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Abstract

Fix k ≥ 3, and let G be a k-uniform hypergraph with maximum degree ∆.

Suppose that for each l = 2, . . . , k − 1, every set of l vertices of G is in at most

∆
k−l
k−1 /f edges. Then the chromatic number of G is O(( ∆

log f )
1

k−1 ). This extends

results of Frieze and the second author [10] and Bennett and Bohman [2].

A similar result is proved for 3-uniform hypergraphs where every vertex lies in

few triangles. This generalizes a result of Alon, Krivelevich, and Sudakov [1], who

proved the result for graphs.

Our main new technical contribution is a deviation inequality for positive ran-

dom variables with expectation less than 1. This may be of independent interest

and have further applications.

1 Introduction

A hypergraph G is a tuple consisting of a set of vertices V and a set of edges E, which

are subsets of V ; we will often associate G with its edge set E. A hypergraph has rank

k if every edge contains between 2 and k vertices and is k-uniform if every edge contains

exactly k vertices. A proper coloring of G is an assignment of colors to the vertices so

that no edge is monochromatic. The chromatic number, χ(G), is the minimum number

of colors in a proper coloring of G.

A hypergraph is linear if every pair of vertices is contained in at most one edge. A

triangle in a hypergraph G is a set of three distinct edges e, f, g ∈ G and three distinct
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vertices u, v, w ∈ V (G) such that u, v ∈ e, v, w ∈ f , w, u ∈ g, and {u, v, w}∩e∩f∩g = ∅.
For example, the three triangles in a 3-uniform hypergraph are C3 = {abc, cde, efa},
F5 = {abc, abd, ced}, and K−4 = {abc, bcd, abd}.

The degree of a vertex u ∈ V (G) is the number of edges containing that vertex. The

maximum degree of a hypergraph G is the maximum degree of a vertex v ∈ V (G). Im-

proving on results of Catlin [6], Lawrence [14], Borodin and Kostochka [5], and Kim [12],

Johansson [11] showed that if G is a triangle-free graph with maximum degree ∆, then

χ(G) = O(
∆

log ∆
). (1)

Random graphs show that the log ∆ factor in (1) is optimal. Recently, Frieze and the

second author [10] generalized (1) to linear k-uniform hypergraphs, and the current

authors [7] proved slightly stronger results for k = 3.

Theorem 1 ([10]). Fix k ≥ 3. If G is a k-uniform, linear hypergraph with maximum

degree ∆, then

χ(G) = O(
∆

log ∆
)

1
k−1 .

Theorem 2 ([7]). If G is a 3-uniform, triangle-free hypergraph with maximum degree

∆, then

χ(G) = O((
∆

log ∆
)1/2).

Alon, Krivelevich, and Sudakov [1] extended (1) by showing that if every vertex

u ∈ V (G) is in at most ∆2/f triangles, then χ(G) = O( ∆
log f

), where ∆ → ∞. They

used this to show that if G contains no copy of H, where H is a fixed graph such that

H − u is biparite for some u ∈ V (H), then χ(G) = O(∆/ log ∆). In this paper, we give

similar improvements to the results of [10] and [7].

Given two hypergraphs H and A, a map φ : V (H) → V (A) is an isomorphism if

for all E ⊂ V (H), φ(E) ∈ A if and only if E ∈ H. If there exists an isomorphism

φ : V (H) → V (A), we say H is isomorphic to A and denote this by H ∼=φ A. Given a

hypergraph H and v ∈ V (H), let

∆H,v(G) = max
u∈V (G)

|{A ⊂ G : A ∼=φ H and φ(u) = v}|

and

∆H(G) = min
v∈V (H)

∆H,v(G).

For example, suppose G is a d-regular graph, and H is the path with edges xy and

yz. Then ∆H,x(G) = ∆H,z(G) = d(d − 1), while ∆H,y(G) =
(
d
2

)
. Thus ∆H(G) =

(
d
2

)
.

Another example appears after the statement of Theorem 5.
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We improve the result of [7] with the following theorem. For a hypergraph H, let

v(H) = |V (H)|.

Theorem 3. Let G be a 3-uniform hypergraph with maximum degree ∆. Let T denote

the set of 3-uniform triangles. If

∆H(G) ≤ ∆(v(H)−1)/2/f

for all H ∈ T , then

χ(G) = O((
∆

log f
)1/2).

Notice that the hypotheses of Theorem 3 are satisfied when G is linear and f = ∆1/2,

so Theorem 3 implies Theorem 1 for 3-uniform hypergraphs.

Given a rank k hypergraph G and A ⊂ V (G), let

dj(A) = |{B ∈ G : |B| = j, A ⊂ B}|

for each 1 ≤ j ≤ k. When the hypergraph is k-uniform, we write d(A) instead of dk(A).

For 1 ≤ l ≤ j ≤ k, define the maximum (j, l)-degree of G, denoted ∆j,l(G), to be

maxA⊂V (G):|A|=l dj(A) and the maximum j-degree of G to be ∆j,1(G).

Consider the random greedy algorithm for forming an independent set I in a hyper-

graph G: at each step of the algorithm, a vertex v is chosen at random from the set of

vertices V (G) − I such that I ∪ {v} contains no edge of G. The algorithm terminates

when no such v exists. Notice that when the vertex set of G consists of the edges of a

complete graph, and the edges of G correspond to triangles in this graph, the random

greedy independent set algorithm reduces to the triangle-free process (see [3], [4], [9]).

Bennett and Bohman [2] have recently shown that this algorithm terminates with a large

independent set I with high probability, unifying many of the previous results on H-free

processes. Define the b-codegree of a pair of distinct vertices v, v′ to be the number of

edges e, e′ ∈ G such that v ∈ e, v′ ∈ e′, and |e ∩ e′| = b. Let Γb(G) be the maximum

b-codegree of G.

