

∑
S∈∂H
v∈S

(d(v))
1

r−1

=
∑
S∈∂H

∑
v∈S

(d(v))
1

r−1

(8)

≤ ((r − 1)|∂H|)
r−2
r−1

( ∑
S∈∂H

∑
v∈S

d(v)

) 1
r−1

= ((r − 1)|∂H|)
r−2
r−1

( ∑
S∈∂H

σ(S)

) 1
r−1

. (12)

Define σ̂ = max {σ(H) : H ∈ H} and suppose that E ∈ H satisfies
∑

v∈E d(v) = σ̂. Then,∑
S∈∂H

σ(S) =
∑

S∈
⋃

v∈E L(v)

σ(S) +
∑

S∈∂H\
⋃

v∈E L(v)

σ(S)

Lemma 4.2
=

∑
v∈E

∑
S∈L(v)

σ(S) +
∑

S∈∂H\
⋃

v∈E L(v)

σ(S)

≤
∑
v∈E

d(v) (σ̂ − d(v)) + (|∂H| − σ̂) σ̂

(9)

≤

(∑
v∈E

d(v)

)(
σ̂ −

∑
v∈E d(v)

r

)
+ (|∂H| − σ̂) σ̂

= σ̂

(
σ̂ − σ̂

r

)
+ (|∂H| − σ̂) σ̂

=

(
|∂H| − σ̂

r

)
σ̂. (13)

Note that Corollary 4.3 gives σ̂ ≤ |∂H|. On the other hand, since (|∂H| − σ̂/r) σ̂ is
increasing in σ̂ when σ̂ ≤ r|∂H|/2, it follows from (13) and r ≥ 3 that∑

S∈∂H
σ(S) ≤

(
|∂H| − σ̂

r

)
σ̂ ≤ r − 1

r
|∂H|2. (14)

Plugging (12) and (14) into (11), we obtain

|H| ≤ 1

r(r − 1)
((r − 1)|∂H|)

r−2
r−1

(
r − 1

r
|∂H|2

) 1
r−1

=

(
|∂H|
r

) r
r−1

,

and this completes the proof.

4.2 Proof of Theorem 1.15

In this section we will prove Theorem 1.15. As before, we will prove a stronger statement
which implies Theorem 1.15.

Theorem 4.6. Suppose that H is a cancellative 3-graph on n vertices. Then

|H| ≤
(
n2 − 2|∂H|

)
|∂H|

3n
+ 3n2.

First we show that Theorem 4.6 implies Theorem 1.15.
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Proof of Theorem 1.15. Let us consider the lower bound first.
A k-vertex Steiner triple system (STS for short) is a 3-graph on k vertices such that

every pair of vertices is covered by exactly one edge. It is known that a k-vertex STS
exists iff k ≡ 1 or 3 (mod 6) (e.g. see [26]). Let STS(k) denote the family of all Steiner
triple systems on k vertices. Let S(n, k) denote the collection of all 3-graphs on n vertices
that can be obtained from a 3-graph H ∈ STS(k) by blowing up every vertex in H into
a set of size either bn/kc or dn/ke. It is easy to see that every 3-graph in S(n, k) is
cancellative.

Fix an integer k with k ≡ 1 or 3 (mod 6). Let Hn ∈ S(n, k) and in order to keep the
calculations simple let us assume that k divides n. Then

lim
n→∞

|∂Hn|(
n
2

) =
(k − 1)n2/(2k)(

n
2

) =
k − 1

k
,

and

lim
n→∞

|Hn|(
n
3

) =
(k − 1)n3/(6k2)(

n
3

) =
k − 1

k2
.

Therefore, the sequence (Hn)∞n=1 realizes
(
(k − 1)/k, (k − 1)/k2

)
. So, g(T3, (k − 1)/k) ≥

(k − 1)/k2 for all integers k with k ≡ 1 or 3 (mod 6).
Next we prove the upper bound. Let (Hk)∞k=1 be a good sequence of cancellative 3-

graphs that realizes (x, y). Let xk = 2|∂Hk|/ (v(H))2 and yk = 6|Hk|/ (v(H))3 for k ≥ 1.
Then, it follows from Theorem 4.6 that

yk (v(Hk))3

6
≤

(
(v(Hk))2 − xk (v(Hk))2

)
xk (v(Hk))2/2

3v(Hk)
+ 3 (v(Hk))2 ,

which implies

yk ≤ xk(1− xk) +
18

v(Hk)
.

