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Abstract

Fix k > 3, and let G be a k-uniform hypergraph with maximum degree A.
Suppose that for each | = 2,...,k — 1, every set of [ vertices of G is in at most
= /f edges. Then the chromatic number of G is O((ﬁ)ﬁ) This extends
results of Frieze and the second author [10] and Bennett and Bohman [2].

A similar result is proved for 3-uniform hypergraphs where every vertex lies in
few triangles. This generalizes a result of Alon, Krivelevich, and Sudakov [1], who
proved the result for graphs.

Our main new technical contribution is a deviation inequality for positive ran-
dom variables with expectation less than 1. This may be of independent interest

and have further applications.

1 Introduction

A hypergraph G is a tuple consisting of a set of vertices V' and a set of edges E, which
are subsets of V'; we will often associate G with its edge set E. A hypergraph has rank
k if every edge contains between 2 and k vertices and is k-uniform if every edge contains
exactly k vertices. A proper coloring of GG is an assignment of colors to the vertices so
that no edge is monochromatic. The chromatic number, x(G), is the minimum number

of colors in a proper coloring of G.

A hypergraph is linear if every pair of vertices is contained in at most one edge. A
triangle in a hypergraph G is a set of three distinct edges e, f, g € G and three distinct
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vertices u, v, w € V(@) such that u,v € e, v,w € f, w,u € g, and {u,v,w}NenfNg = 0.
For example, the three triangles in a 3-uniform hypergraph are C3 = {abc, cde,efa},
F5 = {abc, abd, ced}, and K, = {abc, bed, abd}.

The degree of a vertex u € V(G) is the number of edges containing that vertex. The
mazimum degree of a hypergraph G is the maximum degree of a vertex v € V(G). Im-
proving on results of Catlin [6], Lawrence [14], Borodin and Kostochka [5], and Kim [12],

Johansson [11] showed that if G is a triangle-free graph with maximum degree A, then

X(6) = Ol 5) )

Random graphs show that the log A factor in (1) is optimal. Recently, Frieze and the
second author [10] generalized (1) to linear k-uniform hypergraphs, and the current
authors [7] proved slightly stronger results for k = 3.

Theorem 1 ([10]). Fiz k > 3. If G is a k-uniform, linear hypergraph with mazimum

degree A, then
A1
X(6) = O™

Theorem 2 ([7]). If G is a 3-uniform, triangle-free hypergraph with mazimum degree

A, then A
X(G) = 0((@)”2)-

Alon, Krivelevich, and Sudakov [1] extended (1) by showing that if every vertex
u € V(G) is in at most A?/f triangles, then x(G) = O(@), where A — oo. They
used this to show that if G contains no copy of H, where H is a fixed graph such that
H — u is biparite for some u € V(H), then x(G) = O(A/log A). In this paper, we give
similar improvements to the results of [10] and [7].

Given two hypergraphs H and A, a map ¢ : V(H) — V(A) is an isomorphism if
for all B C V(H), ¢(FE) € A if and only if E € H. If there exists an isomorphism
¢:V(H) — V(A), we say H is isomorphic to A and denote this by H =, A. Given a
hypergraph H and v € V/(H), let

Ay, (G) = Jnax HACG: A=, H and ¢(u) = v}

and
AH(G)I min AH,'L}(G)

veV (H)
For example, suppose G is a d-regular graph, and H is the path with edges xy and
yz. Then Ay, (G) = Ap.(G) = d(d — 1), while A, (G) = (3). Thus Ax(G) = (3).

2
Another example appears after the statement of Theorem 5.

2



We improve the result of [7] with the following theorem. For a hypergraph H, let
v(H) = |V (H)|.

Theorem 3. Let G be a 3-uniform hypergraph with mazimum degree A. Let T denote
the set of 3-uniform triangles. If

Ay (G) < A(v(H)—l)/2/f

for all H € T, then A
X(G) = O((@

Notice that the hypotheses of Theorem 3 are satisfied when G is linear and f = A/2,

so Theorem 3 implies Theorem 1 for 3-uniform hypergraphs.

).

Given a rank k hypergraph G and A C V(G), let
dj(A) ={BeG:|B|=j,AC B}

for each 1 < j < k. When the hypergraph is k-uniform, we write d(A) instead of dy(A).
For 1 <1 < j < k, define the maximum (j,()-degree of G, denoted A;;(G), to be
maxXacv(G):|aj= d;(A) and the maximum j-degree of G to be A;(G).