Theorem 4 (Bennett, Bohman [2]). Let k ≥ 2 and ε > 0 be fixed. Let G be a k-uniform,

D-regular hypergraph on N vertices such that D > N ε. If

∆k,l(G) < D
k−l
k−1
−ε for l = 2, . . . , k − 1

and Γk−1(G) < D1−ε then the random greedy independent set algorithm produces an

independent set I in G with

|I| = Ω(N(
logN

D
)

1
k−1 )

with probability 1− exp{−NΩ(1)}.
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Our next theorem improves and extends Bennett and Bohman’s result on the inde-

pendence number to chromatic number when k ≥ 3. We also weaken the hypothesis by

not requiring any condition on Γk−1(G). Note that an important aspect of [2] is that

the random greedy procedure results in a large independent set. We do not make any

such claims in our result below.

Theorem 5. Fix k ≥ 3. Let G be a k-uniform hypergraph with maximum degree ∆. If

∆k,l(G) ≤ ∆
k−l
k−1/f for l = 2, . . . , k − 1,

then

χ(G) = O((
∆

log f
)

1
k−1 ).

The following example shows that Theorem 3 implies Theorem 5 when k = 3 and also

motivates our definition of ∆H : Suppose G is a 3-uniform hypergraph with maximum 3-

degree ∆ and maximum (3, 2)-degree at most ∆1/2/f . Recall that F5 = {abc, abd, ced}.
Notice ∆F5,e ≤ ∆2, while ∆F5,a ≤ ∆2/f 2; thus ∆F5 ≤ ∆2/f 2. We also have ∆C3 ≤
∆5/2/f and ∆K−4

≤ 4∆3/2/f . Theorem 3 therefore implies χ(G) = O((∆/ log f)1/2).

Theorem 3 and Theorem 5 both follow from a general partitioning lemma, which is

a generalization of the main result of [1] to hypergraphs.

Definition 6. Let G be a rank k hypergraph. G is (∆, ω2, . . . , ωk)-sparse if G has

maximum k-degree at most ∆, and for all 1 ≤ l < j ≤ k, G has maximum (j, l)-degree

at most ∆
j−l
k−1ωj.

Recall that a hypergraph H is connected if for all u, v ∈ V (H), there exists a sequence

of edges e1, . . . , en ∈ H such that u ∈ e1, v ∈ en, and ei ∩ ei+1 6= ∅ for 1 ≤ i < n.

Lemma 7. Fix k ≥ 2. Let G be a rank k hypergraph, and let H be a finite family of

fixed, connected hypergraphs. Let f = ∆O(1), where f is sufficiently large. Suppose that

• G is (∆, ω2, . . . , ωk)-sparse, where ωj = ωj(∆) = f o(1) for all 2 ≤ j ≤ k.

• For all H ∈ H, ∆H(G) ≤ ∆
v(H)−1

k−1 /f v(H).

Then V (G) can be partitioned into O(∆
1

k−1/f) parts such that the hypergraph induced by

each part is H-free and has maximum j-degree at most 22kf j−1ωj, for each 1 ≤ j ≤ k.

Our main new contribution is a technical lemma (Lemma 13 in Section 4) that allows

us to prove a large deviation inequality for positive random variables with mean less

than 1. This may be of independent interest.
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1.1 Organization

In Section 2, we use Lemma 7 to prove Theorems 3 and 5. The remaining sections are

devoted to Lemma 7. In Section 3, we state two concentration theorems that we will

use in Section 5. In Section 4, we prove our main probabilistic lemma, which is also

used in Section 5. Section 5 contains the proof of Lemma 7.

1.2 Notation

All of our O and o notation is with respect to the parameter ∆ → ∞. In particular,

when we write f = O(g), we mean that there is a positive constant c such that f < cg.

Given a hypergraph G and A ⊂ V (G), we define the (j − |A|)-uniform hypergraph

LG,j(A) = {B − A : B ∈ G with A ⊂ B and |B| = j}.

Let NG,j(A) = V (LG,j(A)). When G is k-uniform, we drop the subscript j. When G is

clear from the context, we drop the subscript G.

2 Proof of Theorem 3 and 5

We first prove a simple bound on the chromatic number of general rank k hypergraphs.

The proof is based on a proof of Erdős and Lovász [8] for k-uniform hypergraphs. This

bound will allow us to assume that f is sufficiently large in the proofs of Theorems 3

and 5.

2.1 Chromatic number of rank k hypergraphs

We will need the following version of the local lemma.

Asymmetric Local Lemma ([16]). Consider a set E = {A1, . . . , An} of (typically bad)

events that such each Ai is mutually independent of E − (Di ∪Ai), for some Di ⊂ E. If

for each 1 ≤ i ≤ n

• Pr[Ai] ≤ 1/4, and

•
∑

Aj∈Di
Pr[Aj] ≤ 1/4,

then with positive probability, none of the events in E occur.
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Lemma 8. Fix k ≥ 2. Let G be a rank k hypergraph with maximum j-degree ∆j,

j = 2, . . . , k. Then

χ(G) ≤ k
max
j=2

(4k(k − 1)∆j)
1/(j−1).

Proof. Set

r =
k

max
j=2

(4k(k − 1)∆j)
1/(j−1).

Then ∆j ≤ rj−1

4k(k−1)
for each j = 2, . . . , k. Assign each vertex u ∈ V (G) a color chosen

uniformy at random from [r]. For each edge e ∈ G, let Be denote the event that each

vertex in e received the same color. Then Pr[Be] = r1−|e|. The event Be depends only

on events Bf such that Be ∩Bf 6= ∅. Since

∑
f∈H:e∩f 6=∅

Pr[Bf ] =
k∑
j=2

∑
f∈H:e∩f 6=∅,
|f |=j

Pr[Bf ] ≤
k∑
j=2

|e|∆jr
1−j ≤ 1/4,

the Asymmetric Local Lemma implies that there exists a coloring where no event Be

occurs.

2.2 Proof of Theorem 3

We will use the following stronger version of Theorem 2.