Letting k →∞, we obtain y ≤ x(1− x), and this completes the proof.

The idea of the proof of Theorem 4.6 is to first choose S ⊂ V (H) such that (∂H) [S]
is a clique. Then we apply the induction hypothesis to V (H) \S. However, in order to do
the induction we need to prove a stronger statement which implies Theorem 4.6.

We will use G to denote the graph ∂H. Let U ⊂ V (H) and let GU = G[U ] and
HU = H[U ].

Theorem 4.7. Let H be a cancellative 3-graph on n vertices. Let U ⊂ V (H) be a set of
size m. Suppose that |GU | = xm2/2 for some real number x with 0 ≤ x ≤ (m − 1)/m.
Then,

|HU | ≤
(1− x)x

6
m3 + 3m2.

In particular, letting U = V (H) in Theorem 4.7 we obtain

|H| ≤
(
n2 − 2|∂H|

)
|∂H|

3n
+ 3n2,

which is exactly Theorem 4.6.
The proof of Theorem 4.7 is by induction on m. Note that Theorem 4.7 holds trivially

for all m ≤ 20 since
(
m
3

)
≤ 3m2 for all m ≤ 20. Also, by Theorem 4.4,

|HU | ≤
|∂ (HU ) |3/2

3
√

3
≤ |GU |

3/2

3
√

3
=
x3/2

6
√

6
m3,
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which is less than x(1− x)m3/6 + 3m2 when x ≤ 2/3. Therefore, Theorem 4.7 is true for
all x ≤ 2/3, and hence we may assume that x > 2/3 in the rest of the proof.

In the proof of Theorem 4.7 we need the following version of Turán’s theorem. The
clique number ω(G) of a graph G is the largest integer ω such that there is a copy of
Kω in G. Turán’s theorem implies that any n-vertex graph with no Kω+1 has at most
(ω − 1)n2/(2ω) edges.

Theorem 4.8 ([25]). Let G be an n-vertex graph with at least xn2/2 edges for some real
number x ≥ 0. Then ω(G) ≥ d1/(1− x)e.

Proof. Let ω = ω(G). By Turán’s theorem, xn2/2 ≤ (ω − 1)n2/(2ω). Simplifying this
inequality we obtain ω ≥ 1/(1− x). Since ω is an integer, ω ≥ d1/(1− x)e.

The idea in the proof of Theorem 4.7 is to first apply Turán’s theorem on GU to find
a large clique, say on S, and then apply the induction hypothesis to T = U \ S to get an
upper bound for |HT |. In order to get an upper bound for |HU | we just need to apply
Corollary 4.3 to HU to get an upper bound for |HU \ HT |.

Proof of Theorem 4.7. Suppose that GU contains a clique on ω vertices. We may assume
that ω < m since otherwise by Corollary 4.3, we are done. Choose S ⊂ U of size ω so that
GS ∼= Kω. Let T = U \ S. Let es denote the number of edges in GU that have nonempty

intersection with S. Let x′ = xm2−2es
(m−ω)2 .

First, notice a simple but crucial fact is that every vertex in T is adjacent to at most
ω−1 vertices in S, since otherwise there would be a copy of Kω+1 in GU , which contradicts
the definition of ω. Therefore,

es ≤ (ω − 1)(m− ω) +

(
ω

2

)
. (15)

Applying the induction hypothesis to T we obtain

|HT | ≤
x′(1− x′)

6
(m− ω)3 + 3(m− ω)2.

On the other hand, Corollary 4.3 gives

|HU \ HT | ≤
∑
v∈S

d(v) ≤ |GU | =
x

2
m2.

Therefore,

|HU | = |HT |+ |HU \ HT | ≤
x′(1− x′)

6
(m− ω)3 + 3(m− ω)2 +

x

2
m2. (16)

Claim 4.9. For 2/3 ≤ x ≤ 1 and 0 ≤ x′ ≤ 1 we have

x(1− x)

6
m3 + 3m2 ≥ x′(1− x′)

6
(m− ω)3 + 3(m− ω)2 +

x

2
m2.