Consider the random greedy algorithm for forming an independent set I in a hyper-
graph G: at each step of the algorithm, a vertex v is chosen at random from the set of
vertices V(G) — I such that I U {v} contains no edge of G. The algorithm terminates
when no such v exists. Notice that when the vertex set of GG consists of the edges of a
complete graph, and the edges of G correspond to triangles in this graph, the random
greedy independent set algorithm reduces to the triangle-free process (see [3], [4], [9]).
Bennett and Bohman [2] have recently shown that this algorithm terminates with a large
independent set I with high probability, unifying many of the previous results on H-free
processes. Define the b-codegree of a pair of distinct vertices v, v’ to be the number of
edges e, € G such that v € e, v € €/, and |[eNé'| = b. Let I',(G) be the maximum
b-codegree of G.

Theorem 4 (Bennett, Bohman [2]). Let k > 2 and e > 0 be fized. Let G be a k-uniform,
D-regular hypergraph on N vertices such that D > N°€. If

Api(G) < D=1 forl=2,... k-1

and Ty_1(G) < D'7¢ then the random greedy independent set algorithm produces an

independent set I in G with

1] = V(2T )e)

with probability 1 — exp{—N¥V},



Our next theorem improves and extends Bennett and Bohman’s result on the inde-
pendence number to chromatic number when £ > 3. We also weaken the hypothesis by
not requiring any condition on I';_;(G). Note that an important aspect of [2] is that
the random greedy procedure results in a large independent set. We do not make any

such claims in our result below.

Theorem 5. Fix k > 3. Let G be a k-uniform hypergraph with maximum degree A. If
Awi(G) < ART/F forl=2,... k-1,

then
A 1

X(G) = O(( 7)™

The following example shows that Theorem 3 implies Theorem 5 when k£ = 3 and also
motivates our definition of Ag: Suppose G is a 3-uniform hypergraph with maximum 3-
degree A and maximum (3, 2)-degree at most A/2/f. Recall that Fy = {abc, abd, ced}.
Notice Ap, . < A% while Ap,, < A?/f?% thus Ap, < A?/f2. We also have A¢g, <
A®2/f and A= < 4A3/?/f. Theorem 3 therefore implies x(G) = O((A/log f)*/?).

Theorem 3 and Theorem 5 both follow from a general partitioning lemma, which is

a generalization of the main result of [1] to hypergraphs.

Definition 6. Let G be a rank k hypergraph. G is (A, ws,...,wy)-sparse if G has
maximum k-degree at most A, and for all 1 <[ < j <k, G has maximum (j,[)-degree

FE
at most A*=Tw;.

Recall that a hypergraph H is connected if for all u,v € V(H), there exists a sequence
of edges ey, ...,e, € H such that u € e;, v € e, and ¢; Ne; # O for 1 < i < n.

Lemma 7. Fiz k > 2. Let G be a rank k hypergraph, and let H be a finite family of
fized, connected hypergraphs. Let f = AW where f is sufficiently large. Suppose that

o G is (A wy,...,wy)-sparse, where w; = w;(A) = o0 for all 2 < j < k.

o Forall HeH, Ay(G) < A/ foH),

Then V(G) can be partitioned into O(Aﬁ/f) parts such that the hypergraph induced by

each part is H-free and has mazimum j-degree at most 22% fi=1w,  for each 1 < j < k.

Our main new contribution is a technical lemma (Lemma 13 in Section 4) that allows
us to prove a large deviation inequality for positive random variables with mean less

than 1. This may be of independent interest.
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1.1 Organization

In Section 2, we use Lemma 7 to prove Theorems 3 and 5. The remaining sections are
devoted to Lemma 7. In Section 3, we state two concentration theorems that we will
use in Section 5. In Section 4, we prove our main probabilistic lemma, which is also

used in Section 5. Section 5 contains the proof of Lemma 7.

1.2 Notation

All of our O and o notation is with respect to the parameter A — oo. In particular,

when we write f = O(g), we mean that there is a positive constant ¢ such that f < cg.

Given a hypergraph G and A C V(G), we define the (j — |A|)-uniform hypergraph
Lgj(A)={B—-A:Be€Gwith AC B and |B| = j}.

Let Ng;(A) =V (Lg;(A)). When G is k-uniform, we drop the subscript j. When G is

clear from the context, we drop the subscript G.