Theorem 9 ([7]). Suppose G is a rank 3, triangle-free hypergraph with maximum 3-

degree ∆ and maximum 2-degree ∆2. Then

χ(G) = O(max{( ∆

log ∆
)1/2,

∆2

log ∆2

}).

In fact, we will prove the following stronger result.

Theorem 10. Let G be a rank 3 hypergraph with maximum 3-degree at most ∆ and

maximum 2-degree at most ∆2. Let H denote the family of rank 3 triangles. If

∆H(G) ≤ max{∆1/2,∆2}v(H)−1/f

for all H ∈ H, then

χ(G) = O(max{ ∆

log f
)1/2,

∆2

log f
}).

Proof. By Lemma 8, we may assume that f is sufficiently large. We consider two cases.

Case 1: ∆2 ≤ (∆ log f)1/2.
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Set g = f

log5/2 f
. Since ∆2 ≤ (∆ log f)1/2 and v(H) ≤ 6 for all H ∈ H,

∆H(G) ≤ max{∆1/2,∆2}v(H)−1/f ≤ (∆ log f)
v(H)−1

2 /f ≤ ∆
v(H)−1

2 /g (2)

for each H ∈ H.

Let

K = {A ⊂ V (G) : |A| = 2 and d3(A) ≥ ∆1/2}.

Define the rank 3 hypergraph

G′ = G− {E ∈ G : A ⊂ E for some A ∈ K} ∪K.

In other words, if a pair of vertices has high codegree, then we replace all 3-edges

containing the pair with a 2-edge between the pair. Hence any proper coloring of G′ is

also a proper coloring of G.

We will now apply Lemma 7 to G′ with the function g′ := g1/6. Set ω2 = log1/2 g

and ω3 = 1. We first check that G′ is (2∆, ω2, ω3)-sparse. Note first that ω2 = g′o(1),

ω3 = g′o(1), and G′ has maximum 3-degree at most 2∆. Also, by definition of K, G′ has

maximum (3, 2)-degree at most ∆1/2 < (2∆)1/2ω3. Let u ∈ V (G). Since |LG,3(u)| ≤ ∆,

u is in at most 2∆1/2 sets in K. Thus, G′ has maximum (2, 1)-degree at most

(∆ log f)1/2 + 2∆1/2 < (2∆ log g)1/2 = (2∆)1/2ω2,

which shows that G′ is (2∆, ω2, ω3)-sparse.

Let H ′ ∈ H. Suppose T ′ ⊂ G′ is a copy of H ′ which is not in G. Since each

e ∈ T ′ −G corresponds to at least ∆1/2 edges of size 3 in G, T ′ corresponds to at least

(∆1/2 − 5)|T
′−G| copies of H in G, where H is the triangle obtained by replacing each

e ∈ T ′−G with a distinct size 3 edge containing e and some vertex outside of T ′. Thus

∆H′(G
′)(∆1/2 − 5)v(H)−v(H′) ≤ ∆H(G).

Using (2), this implies

∆H′(G
′) ≤ 2∆H(G)∆(v(H′)−v(H))/2 ≤ 2∆(v(H′)−1)/2/g ≤ 2∆(v(H′)−1)/2/(g1/6)v(H′).

Lemma 7 therefore implies that there exists a partition of V (G′) = V (G) into

O(∆1/2/g′) parts such that each part is H-free and has maximum j-degree at most

O(g′j−1ωj). By Theorem 9, we may properly color each part with

O(max{ g′

log1/2 g′
,

g′ω2

log(g′ω2)
}) = O(

g′

log1/2 g′
)
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different colors, resulting in a total of O(( ∆
log g′

)1/2) = O(( ∆
log f

)1/2) colors.

Case 2: ∆2 > (∆ log f)1/2.

Set ∆′ =
∆2

2

log f
. Then ∆ < ∆′. Thus G has maximum 3-degree at most ∆′, and

∆H(G) ≤ max{∆1/2,∆2}v(H)−1/f < max{∆′1/2,∆2}v(H)−1/f

for all H ∈ H. We may therefore apply case 1 with ∆′ in the role of ∆ to obtain a

coloring with at most O(( ∆′

log f
)1/2) = O( ∆2

log f
) colors.

2.3 Proof of Theorem 5

Let G be a k-uniform hypergraph with maximum degree ∆ such that ∆k,l(G) ≤ ∆
k−l
k−1/f

for l = 2, . . . , k− 1. As in the proof of Theorem 9, we may assume that f is sufficiently

large. Set ωj = 1 for 2 ≤ j ≤ k. Observe that G is (∆, ω2, . . . , ωk)-sparse. For each

l = 2, . . . , k−1, let Hl be the k-uniform hypergraph consisting of two edges which share

exactly l vertices. Set H = {H2, . . . , Hk−1} and f ′ = f 1/(2k−2). Then for a ∈ V (Hl) with

dHl
(a) = 2,

∆Hl
≤ ∆Hl,a ≤ ∆

(
k − 1

l − 1

)
∆k,l ≤

(
k − 1

l − 1

)
∆

2k−1−l
k−1 /f ≤

(
k − 1

l − 1

)
∆

2k−1−l
k−1 /f ′v(Hl),

so Lemma 7 implies that there exists a partition of V (G) into O(∆
1

k−1/f ′) parts such

that each part is H-free and has maximum degree at most O(f ′k−1). Since each part is

H-free, each part is linear and can be colored with O( f ′

log1/(k−1) f ′
) colors by Theorem 1.

Using a different set of colors for each part gives a proper coloring of G with O(( ∆
log f

)
1

k−1 )

colors.

3 Concentration results

Theorem 11 (McDiarmid [15]). For i = 1, . . . , n, let Ωi be a probability space, and let

Ω =
∏n

i=1 Ωi. For each i, let Xi : Ωi → Ai be a random variable, and let f :
∏
Ai → R.