Proof of Claim 4.9. Notice that

(m− ω)2(x− x′) = x
(
(m− ω)2 −m2

)
+ 2es

(15)

≤ xω(ω − 2m) + (ω − 1)(2m− ω)

= (2m− ω) (ω(1− x)− 1) .

Consequently,

(m− ω)2
(
x′(1− x′)− x(1− x)

)
= (m− ω)2(x− x′)(x+ x′ − 1)

≤ (2m− ω) (ω(1− x)− 1)x. (17)
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Indeed, if x ≥ x′ this follows from the previous estimate and x + x′ − 1 ≤ x. If x < x′,
then x + x′ − 1 ≥ 1/3 and the left side of (17) is negative, while the right side of (17) is
nonnegative. Multiplying (17) by m − ω and taking the identity ω(m − ω)(2m − ω) =
m3 − (n− ω)3 −m2ω into account we obtain

(m− ω)3
(
x′(1− x′)− x(1− x)

)
≤
(
m3 − (m− ω)3

)
x(1− x)−m2ωx(1− x)− x(m− ω)(2m− ω),

which due to ω(1− x) ≥ 1 implies

(m− ω)3x′(1− x′) ≤ m3x(1− x)− x
(
m2 + (m− ω)(2m− ω)

)
.

Adding 3xm2 on both sides and using

2m2 − (m− ω)(2m− ω) = 3mω − ω2 ≤ 18
(
m2 − (m− ω)2

)
we reach

(m− ω)3x′(1− x′) + 3xm2 ≤ m3x(1− x) + 18x
(
m2 − (m− ω)2

)
.

Due to x ≤ 1 this implies the claim.

Finally, |HU | ≤ x(1 − x)m3/6 + 3m2 is an immediate consequence of Claim 4.9 and
(16) and this completes the proof of the theorem.

5 Hypergraphs without expansion of cliques.

In this section we consider the feasible region of hypergraphs without expansion of cliques.
First we will prove the following result, from which Theorem 1.17 can be easily obtained.

Theorem 5.1. Let ` ≥ r ≥ 2. Let H be a Kr`+1-free r-graph. Then(
|H|(
`
r

))1/r

≤

(
|∂H|(
`

r−1
))1/(r−1)

.

In order to derive Theorem 1.17 from Theorem 5.1 we need an easy observation. Recall
from (2) that for i ≤ −1,

∂iH =

{
A ∈

(
V (H)

r − i

)
: H[A] is a complete r-graph

}
.

Observation 5.2. Let r ≥ 3 and H be an r-graph. If 0 ≤ i ≤ r − 2, then H is Kr`+1-free

iff ∂iH is Kr−i
`+1-free. In particular, H is Kr`+1-free iff ∂r−2H is K`+1-free. If i ≤ −1, then

H is Kr`+1-free implies that ∂iH is Kr−i`+1-free.

Now we show how to prove Theorem 1.17 using Theorem 5.1.

Proof of Theorem 1.17. Fix r− ` ≤ i ≤ r− 2. Then by Observation 5.2, ∂iH is Kr−i`+1-free.
Since ∂ (∂iH) ⊂ ∂i+1H, it follows from Theorem 5.1 that(

|∂iH|(
`
r−i
))1/(r−i)

≤

(
|∂(∂iH|)(

`
r−i−1

) )1/(r−i−1)

≤

(
|∂i+1H|(

`
r−i−1

))1/(r−i−1)

,

and this completes the proof.
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To show that all inequalities in Theorem 1.17 are tight, consider the following con-
struction. Fix α ∈ [0, 1] and let Hn(α) be the vertex disjoint union of Tr(αn, `) and a
set of (1− α)n isolated vertices. It is clear that Hn(α) is Kr`+1-free. In order to keep the
calculations simple, let us assume that αn is an integer that is a multiple of `. For fixed
`− r ≤ i ≤ r − 1,

|∂iHn(α)| =
(

`

r − i

)(αn
`

)r−i
,

and hence (
|∂iHn(α)|(

`
r−i
) ) 1

r−i

=
αn

`
.