2 Proof of Theorem 3 and 5

We first prove a simple bound on the chromatic number of general rank k hypergraphs.
The proof is based on a proof of Erdds and Lovasz [8] for k-uniform hypergraphs. This
bound will allow us to assume that f is sufficiently large in the proofs of Theorems 3
and 5.

2.1 Chromatic number of rank £ hypergraphs

We will need the following version of the local lemma.

Asymmetric Local Lemma ([16]). Consider a set £ = {Ay,..., An} of (typically bad)
events that such each A; is mutually independent of € — (D; U A;), for some D; C E. If
foreach 1 <i<n

e Pr[A;] <1/4, and
® ZA]ED@' PI‘[A]} S 1/47

then with positive probability, none of the events in € occur.



Lemma 8. Fiz k > 2. Let G be a rank k hypergraph with mazimum j-degree A;,
.:2’..-,]{:. Then
X(G) < m%c(zlk(k — 1AV,
]:

Proof. Set
r= m%zx(élkz(k DAY,
j:
Then A; < 4k(k iy for each j =2,... k. Assign each vertex u € V(G) a color chosen
uniformy at random from [r]. For each edge e € G, let B, denote the event that each

vertex in e received the same color. Then Pr[B.] = r'~Il. The event B, depends only
on events By such that B, N By # . Since

k
> Pr[B= Z Y PrB<) lelApt < 1/4,
feH:enf#0 J= 2feh|TfTﬂf¢® Jj=2

J

the Asymmetric Local Lemma implies that there exists a coloring where no event B,

occurs. 0

2.2 Proof of Theorem 3

We will use the following stronger version of Theorem 2.

Theorem 9 ([7]). Suppose G is a rank 3, triangle-free hypergraph with mazimum 3-

degree A and maximum 2-degree Ay. Then

A
log A

A,

X(G) = Ofmax{( L

)1/2

In fact, we will prove the following stronger result.

Theorem 10. Let G be a rank 3 hypergraph with maximum 3-degree at most A and
mazimum 2-degree at most Aq. Let H denote the family of rank 3 triangles. If

An(G) < max{AV2, A} /¢

for all H € H, then
A

log f

Ay
"log f

X(G) = O(max{—)"?

}-

Proof. By Lemma 8, we may assume that f is sufficiently large. We consider two cases.

Case 1: A, < (Alog f)Y/2.



Set g = ﬁ. Since Ay < (Alog f)/? and v(H) < 6 for all H € H,

v(H)—1

Au(G) < max{AV?, A )DL/ F < (Alog £)5 /f < A™F g (2)

for each H € H.

Let
K={ACV(G):|Al =2 and ds(A) > AY?},

Define the rank 3 hypergraph
G'=G—-{FeG:ACEforsome Aec K} UK.

In other words, if a pair of vertices has high codegree, then we replace all 3-edges
containing the pair with a 2-edge between the pair. Hence any proper coloring of G’ is
also a proper coloring of G.

We will now apply Lemma 7 to G/ with the function ¢’ := ¢%/¢. Set w, = log'/?g

and wy = 1. We first check that G’ is (2A,wy,ws)-sparse. Note first that wy = g1,
ws = ¢°D, and G’ has maximum 3-degree at most 2A. Also, by definition of K, G’ has
maximum (3,2)-degree at most AY2 < (2A)2w;. Let u € V(G). Since |Lgs(u)| < A,

u is in at most 2AY2 sets in K. Thus, G’ has maximum (2, 1)-degree at most
(Alog f)Y% 4+ 2AY% < (2A1og 9)'/? = (2A)Y%w,,

which shows that G’ is (2A, ws, w3)-sparse.

Let H € H. Suppose T" C G’ is a copy of H' which is not in G. Since each
e € T' — G corresponds to at least A'/2 edges of size 3 in G, T" corresponds to at least
(A2 — 5)IT"=Cl copies of H in G, where H is the triangle obtained by replacing each

e € T' — G with a distinct size 3 edge containing e and some vertex outside of 7”. Thus
AH/(G/)<A1/2 _5)1)(H)71}(H’) S AH(G>
Using (2), this implies

A (G < QAH(G)A(v(H’)fv(H)W < QA(v(H’)fl)ﬂ/g < QA(v(H’)fl)ﬂ/(gl/ﬁ)v(H’)_

Lemma 7 therefore implies that there exists a partition of V(G') = V(G) into
O(AY?/¢") parts such that each part is H-free and has maximum j-degree at most
O(g” 'w;). By Theorem 9, we may properly color each part with

/

9 g'wa _o(—9
log!/? ¢ log(g'ws) log'? ¢/

/

O(max{
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different colors, resulting in a total of O((@)lﬂ) = O((logf)l/z) colors.