Suppose that f satisfies |f(x)− f(x′)| ≤ ci whenever the vectors x and x′ differ only in

the ith coordinate. Let Y : Ω→ R be the random variable f(X1, . . . , Xn). Then for any

t > 0,

Pr[|Y − E[Y ]| > t) ≤ 2e−2t2/
∑n

i=1 c
2
i

Theorem 12 (Kim-Vu [13]). Suppose F is a hypergraph such that |f | ≤ s for all f ∈ F .

Let

F ′ = {f ∈ F : zi = 1 for all i ∈ f},
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where the zi, i ∈ V (F ) are independent random variables taking values in [0, 1]. For

A ⊂ W with |A| ≤ s, let

ZA =
∑

f∈F :f⊃A

∏
i∈f−A

zi.

Let MA = E[ZA] and Mj = maxA:|A|≥jMA for j ≥ 0. Then there exist positive constants

a = a(s) and b = b(s) such that for any λ > 0,

Pr
[
||F ′| − E[|F ′|]| ≥ aλs

√
M0M1

]
≤ b|V (F )|s−1e−λ.

4 Deviation inequality

To motivate our next lemma, which is the main novel ingredient in this work, we outline

the proof of Lemma 7, which appears in Section 5. We are given a hypergraph G and

a fixed hypergraph H, and we know that each u ∈ V (G) is in very few copies of H.

Our goal is to produce a coloring of G such that the subhypergraph induced by each

color is H-free. We randomly color the vertices of G, hoping to remove all copies of

H in the induced subgraph of each color. Consider some u ∈ V (G). Since u is in few

copies of H, the expected number of these which remain in u’s color is much less than

1. We would like to conclude that with very low probability, u is in more than c copies

of H in the subgraph induced by u’s color, for some constant c. We could then use the

Local Lemma to find a coloring such that u is in at most c copies of H in the subgraph

induced by u’s color, which would bring us close to our goal of removing all copies of H

from the subgraph. To draw this conclusion, we could try to let Fu be the set of copies

of H which contain u, and let F ′u be the set of copies of H which contain u and whose

vertices all receive u’s color. Then we could apply Theorem 12 to bound F ′u and make

the above conclusion. However, in our case, “very low probability” requires us to set

λ = Ω(log |V (Fu)|). Since M0 and M1 are always at least 1 (the empty product is taken

to be 1), this only allows us to conclude that u is in Ω(log |V (Fu)|) copies of H. Since

|V (Fu)| will be tending to ∞, this is not small enough.

Frieze and the second author [10] overcame this by using a two-step random process.

However, their proof used the linearity of G and the assumption that H is a triangle, and

we were not able to easily duplicate their method. Our approach, which can be viewed

as a generalization of the method in [1], is to instead bound the transversal number of

the hypergraph F ′u. A transversal of Fu is a subset K ⊂ V (Fu) such that A∩K 6= ∅ for

all A ∈ Fu. In other words, the subhypergraph of Fu induced by V (Fu)−K has no edges.

The transversal number of Fu, denoted τ(Fu), is the minimum size of a transversal of

Fu.
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Returning to our outline, we will use Lemma 13 below to show that the probability

that τ(F ′u) is large is very low.

Lemma 13. Suppose F is an s-uniform hypergraph, and zi, i ∈ V (F ) are independent

random indicator variables with Pr[zi = 1] = p, for all i ∈ V (F ). Let

F ′ = {A ∈ F : ∀i ∈ A, zi = 1}.

Suppose there exists α > 0 such that |F |p(1−α)s < 1. Then for any c ≥ e2ssα,

Pr[τ(F ′) > s2(c/α)s+1] ≤ s2|V (F )|s−1pc.

We then repeat this for all v ∈ V (G) in the same color class as u. Let Kv be the set

of vertices in a transversal of size at most τ(F ′v). Following [1], we create a 2-graph

on these vertices, with an edge from v to each vertex in Kv. Since τ(F ′v) is bounded

by a constant, this graph has constant out-degree and can be properly colored with a

constant number of colors. Since the neighborhood of v in this graph is a transversal

and all of the vertices in the neighborhood of v received a different color than v, none

of the edges of Fv (which correspond to copies of H containing v) could survive in v’s

new color class. Thus the subgraph induced by each new color contains no copies of H.

4.1 Proof of Lemma 13

We will need the following simple proposition to prove Lemma 13. It is a straightforward

generalization of the well-known fact that a graph with many edges has either a large

matching or a large star. Let F be a k-uniform hypergraph. Recall that M ⊂ F is a

matching if A∩B = ∅ for any A,B ∈M with A 6= B. When F is k-uniform, recall that

for all A ⊂ V (F ),

LF (A) = {B − A : B ∈ F with A ⊂ B}.

Proposition 14. If F is a k-uniform hypergraph, then there exists A ⊂ V (F ) such that

LF (A) contains a matching of size at least |F |
1/k

k−|A| .

Proof. We induct on k. If k = 1, the claim holds with A = ∅. Assume the result for k,

and let F be a k+1-uniform hypergraph with maximum degree ∆. By the greedy coloring

algorithm, F can be partitioned into k∆ matchings, so F contains a matching with |F |
k∆

edges. Thus ∆ > |F |k/(k+1) or F contains a matching with at least |F |
k|F |k/(k+1) = |F |1/(k+1)

k

edges. In the second case, we are done (with A = ∅), so assume there exists u ∈ V (F )

with d(u) > |F |k/(k+1). Set A = {u} and consider the k-uniform hypergraph LF (A). By
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induction, there exists B ⊂ V (LF (A)) such that LL(A)(B) contains a matching of size

at least

|LF (A)|1/k

(k − |B|)
=

|LF (A)|1/k

k + 1− |A ∪B|
>

(|F |k/(k+1))1/k

k + 1− |A ∪B|
=

|F |1/(k+1)

k + 1− |A ∪B|
.

Since B ⊂ V (LF (A)) ⊂ V (F ) and LL(A)(B) = LF (A∪B), this completes the proof.