Therefore, all inequalities in Theorem 1.17 are tight.
Notice that the construction above also proves the lower bound in Corollary 1.18 and

we omit the calculations here.
The proof of Theorem 5.1 uses some ideas in Fisher and Ryan’s proof [6]. However we

need to translate their proof into the language of hypergraphs, since an edge in ∂iH might
not be equivalent to a copy of Kr−i in ∂r−2H for −` ≤ i ≤ r− 3. Define the clique set KH
of H as

KH =
{
A ⊂ V (H) : (∂r−2H)[A] ∼= K|A|

}
.

For every E ∈ ∂H let N(E) = {v ∈ V (H) : {v} ∪ E ∈ H}. Recall from Section 4 that
σ(S) =

∑
v∈S d(v). We first prove a lemma that will be used in the proof of Theorem 5.1.

Lemma 5.3.
∑

E∈∂H σ(E) ≤ (`−r+1)(r−1)
` |∂H|2.

Proof. Let S ⊂ V (H). For every v ∈ V (H) we have d(v) =
∑

E∈∂H |N(E) ∩ {v}|. So,

σ(S) =
∑
v∈S

d(v) =
∑
v∈S

∑
E∈∂H

|N(E) ∩ {v}| =
∑
E∈∂H

|N(E) ∩ S|. (18)

On the other hand,

(σ(S))2 =

(∑
v∈S

d(v)

)2
(9)

≤ |S|
∑
v∈S

(d(v))2 = |S|
∑
v∈S

∑
E∈L(v)

d(v)

= |S|
∑
v∈S

∑
E∈∂H
v∈N(E)

d(v) = |S|
∑
E∈∂H

∑
v∈S∩N(E)

d(v)

= |S|
∑
E∈∂H

σ (N(E) ∩ S) ,

which implies ∑
E∈∂H

σ (N(E) ∩ S) ≥ (σ(S))2

|S|
. (19)

Now suppose that S ∈ KH. Since H is Kr`+1-free, |E|+ |N(E) ∩ S| ≤ ` for all E ∈ ∂H. It
follows from (18) that

σ(S) =
∑
T∈∂H

|N(T ) ∩ S| ≤ (`− r + 1)|∂H|. (20)

Let z be the largest real number such that σ(R) ≤ (` − r + 1)|∂H| − (` − |R|)z for all
R ∈ KH. Let R0 ∈ KH such that

σ(R0) = (`− r + 1)|∂H| − (`− |R0|)z. (21)
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For every E ∈ ∂H, E ∪ (N(E) ∩R0) ∈ KH, therefore,∑
E∈∂H

σ(E) =
∑
E∈∂H

(σ(E ∪ (N(E) ∩R0))− σ(N(E) ∩R0))

≤
∑
E∈∂H

((`− r + 1)|∂H| − (`− |E ∪ (N(E) ∩R0)|)z − σ(N(E) ∩R0))

≤
∑
E∈∂H

((`− r + 1) (|∂H| − z) + |N(E) ∩R0|z − σ(N(E) ∩R0))

= (`− r + 1)(|∂H| − z)|∂H|+ z
∑
E∈∂H

|N(E) ∩R0| −
∑
E∈∂H

σ(N(E) ∩R0)

(19),(20)

≤ (`− r + 1)(|∂H| − z)|∂H|+ zσ(R0)−
(σ(R0))

2

|R0|
(21)
= (`− r + 1)(|∂H| − 2z)|∂H|+ z2`− ((`− r + 1)|∂H| − z`)2

|R0|
. (22)

Since |R0| ≤ `, we may plug |R0| = ` into (22) and z will be cancelled in the calculation
and hence ∑

E∈∂H
σ(E) ≤ (`− r + 1)(r − 1)

`
|∂H|2.

Now we are ready to prove Theorem 5.1.

Proof of Theorem 5.1. We proceed by induction on r. The case r = 2 is just Turán’s
theorem, so we may assume that r ≥ 3.