Case 2: Ay > (Alog f)'/2.

Set A’ = %. Then A < A’. Thus G has maximum 3-degree at most A’, and
Ap(G) < max{AY2, A} =1/ £ < max{ V2 AU/ f

for all H € H. We may therefore apply case 1 with A’ in the role of A to obtain a

coloring with at most O((kgf)lﬂ) = O(IOA;f) colors. O

2.3 Proof of Theorem 5

Let G be a k-uniform hypergraph with maximum degree A such that Ag;(G) < IN= /f
forl =2,...,k—1. As in the proof of Theorem 9, we may assume that f is sufficiently
large. Set w; = 1 for 2 < j < k. Observe that G is (A,ws, ..., wy)-sparse. For each
l=2,...,k—1,let H; be the k-uniform hypergraph consisting of two edges which share
exactly [ vertices. Set H = {Hy, ..., H;_1} and f' = f/@*=2) Then for a € V(H,) with
de<a) =2,
AHZ < AHla <A k—1 A, < k—1 A2kkilfl/f < k—1 A%;;lfl/flv(Hl)’
’ -1 ’ -1 -1

so Lemma 7 implies that there exists a partition of V(G) into O(Aﬁ /f') parts such

that each part is H-free and has maximum degree at most O(f*~!). Since each part is

‘H-free, each part is linear and can be colored with O(W) colors by Theorem 1.

Using a different set of colors for each part gives a proper coloring of G with O((@)ﬁ)
colors.

3 Concentration results

Theorem 11 (McDiarmid [15]). Fori=1,...,n, let Q; be a probability space, and let
Q =TI, Q. Foreachi, let X;: Q; — A; be a random variable, and let f : [[ A; — R.
Suppose that f satisfies |f(x) — f(a')| < ¢; whenever the vectors x and x' differ only in
the i'™" coordinate. Let Y : Q — R be the random variable f(X1,...,X,). Then for any
t>0,

Pr[|Y — E[Y]| > t) < 2¢7 2/ Zimie

Theorem 12 (Kim-Vu [13]). Suppose F is a hypergraph such that |f| < s for all f € F.
Let
F'={feF:z=1foradliec [}
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where the z;, i € V(F) are independent random variables taking values in [0,1]. For

A CW with |A] < s, let
= Z H 2.
fEF:fOAicf—A
Let My = E[Z4] and M; = maxa.4|>j Ma for j > 0. Then there exist positive constants
a = a(s) and b= b(s) such that for any A > 0,

Pr |||F'| — E[|F|)] > a)\S\/MOMl] <DV (F)[le

4 Deviation inequality

To motivate our next lemma, which is the main novel ingredient in this work, we outline
the proof of Lemma 7, which appears in Section 5. We are given a hypergraph G and
a fixed hypergraph H, and we know that each u € V(G) is in very few copies of H.
Our goal is to produce a coloring of G such that the subhypergraph induced by each
color is H-free. We randomly color the vertices of G, hoping to remove all copies of
H in the induced subgraph of each color. Consider some u € V(G). Since u is in few
copies of H, the expected number of these which remain in u’s color is much less than
1. We would like to conclude that with very low probability, v is in more than ¢ copies
of H in the subgraph induced by u’s color, for some constant ¢. We could then use the
Local Lemma to find a coloring such that u is in at most ¢ copies of H in the subgraph
induced by wu’s color, which would bring us close to our goal of removing all copies of H
from the subgraph. To draw this conclusion, we could try to let F, be the set of copies
of H which contain u, and let F, be the set of copies of H which contain v and whose
vertices all receive u’s color. Then we could apply Theorem 12 to bound F; and make
the above conclusion. However, in our case, “very low probability” requires us to set
A = Qlog |V(F,)|). Since My and M, are always at least 1 (the empty product is taken
to be 1), this only allows us to conclude that u is in (log |V (F,)|) copies of H. Since
|V (F,)| will be tending to oo, this is not small enough.

Frieze and the second author [10] overcame this by using a two-step random process.
However, their proof used the linearity of G and the assumption that H is a triangle, and
we were not able to easily duplicate their method. Our approach, which can be viewed
as a generalization of the method in [1], is to instead bound the transversal number of
the hypergraph F!. A transversal of F, is a subset K C V(F,) such that ANK # () for
all A € F,. In other words, the subhypergraph of F, induced by V' (F,)— K has no edges.
The transversal number of F,, denoted 7(F,), is the minimum size of a transversal of
F,.