Proof of Lemma 13. For k = 0, 1, . . . , s, set τk = |F |p(1−α)k. For k = 1, . . . , s, let

Hk = {A ⊂ V (F ) : |A| = k, d(A) > τk, and ∀B ( A, d(B) ≤ τ|B|}.

Fix k, where 1 ≤ k ≤ s. Let B ∈
(
V (F )
b

)
, where b < k. Suppose there exists A ∈ Hk

with B ( A. By definition of Hk, d(B) ≤ τb. Since each such A corresponds to at

least τk sets in F , and each of these τk sets is counted at most
(
s
k

)
times under this

correspondence, this implies

τk|{A ∈ Hk : B ∈
(
A

b

)
}| ≤

(
s

k

)
d(B) < 2sτb. (3)

Consider the k-uniform hypergraph Zk = {A ∈ Hk : zi = 1 ∀i ∈ A}. Suppose |Zk| ≥
(c/α)k. Then by Proposition 14, there exists B ∈

(
V (Zk)
b

)
, where b < k, such that the

(k − b)-uniform hypergraph LZk
(B) contains a matching of size at least xb := c/α

(k−b) .

Each edge in this matching corresponds to an edge A ∈ Hk with B ⊂ A. By (3), there

are at most 2sτb/τk edges. Thus the probability that such a B exists is at most

k−1∑
b=1

∑
B∈(V (Hk)

b )

(
2sτb/τk
xb

)
p(k−b)xb ≤

k−1∑
b=1

∑
B∈(V (Hk)

b )

(
e2sτb
τkxb

)xbp(k−b)xb

<
k−1∑
b=1

∑
B∈(V (Hk)

b )

(
τbp

k−b

τk
)xb

=
k−1∑
b=1

∑
B∈(V (Hk)

b )

p((1−α)b+k−b−(1−α)k)xb

=
k−1∑
b=1

∑
B∈(V (Hk)

b )

pα(c/α)

< k|V (F )|k−1pc.

Therefore, for each k = 1, . . . , s,

Pr[|Zk| > (c/α)k] < k|V (F )|k−1pc.

11



Hence

Pr[|
s⋃

k=1

Zk| ≥ s(c/α)s]] < Pr[|
s⋃

k=1

Zk| ≥
s∑

k=1

(c/α)k]

<

s∑
k=1

k|V (F )|k−1pc

< s2|V (F )|s−1pc.

Since each edge in
⋃s
k=1 Zk contains at most s vertices, this implies

Pr[|
s⋃

k=1

V (Zk)| ≥ s2(c/α)s] < s2|V (F )|s−1pc.

We now claim that
⋃s
k=1 V (Zk) is a transversal of F ′. Suppose A ∈ F and zi = 1 for

all i ∈ A. Since d(A) = 1 > |F |p(1−α)s = τs, A ∈ Hs or d(B) > τb for some B ∈
(
A
b

)
. If

A ∈ Hs, then A ∈ Zs and A ⊂ V (Zs), so assume the second case. Choose a minimal set

B ∈
(
A
b

)
with d(B) > τb. Then B ∈ Hb, so B ∈ Zb and hence A ∩ V (Zb) 6= ∅.

5 Proof of Lemma 7

We break the proof of Lemma 7 into two steps. In step 1, we prove Lemma 15, which is

a slight variant of Lemma 7 when f ≥ ∆ε. In Section 5.2, we will use the same argument

as in [1] to show that the proof of Lemma 7 can be reduced to Lemma 15.

5.1 Step 1: f ≥ ∆ε

Lemma 15. Fix k ≥ 2 and ε ∈ (0, 1
k−1

). Let G be a rank k hypergraph, and let H be a

finite family of fixed hypergraphs. Suppose that

• G is (∆, ω2, . . . , ωk)-sparse, where ωj = ωj(∆) = ∆o(1) for all 2 ≤ j ≤ k.

• ∆H(G) ≤ ∆
v(H)−1

k−1
−v(H)ε for all H ∈ H.

Then V (G) can be partitioned into O(∆
1

k−1
−ε) parts such that the hypergraph induced by

each part is H-free and has maximum j-degree at most 2∆(j−1)εωj, for each j ∈ [k].

Proof. Let N = maxH∈H v(H). Color the vertices of G uniformly at random with

r = ∆
1

k−1
−ε colors. Fix u, and for each v ∈ V (G), let zv be a random indicator variable

which is 1 if v receives the same color as u and 0 otherwise. Note that Pr[zv = 1] = 1/r.

12



For each H ∈ H, choose vH ∈ V (H) such that ∆H,vH (G) = ∆H(G). Define a (v(H)−1)-

uniform hypergraph

TH(u) = {V (A)− u : A ⊂ G with A ∼=φ H and φ(u) = vH}.

Since to each A ⊂ G with A ∼=φ H and φ(u) = vH we may associate the set V (A)− u ∈
TH(u),

v(TH(u)) ≤ (N − 1)|TH(u)|(N − 1) ≤ ∆H(G).

Also, let

T ′H(u) = {A ∈ TH(u) : ∀v ∈ A, zv = 1}.

We define k + |H| bad events for each u.

• Au,j: For 1 ≤ j ≤ k, Au,j denotes the event

Zu,j :=
∑

A∈LH,j(u)

∏
i∈A

zi ≥ 2∆(j−1)εωj.

• Bu,H : For each H ∈ H, Bu,H denotes the event τ(T ′H(u)) > (v(H)−1)2(c/αH)v(H),

where

αH = 1−
v(H)ε− v(H)−1

k−1

(ε− 1
k−1

)(v(H)− 1)
=

ε

( 1
k−1
− ε)(v(H)− 1)

> 0

and

c =
(N2 + 3N)2N

1
k−1
− ε

> 3N2N .

To bound the probability of Au,j, we apply Theorem 12 to the (j−1)-uniform hypergraph

LH,j(u). Let A ⊂ V (LH,j(u)) with |A| ≤ j − 1. Then

MA = dj(A ∪ {u})/rj−|A|−1 ≤ ∆j,|A|+1(G)/rj−|A|−1

≤ ∆
j−|A|−1

k−1
ωj/r

j−|A|−1

= ∆(j−|A|−1)εωj.