For every v ∈ V (H) the link L(v) is a Kr−1` -free (r − 1)-graph, therefore, by the
induction hypothesis,

d(v) ≤
(
`− 1

r − 1

)(
|∂L(v)|(
`−1
r−2
) ) r−1

r−2

. (23)

It follows that

|H| = 1

r

∑
v∈V (H)

d(v) =
1

r

∑
v∈V (H)

(d(v))
1

r−1 (d(v))
r−2
r−1

(23)

≤
(
`−1
r−1
) r−2

r−1

r
(
`−1
r−2
) ∑

v∈V (H)

(d(v))
1

r−1 |∂L(v)|. (24)

Similar to (12) in Section 4, we have∑
v∈V (H)

(d(v))
1

r−1 |∂L(v)| =
∑
E∈∂H

∑
v∈E

(d(v))
1

r−1

(8)

≤ ((r − 1)|∂H|)
r−2
r−1

( ∑
E∈∂H

∑
v∈E

d(v)

) 1
r−1

= ((r − 1)|∂H|)
r−2
r−1

( ∑
E∈∂H

σ(E)

) 1
r−1

Lemma 5.3
≤ (r − 1)

(
`− r + 1

`

) 1
r−1

|∂H|
r

r−1 . (25)
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It follows from (24) and (25) that

|H| ≤
(
`

r

)(
|∂H|(
`

r−1
)) r

r−1

.

Now we show how to prove Corollary 1.18 using Theorem 1.17.

Proof of Corollary 1.18. Let (Hk)∞k=1 be a good sequence of Kr`+1-free r-graphs that real-

izes (x, y). Let xk = (r − 1)!|∂Hk|/ (v(Hk))r−1 and yk = r!|Hk|/ (v(Hk))r. First, we show
that projΩ(Kr`+1) = [0, (`)r−1/`

r−1].
It follows from Theorem 1.17 that

xk (v(Hk))r−1

(r − 1)!
≤
(

`

r − 1

)(
v(Hk)
`

)r−1
,

which implies xk ≤ (`)r−1/`
r−1. Letting k → ∞, we obtain x ≤ (`)r−1/`

r−1. Therefore,
projΩ(Kr`+1) ⊂ [0, (`)r−1/`

r−1]. On the other hand, (Tr(k, `))
∞
k=1 shows that (`)r−1/`

r−1 ∈
projΩ(Kr`+1) and it follows from Observation 1.5 that projΩ(Kr`+1) = [0, (`)r−1/`

r−1].
Next, we show the upper bound for g(Kr`+1, x). It follows from Theorem 1.17 that

(
yk (v(Hk))r

r!
(
`
r

) ) 1
r

≤

(
xk (v(Hk))r−1

(r − 1)!
(
`

r−1
) ) 1

r−1

,

which implies yk ≤ (` − r + 1) (xrk/(`)r)
1/(r−1). Letting k → ∞, we obtain y ≤ (` −

r + 1) (xr/(`)r)
1/(r−1). Therefore, g(Kr`+1, x) ≤ (` − r + 1) (xr/(`)r)

1/(r−1) for all x ∈
projΩ(Kr`+1).

The construction for the lower bound is exactly the same as the construction for
Theorem 1.17, and it shows that g(Kr`+1, x) ≥ (` − r + 1) (xr/(`)r)

1/(r−1) for all x ∈
projΩ(Kr`+1). Therefore, g(Kr`+1, x) = (`− r + 1) (xr/(`)r)

1/(r−1) for all x ∈ projΩ(Kr`+1).

Let us present a lemma before proving Theorem 1.19.

Lemma 5.4. Let r ≥ 3 and F1,F2 be two families of r-graphs with F1 ⊂ F2. Suppose
that every n-vertex F1-free r-graph can be made F2-free by removing at most o(nr) edges,
and g(F2, x) is increasing on [0, c] for some c > 0. Then g(F1, x) = g(F2, x) on [0, c].

Proof. Since F1 ⊂ F2, it follows from Observation 2.2 that g(F2, x) ≤ g(F1, x) for all
x ∈ projΩ(F2). So it suffices to show that g(F2, x) ≥ g(F1, x) for all x ∈ [0, c]. Let
(x0, y0) ∈ Ω(F1) with x0 ∈ [0, c] and y0 = g(F1, x0). By definition, there exists a sequence
of F1-free r-graphs (Hk)∞k=1 with limk→∞ d(∂Hk) = x0 and limk→∞ d(Hk) = y0.

For every k ≥ 1 letH′k be a subgraph ofHk that is F2-free and of maximum size, and let
x′k = d(∂H′k) and y′k = d(H′k). By the Bolzano-Weierstrass theorem, (x′k, y

′
k)
∞
k=1 contains

a convergent subsequence
(
x′tk , y

′
tk

)∞
k=1

. Let x′0 = limk→∞ x
′
tk

and y′0 = limk→∞ y
′
tk

, and

it is easy to see from the definition of H′k that x′0 ≤ x0 and y′0 ≤ y0. Since
(
H′tk

)∞
k=1

is a
good sequence of F2-free r-graphs that realizes (x′0, y

′
0), we obtain (x′0, y

′
0) ∈ Ω(F2).