Returning to our outline, we will use Lemma 13 below to show that the probability

that 7(F)) is large is very low.

Lemma 13. Suppose F is an s-uniform hypergraph, and z;, i € V(F') are independent
random indicator variables with Pr[z; = 1] = p, for alli € V(F). Let

F'={AeF :Vie Az =1}
Suppose there exists o > 0 such that |F|pt=®% < 1. Then for any c > e2°sa,

Pr[r(F') > s*(c/a)™] < S|V (F)["7'p".

We then repeat this for all v € V(G) in the same color class as u. Let K, be the set
of vertices in a transversal of size at most 7(F)). Following [1], we create a 2-graph
on these vertices, with an edge from v to each vertex in K,. Since 7(F)) is bounded
by a constant, this graph has constant out-degree and can be properly colored with a
constant number of colors. Since the neighborhood of v in this graph is a transversal
and all of the vertices in the neighborhood of v received a different color than v, none
of the edges of F, (which correspond to copies of H containing v) could survive in v’s

new color class. Thus the subgraph induced by each new color contains no copies of H.

4.1 Proof of Lemma 13

We will need the following simple proposition to prove Lemma 13. It is a straightforward
generalization of the well-known fact that a graph with many edges has either a large
matching or a large star. Let F' be a k-uniform hypergraph. Recall that M C F'is a
matching if ANB = () for any A, B € M with A # B. When F is k-uniform, recall that
for all A C V(F),

Lp(A)={B—- A:Be€ F with A C B}.

Proposition 14. If F' is a k-uniform hypergraph, then there exists A C V(F') such that
|F|1/k
k—A] "

Lr(A) contains a matching of size at least

Proof. We induct on k. If k = 1, the claim holds with A = (). Assume the result for £,
and let F' be a k+1-uniform hypergraph with maximum degree A. By the greedy coloring
algorithm, F' can be partitioned into kA matchings, so F' contains a matching with L
edges. Thus A > |F|¥/++1 or F contains a matching with at least k|F||§<|k+1) = |F|1/k(k+1)
edges. In the second case, we are done (with A = ()), so assume there exists u € V(F)

with d(u) > |F|/*®+1). Set A = {u} and consider the k-uniform hypergraph Lz(A). By

10



induction, there exists B C V(Lp(A)) such that Lp4)(B) contains a matching of size
at least

|LF(A)|1/I<: _ |LF(A)|1/I<: - <|F|k:/(k+1)>1/k _ |F|1/(k+1)

(k—1|B]) k+1—-|AUB| k+1—-]AUB| k+1—-|AUB|

Since B C V(Lp(A)) C V(F) and Ly (B) = Lr(AU B), this completes the proof. [

Proof of Lemma 13. For k=0,1,...,s, set 7, = |F|p!~*. For k=1,...,s, let

Hy={ACV(F):|Al = k,d(A) > 7, and VB C A,d(B) < 15/}.

Fix k, where 1 < k < s. Let B € (V ), where b < k. Suppose there exists A € Hy
with B C A. By definition of Hy, d(B) < 7. Since each such A corresponds to at
least 7, sets in F', and each of these 7, sets is counted at most ( ) times under this

correspondence, this implies

WAcH, Be (’2)}; < (Z) d(B) < 2°n, (3)

Consider the k-uniform hypergraph Z, = {A € Hy : z; = 1 Vi € A}. Suppose |Zx| >
(c/a)*. Then by Proposition 14, there exists B € (V(bz’“)), where b < k, such that the
(k — b)-uniform hypergraph Lz, (B) contains a matching of size at least z, :=

c/a

(k=b)"
Each edge in this matching corresponds to an edge A € Hy with B C A. By (3), there

are at most 2°7;,/7; edges. Thus the probability that such a B exists is at most

Z (25Tb/7k)p(k—b)xb < kzi Z
Lo s

(
b=1 pe(VUv) Be(VU)

k-1 s

€2’ Jeo kb
p

TELy

k

Tk
<>« - )"

~1
b=1 pe (VW)
b=1

— Z Z (1—)b+k—b—(1—a)k)xzp
Be(V4W)

]?
Z pa (c/)
b=1 pe (Vi)

)