Therefore E[Zu] = M0 ≤ ∆(j−1)εωj and M1 ≤ ∆(j−2)εωj. Setting λ = (k+3N +2) log ∆,

we obtain constants a and b such that

Pr[Au,j] = Pr[Zu,j ≥ 2∆(j−1)εωj] < Pr[Zu,j ≥ ∆(j−1)εωj + a∆ε(j−1)−ε/2λj−1]

≤ b(j∆)j−2∆−(j+3N+2)

< ∆−3N .
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To bound Bu,H , we apply Lemma 13 with F = TH(u), F ′ = T ′H(u), and p = 1/r.

Since

|TH(u)|p(1−αH)(v(H)−1) ≤ ∆
v(H)−1

k−1
−v(H)εp(1−αH)(v(H)−1) = 1,

αH ∈ (0, 1), and c > 3N2N > e2NNαH > e2v(H)−1(v(H)− 1)αH , Lemma 13 implies

Pr[Bu,H ] ≤ (v(H)− 1)2v(TH(u))v(H)−2pc

= (v(H)− 1)2v(TH(u))v(H)−2∆(−N2−3N)2N

< (v(H)− 1)2v(TH(u))v(H)−2∆−N
2−3N

< N2(N∆
N−1
k−1 )N−1∆−N

2−3N

< ∆−3N .

Each event Au,j is determined by the colors assigned to the vertices in Nj(u)∪{u}. Each

event Bu,H is determined by the colors assigned to the vertices in TH(u) ∪ {u}. Thus

Au,j depends on:

• Events of the form Av,i where Nj(u) ∩Ni(v) 6= ∅. There are at most

(j∆
j−1
k−1ωj)(

k∑
l=1

l∆
l−1
k−1ωl) < (j∆)(k2∆) < ∆N

such events.

• Events of the form Bv,H , where Nj(u) ∩ V (TH(v)) 6= ∅. Since |Nj(u)| ≤ j∆ and

|V (T (v,H))| ≤ N∆
N−1
k−1 , there are at most (j∆)|H|∆

N−1
k−1 ≤ ∆N such events.

Also, Bu,H depends on:

• Events of the formAv,j where V (TH(u))∩Nj(v) 6= ∅. There at most (k2∆)N∆
N−1
k−1 ≤

∆N such events.

• Events of the form Bv,H′ , where V (TH(u)) ∩ V (TH′(v)) 6= ∅. There are at most

|H|N2∆2N−1
k−1 ≤ ∆2N such events.

Since the probability of each event is at most ∆−3N , the Local Lemma implies that there

exists a coloring of V (G) with r colors so that none of the events Au,j or Bu,H occur.

Fix a color, and consider the subhypergraph G′ induced by the vertices which received

that color. For each u ∈ V (G′) and each H ∈ H, let K(u,H) be a minimum sized

transversal of T ′(u,H). Create a simple graph W on V (G′) with edge set {{u, v} : u ∈
V (G′), v ∈ K(u,H) for some H ∈ H}. Consider any subgraph of W on n′ vertices.

14



Since no event Bu,H occurs, the number of edges in this subgraph is at most n′|H|(N −
1)2(c/α)N ; it therefore contains a vertex with degree at most 2|H|(N − 1)2(c/α)N .

W is therefore 2|H|(N − 1)2(c/α)N -degenerate and can thus be properly colored with

2|H|(N − 1)2(c/α)N + 1 new colors. Since each of the K(u,H) is a transversal, the

subhypergraph induced by each of these new colors is H-free. Repeating this for each

of the original r colors results in a partition of F into at most

r(2|H|(N − 1)2(c/α)N + 1) = O(∆
1

k−1
−ε)

parts, where each part is H-free and has maximum j-degree at most 2∆(j−1)εωj.

5.2 Step 2: f < ∆ε

When f < ∆ε, we use the same random halving argument as in [1]. We recursively

divide the hypergraph into two parts until we obtain a set of hypergraphs, each with

maximum degree small enough to apply Lemma 15. The halving step is accomplished

with Lemma 17, while Proposition 18 is used to analyze the recursion.

Proposition 16. Let G be a rank k, (∆, 2ω, . . . , 2ω)-sparse hypergraph. Then for any

A ⊂ V (G) and h ≥ |A|, G contains at most 2(h+1)TωT∆
h−|A|
k−1 connected hypergraphs on

h vertices which contain A, where T = 2h.

Proof. Starting with any edge that intersects A, we try to greedily grow a connected

subgraph which contains A and h−|A| other vertices. At step i, we add an edge of size ji

which contains li ≥ 1 vertices already in the subgraph and ai ≥ 0 vertices in A which are

not already in the subgraph. There are at most 2h∆ji,li+ai choices for this edge. Since

one edge is added at every step, this process terminates after at most T = 2h steps,

resulting in a total of 2hT
∏T

i=1 ∆ji,li+ai subgraphs containing A. Since at each step we

add ji − (li + ai) vertices outside of A to the subgraph,
∑T

i=1 ji − (li + ai) = h − |A|.
Thus

2hT
T∏
i=1

∆ji,li+ai ≤ 2(h+1)TωT
T∏
i=1

∆
ji−(li+ai)

k−1 = 2(h+1)TωT∆
h−|A|
k−1 .

Lemma 17. Let G be a rank k hypergraph, and let H be a finite family of fixed, connected

hypergraphs. Suppose that G is (∆, 2ω2, . . . , 2ωk)-sparse, where ωj = ωj(∆) = ∆o(1) for

all 2 ≤ j ≤ k. Then for ∆ sufficiently large, there exists a partition of V (G) into two

subhypergraphs G1 and G2 such that

• For each i = 1, 2 and 1 ≤ l < j ≤ k, we have ∆j,l(Gi) ≤ ∆j,l(G)/2j−l + ∆
j−l
k−1
− 1

2k

15



• For each i = 1, 2 and H ∈ H, we have ∆H(Gi) ≤ ∆H(G)/2v(H)−1 + ∆
v(H)−1

k−1
− 1

2k .