By assumption, for every ε > 0 there exists n(ε) such that Hk can be made F2-free
by removing at most ε (v(Hk))r edges whenever v(Hk) ≥ n(ε). Since limk→∞ v(Hk) =∞,
there exists k(ε) such that v(Hk) ≥ n(ε) for all k ≥ k(ε), and hence |H′k| ≥ |Hk|−ε (v(Hk))r
for all k ≥ k(ε). Therefore, y′0 ≥ y0 − r!ε. Letting ε → 0, we obtain y′0 ≥ y0, and hence
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y′0 = y0. Therefore, (x′0, y0) ∈ Ω(F2). By the assumption that g(F2) is increasing on [0, c],
we obtain

g(F2, x0) ≥ g(F2, x
′
0) ≥ y0 = g(F1, x0).

Since x0 was chosen arbitrarily from [0, c], g(F2, x) ≥ g(F1, x) for all x ∈ [0, c], and this
completes the proof.

Now we prove Theorem 1.19 using Corollary 1.18.

Proof of Theorem 1.19. It was shown by Pikhurko (see the proof of Lemma 3 in [20])
that every Hr

`+1-free r-graph on n-vertices can be made Kr`+1-free by removing at most
o(nr) edges. On the other hand, Corollary 1.18 shows that g(Kr`+1) is increasing on
[0, (`)r−1/`

r−1]. So, it follows from Lemma 5.4 that

g(Hr
`+1, x) = g(Kr`+1, x) = (`− r + 1)

(
xr

(`)r

) 1
r−1

for all x ∈ [0, (`)r−1/`
r−1].

6 Concluding remarks

In this paper we proved that for any r ≥ 3 and any family F of r-graphs the function g(F)
has at most countably many discontinuities. We also constructed a family D of 3-graphs
such that g(D) is discontinuous at x = 2/3. It seems natural to ask the following question.

Problem 6.1. Can g(F) have infinitely many discontinuities?

In Section 4 we proved several results about g(Tr) for r ≥ 3. Even for r = 3 the
function g(T3) is already shown to have many intersecting properties, and is closely related
to Steiner triple systems. The following question seems difficult for x not of the form
(k − 1)/k with k ≡ 1 or 3 (mod 6).

Problem 6.2. Determine g(T3, x) for all x ∈ (2/3, 1].

Reiher observed that the function x(1 − x) in Theorem 4.7 can be replaced by the

piecewise linear function p(x) = k−1
k+1 −

k2−k−1
k(k+1) x for all k ∈ N+ and k−1

k ≤ x ≤
k
k+1 , which

implies that g(T3, x) ≤ p(x) for all 2
3 ≤ x ≤ 1. This can be shown by redoing the proof

of Theorem 4.7 and taking into account that instead of ω ≥ 1
1−x one can directly use

ω ≥ k + 1, unless x = k−1
k , but this case is already understood.

Now let us show a lower bound for g(T3, x) for x ∈ (2/3, 6/7]. Let F denote the Fano
Plane, i.e., F is a 3-graph on 7 vertices with edge set

{123, 345, 561, 174, 275, 376, 246}.

Let α ∈ [1/7, 1/3] and β = (1− 3α)/4. Let Hn(α) be obtained from F by blowing up each
vertex in {1, 2, 3} into a set of size of αn and blowing up each vertex in {4, 5, 6, 7} into a
set of size of βn (note that these weights for blowing up the Fano plane are optimal). Let

x = lim
n→∞

|∂Hn(α)|(
n
2

) = 6α2 + 12β2 + 24αβ =
3

4
(1 + 2α− 7α2), (26)

and

y = lim
n→∞

|Hn(α)|(
n
3

) = 6α3 + 36αβ2 =
3

4
α(3− 18α+ 35α2). (27)
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Then, (26) and (27) give

y =
1

147

(
−70

√
18x2 − 21x3 + 63x+ 60

√
18− 21x− 36

)
, (28)

which implies

g(T3, x) ≥ 1

147

(
−70

√
18x2 − 21x3 + 63x+ 60

√
18− 21x− 36

)
for all x ∈ [2/3, 6/7].