Proof. Let N = maxH∈H v(H). Color the vertices of G uniformly at random with

the colors 1 and 2. For each A ⊂ V (G), let d′j(A) denote the j-degree of A in the

subhypergraph induced by the minimum color of a vertex in A.

For each H ∈ H, choose vH ∈ V (H) such that ∆H,vH (G) = ∆H(G). For each

u ∈ V (G), define a (v(H)− 1)-uniform hypergraph

TH(u) = {V (A)− u : A ⊂ G with A ∼=φ H and φ(u) = vH}.

Also, for each H ∈ H, let

T ′H(u) = {A ∈ TH(u) : ∀v ∈ A, v receives the same color as u}.

Define the following bad events:

• CA,j: For each A ⊂ V (G) with dj(A) > 0, CA,j denotes the event

d′j(A) > ∆j,|A|(G)/2j−|A| + ∆
j−|A|
k−1

− 1
2k .

• Bu,H : For each H ∈ H, Bu,H denotes the event

|T ′H(u)| > ∆H(G)/2v(H)−1 + ∆
v(H)−1

k−1
− 1

2k .

We use Theorem 11 to bound the probability of each event. The random variable

d′j(A) is determined by the colors of the vertices in Nj(A). If v ∈ Nj(A), changing v’s

color affects d′j(A) by at most dj(A ∪ {v}) ≤ ∆j,|A|+1. Also,∑
v∈Nj(A)

dj(A ∪ {v})2 ≤ ∆j,|A|+1(G)
∑

v∈Nj(A)

dj(A ∪ {v}) < ∆j,|A|+1(G)jdj(A)

≤ j∆j,|A|+1(G)∆j,|A|(G)

≤ 4j∆
2j−2|A|−1

k−1 ω2
j .

Consequently, Theorem 11 and ωj(∆) = ∆o(1) imply

Pr[CA,j] <Pr[d′j(A) > ∆j,|A|(G)/2j−|A| + (4j∆
2j−2|A|−1

k−1 ω2
j2N log ∆)1/2]

≤ 2e−4N log ∆

< ∆−3N .

Let TH(u, v) denote the set of copies of H in G containing both u and v. The random

variable |T ′H(u)| is determined by the colors of the vertices in V (TH(u)). Changing the
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color of v ∈ V (TH(u)) affects |T ′H(u)| by at most |TH(u, v)|, which, by Proposition 16

(with |A| = 2), is at most ω∆
v(H)−2

k−1 , where ω = 2(v(H)+1)2v(H)
maxkj=1 ω

2v(H)

j = ∆o(1).

Note also that Proposition 16 (with |A| = 1) implies |TH(u)| < ω∆
v(H)−1

k−1 . Since∑
v∈V (T (u,H))

|TH(u, v)|2 ≤ ω∆
v(H)−2

k−1

∑
v∈V (T (u,H))

|TH(u, v)|

≤ ω∆
v(H)−2

k−1 v(H)|TH(u)|

≤ v(H)∆
v(H)−2

k−1
+

v(H)−1
k−1 ω2

= v(H)∆
2v(H)−3

k−1 ω2,

Pr[Bu,H ] < Pr[T ′H(u) > ∆H/2
v(H)−1 + (v(H)∆

2v(H)−3
k−1 ω22N log ∆)1/2]

≤ 2e−4N log ∆

< ∆−3N .

The event CA,j is determined by the colors of the vertices in Nj(A)∪A. The event Bu,H

is determined by the colors of the vertices in TH(u) ∪ {u}. Thus CA,j depends on:

• Events of the form CB,i, where Nj(A) ∩ Ni(B) 6= ∅. A vertex u ∈ Nj(A) is in at

most i∆2i sets Ni(B), so there are at most (j∆)k2∆2k < ∆2N such events.

• Events of the form Bu,H , where Nj(A) ∩ V (TH(u)) 6= ∅. Since |V (TH(u))| ≤
N∆

N−1
k−1 , there are at most (j∆)|H|N∆

N−1
k−1 < ∆2N such events.

Also, Bu,H depends on:

• Events of the form Bv,H′ , were V (TH(u)) ∩ V (TH′(v)) 6= ∅. There are at most

|H|N2∆2N−1
k−1 < ∆2N such events.

• Events of the form CA,j, were Nj(A) ∩ V (TH(u)) 6= ∅. There are most

(N∆
N−1
k−1 )(k2∆2k) < ∆2N such events.

Since the probability of each event is at most ∆−3N , the Local Lemma implies that there

exists a 2-coloring of V (G) such that no event CA,j or Bu,H holds.

Proposition 18. Let a, b,m ≥ 1 be fixed and s0 = d
a/b
0 g for g > 0. Suppose that the

sequences dt and st have initial values d0 and s0 and satisfy

dt+1 =
dt
2b

+ d
1−1/m
t and st+1 =

st
2a

+ d
a/b−1/m
t .

Then there exists D > 0 such that

dt ≤ 2d02−bt and st ≤ d
a/b
t g + d

a/b−1/(2m)
t

for all dt ≥ D.

17



Proof. Note that for any constant c, as d0 →∞,

(c+ d
1/m
0 2−bt/m)m = d02−bt +

m−1∑
i=0

(
m

i

)
cm−id

i/m
0 2−

bti
m = d02−bt + o(d0) ≤ 2d02−bt.

To prove the first inequality, we will thus prove by induction the tighter bound (for D

sufficiently large)

dt ≤ (
2b

m(2b/m − 1)
+ d

1/m
0 2−bt/m)m.

This is clear for d0, so assume the bound for dt. Then

dt+1 =
dt
2b

+ d
1−1/m
t ≤ 1

2b
(
2b

m
+ d

1/m
t )m ≤ 1

2b
(
2b

m
+

2b

m(2b/m − 1)
+ d

1/m
0 2−bt/m)m

= (
2b

m(2b/m − 1)
+ d

1/m
0 2−b(t+1)/m)m.