6/49

2/9

6
7
6
7

573
700

x

y

Figure 10: The lower bound for g(T3, x) given by (28).

The construction above gives an algebraic curve connecting (2/3, 2/9) and (6/7, 6/49).
Using a similar method, one can construct an algebraic curve defined by

y =
2
√

3(k + 3)(k − 1− kx)
3
2

3k2
√
k − 3

+
3kx− 2k + 2

k2
(29)

to connect (2/3, 2/9) and ((k − 1)/k, (k − 1)/k2) for all k ≡ 1 or 3 (mod 6). However,
we do not know how to construct curves to connect ((k − 1)/k, (k − 1)/k2) and ((k′ −
1)/k′, (k′ − 1)/k′2) for consecutive k, k′ ≥ 7 and k, k′ ≡ 1 or 3 (mod 6). Also, there is an
interesting phenomenon that{

((k − 1)/k, (k − 1)/k2) : k ≥ 7 and k ≡ 1 or 3 (mod 6)
}

are local maxima of the function given by (29). Therefore, we pose the following question.

Problem 6.3. For every k ≥ 7 with k ≡ 1 or 3 (mod 6), is the point ((k−1)/k, (k−1)/k2)
a local maximum of g(T3)?

In [11], the first author proved the following stability theorem about the points ((k −
1)/k, (k − 1)/k2) in Ω(T3), which we think might be helpful for Problems 6.2 and 6.3.

Theorem 6.4 (Stability, [11]). Let k be an integer with k ≡ 1 or 3 (mod 6) and H be
a cancellative 3-graph on n vertices. For every δ > 0 there exists an ε > 0 and n0 such
that the following holds for all n ≥ n0. Suppose that |∂H| ≥ (1 − ε)(k − 1)n2/(2k) and
|H| ≥ (1− ε)(k− 1)n3/(6k2). Then H can be transformed into a subgraph of a 3-graph in
S(n, k) by removing at most δn3 edges.

There is also an exact result for the points ((k − 1)/k, (k − 1)/k2). Let s(n, k) =
max{|H| : H ∈ S(n, k)}.

Theorem 6.5 ([11]). Let k be an integer that satisfies k ≡ 1 or 3 (mod 6) and H be a
cancellative 3-graph on n vertices with n sufficiently large. Suppose that |∂H| = t2(n, k).
Then |H| ≤ s(n, k), and equality holds only if H ∈ S(n, k).
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For r ≥ 4 there is very little known about upper and lower bounds for g(Tr, x) for
x > (r − 1)!/rr−2. We pose the following question.

Problem 6.6. Let r ≥ 4 and x > (r − 1)!/rr−2. Improve the upper bound for g(Tr, x),
and construct cancellative r-graphs to give good lower bounds for g(Tr, x).

Given our poor understanding of hypergraph Turán problems, determining the feasible
region of other families of hypergraphs would also be of interest. In particular, we pose
the following two questions.

Problem 6.7. Determine the feasible region of Hr
`+1 for r ≥ 3 and ` ≥ r.

Problem 6.8. Determine the feasible region of the Fano Plane.

In [13], we give an example of a (finite) family F , for which g(F) has two global
maxima. In particular, our example shows that g(F) can be non-unimodal.

Theorem 6.9 ([13]). There exists a (finite) familyM of 3-graphs such that g(M, x) ≤ 4/9
for all x ∈ projΩ(M), and equality holds iff x ∈ {5/6, 8/9}.

( 2
3
, 1
4
)

1/2

4/9

5
6

8
9 1

x

y

Figure 11: g(M) has two global maxima by Theorem 6.9.

Theorem 6.9 suggests the following natural problem which we hope to address in the
future.

1
0

y

x
x1 x2 xtx′1 x′2

Figure 12: Can g(F) has many global maxima?

Problem 6.10. Fix r ≥ 3 and t > 0. Do there exist a (finite) family F of r-graphs and
reals 0 < x1 < x′1 < x2 < · · · < x′t−1 < xt such that g(F , xi) = π(F) for all i ∈ [t] and
g(F , x′i) < π(F) for all i ∈ [t− 1].
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