For the second inequality, we first prove by induction st+1 = s0
xt+1 +

∑t
k=0

dyk
xt−k , where

x = 2a and y = a/b− 1/m. This is clear for t = 0, so assume the bound for st. Then

st+1 =
st
x

+ dyt =
s0

xt+1
+

1

x

t−1∑
k=0

dyk
xt−1−k + dyt =

s0

xt+1
+

t∑
k=0

dyk
xt−k

, (4)

completing the induction. Using dk ≤ 2d02−bk and a− by = b/m ≥ 0,

t∑
k=0

dyk
xt−k

≤ (2d0)y

xt

t∑
k=0

(
x

2by
)k =

(2d0)y

xt

t∑
k=0

2(a−by)k <
(2d0)y

xt
2(t+1)(a−by)

2a−by − 1

=
(2d0)y2(t+1)(a−by)−at

2b/m − 1
(5)

By definition of dt, dt ≥ d02−bt. Using this with (4) and with (5),

st < s02−at +
(2d0)y2a−by−tby

2b/m − 1
≤ s0(

dt
d0

)a/b +
(2dt2

bt)y2a−by−tby

2b/m − 1

≤ d
a/b
0 g(

dt
d0

)a/b +
dyt 2

y+a−by

2b/m − 1

= d
a/b
t g +

d
a/b−1/m
t 2y+a−by

2b/m − 1

< d
a/b
t g + d

a/b−1/(2m)
t ,

where the last inequality assumes

dt ≥ D > (
2y+a−by

2b/m − 1
)2m.
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Proof of Lemma 7. Define sequences

dt+1 =
dt

2k−1
+ d

1− 1
2k

t

rj,l,t+1 =
rj,l,t
2j−l

+ d
j−l
k−1
− 1

2k

t , 1 ≤ l < j ≤ k

sH,t+1 =
sH,t

2v(H) − 1
+ d

v(H)−1
k−1

− 1
2k

t , H ∈ H,

where d0 = ∆, rj,l,0 = ∆
j−l
k−1ωj(∆), and sH,0 = ∆

v(H)−1
k−1 /f v(H). Since rj,l,0 ≤ 2∆

j−l
k−1ωj(∆),

we may apply Lemma 17 to G to obtain hypergraphs G1,1 and G1,2, each with maximum

degree at most d1 = rk,1,1, maximum (j, l)-degree at most rj,l,1, and maximum H-degree

at most sH,1. We apply this halving step a total of T times, where T = d 1
k−1

log2
2d0
f4Nk e

and N = maxH∈H v(H). Specifically, at each step, we apply Lemma 17 (with parameters

dt = rk,1,t, rj,l,t, sH,t) to each of the hypergraphs Gt,1, . . . , Gt,2t . Since ωj(∆) = f o(1),

and for t ≤ T ,

dt ≥ d02−(k−1)T ≥ d02
−(k−1)(1+ 1

k−1
log2

2d0
f4Nk )

= 2−kf 4Nk, (6)

ωj(∆) = d
o(1)
t . Also, recall that f is sufficiently large, so by (6), we may assume that if

t ≤ T , then dt is sufficiently large to apply Proposition 18. Thus Proposition 18 (with

each rj,l,t in the role of st, g = ωj(∆), b = k − 1, a = j − l, and m = 2k) implies

rj,l,t ≤ d
j−l
k−1

t ωj(∆) + d
j−l
k−1
− 1

4k

t ≤ 2d
j−l
k−1

t ωj(∆).

Thus each Gt,i is (dt, 2ω2, . . . , 2ωk)-sparse, so we may apply Lemma 17 to obtain 2t+1

new hypergraphs Gt+1,1, . . . , Gt+1,2t+1 such that each Gt+1,i has maximum degree dt+1 =

rk,1,t+1, maximum (j, l)-degree rj,l,t+1, and maximum H-degree sH,t+1. In the final step,

we obtain 2T hypergraphs GT,1, . . . , GT,2T , each with maximum degree dT , maximum

(j, l)-degree rj,l,T and maximum H-degree sH,T . By Proposition 18,

dT ≤ 2d02−(k−1)T ≤ f 4Nk < 2kf 4Nk,

and

rj,l,T ≤ 2d
j−l
k−1

T ωj(∆) ≤ (2kf 4Nk)
j−l
k−1ωj(∆).

Proposition 18 (with each sH,T in the role of sT , g = 1/f v(H), b = k − 1, a = v(H) − 1,

and m = 2k) also yields

sH,T ≤ d
v(H)−1

k−1

T /f v(H) + d
v(H)−1

k−1
− 1

4k

T

≤ (f 4Nk)
v(H)−1

k−1 /f v(H) + (f 4Nk)
v(H)−1

k−1
− 1

4k

≤ 2(f 4Nk)
v(H)−1

k−1 /f v(H)

= 2(f 4Nk)
v(H)−1

k−1
− v(H)

4Nk

< (2kf 4Nk)
v(H)−1

k−1
− v(H)

4Nk .
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We may therefore apply Lemma 15 (with ∆ = 2kf 4Nk, ωj(∆), and ε = 1
4Nk

) to par-

tition each of the hypergraphs GT,1, . . . , GT,2T into O(f 4Nk( 1
k−1
− 1

4Nk
)) parts such that

the hypergraph induced by each part is H-free and has maximum j-degree at most

2(2kf 4Nk)
j−1
4Nkωj < 22kf j−1ωj for each 1 ≤ j ≤ k. Summing over each of the 2T hyper-

graphs, this results in a total of

2TO(f
4Nk
k−1
−1) ≤ 2

1+ 1
k−1

log2
2d0

f4NkO(f
4Nk
k−1
−1) = O(∆

1
k−1/f)

H-free hypergraphs, each with maximum j-degree at most 22kf j−1ωj(∆).
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