< k|V(F)[F1pe,

k-1

Therefore, for each k =1,...,s,
Pr(|Zy| > (/)] < K[V (F)[*'p".
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Hence
Pr(| | Zi| = s(c/a)’ ]l < Prll | Zel = D (c/a)¥]

< Z’f|V(F)|k_lpc
k=1
< SV(F)~'p°

Since each edge in |J;_, Z) contains at most s vertices, this implies

Prl| | V(Zi)| = s*(c/a)’] < S|V (E) .

k=1

We now claim that |J;_, V(Z) is a transversal of F’. Suppose A € F and z; = 1 for
all i € A. Since d(4) =1 > |F|pl=)* = 7,, A € H, or d(B) > 7, for some B € (4). If
A€ Hg, then A € Z; and A C V(Z;), so assume the second case. Choose a minimal set
B e (%) with d(B) > 7. Then B € Hj, so B € Z, and hence ANV (Z,) # 0. 0

5 Proof of Lemma 7

We break the proof of Lemma 7 into two steps. In step 1, we prove Lemma 15, which is
a slight variant of Lemma 7 when f > A€. In Section 5.2, we will use the same argument

as in [1] to show that the proof of Lemma 7 can be reduced to Lemma 15.

5.1 Step 1: f > A€

Lemma 15. Fiz k > 2 and € € (0, k—il) Let G be a rank k hypergraph, and let H be a
finite famuly of fized hypergraphs. Suppose that

o G is (A wy, ..., wy)-sparse, where w; = w;(A) = A°D for all 2 < j < k.

v(H)—1

o Ay(G) < A w1 UD€ for il H € .

Then V (G) can be partitioned into O(Aﬁ_s) parts such that the hypergraph induced by

each part is H-free and has maximum j-degree at most 2A(j_1)5wj, for each j € [k].

Proof. Let N = maxgey v(H). Color the vertices of G uniformly at random with
r = AF17° colors. Fix u, and for each v € V(G), let z, be a random indicator variable

which is 1 if v receives the same color as u and 0 otherwise. Note that Pr[z, = 1] = 1/r.

12



For each H € H, choose vy € V(H) such that Ay, (G) = Ay(G). Define a (v(H)—1)-
uniform hypergraph

Ty(u) ={V(A) —u:ACGwith A=, H and ¢(u) = vy}

Since to each A C G with A =4 H and ¢(u) = vy we may associate the set V(A) —u €

TH(u)a
v(Tr(uw) < (N = D[Ta(u)|(N —1) < Ap(G).

Also, let
Ty(u)={Ae€Ty(u):YveA z =1}

We define k + |H| bad events for each w.

o A,;: For1<j <k, A,; denotes the event

ZuJ‘ = Z H Zi Z QA(j_l)ewJ‘.

A€Ly ;(u) i€A

e B, Foreach H € H, B,y denotes the event 7(T% (u)) > (v(H)—1)%(c/ay )",

where
v(H)e — ”(li)fl €
g = 1 — 1 - 1 > 0
(e—9)w(H)-1) (55 —eH)—1)
and A2 NN
c= <j_—3> > 3N2V.
L -

To bound the probability of A, ;, we apply Theorem 12 to the (j—1)-uniform hypergraph
Ly ;(u). Let AC V(Ly,;(u)) with |[A] < j—1. Then

My = (AU {ub)/r7 4 < Ay g (G141
Jj=|A|=1

<A k=1 wj/Tj;'A‘il

— AU,

Therefore E[Z,] = My < A(jfl)ewj and M; < A(j*Q)ij. Setting A = (k+3N +2)log A,
we obtain constants a and b such that
Pr(A, ;] =Pr[Z,; > 2A(j*1)€wj] <PbriZ,; > A(jfl)ewj + aAe(jfl)*E/Z)\jfl]
< b(jA)j—QA—(j+3N+2)
< A3V,
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To bound B, y, we apply Lemma 13 with F' = Ty (u), F' = T} (u), and p = 1/r.

Since

’TH(U)lp(lfaH)(v(H) 1) < A k 1 —v(H)ep(l ag)(v(H)-1) _ 17
ay € (0,1), and ¢ > 3N2V > e2¥Nay > €2U(H)_1(U(H) — 1)ay, Lemma 13 implies

Pr[By.u] < (v(H) —

1)2U(TH(u))v(H) 2,¢
= (0(H) = 1)0(Ty (u)) "2 ACN302
< (0(H) = 1)*0(Tp (u)) D2 ANN
< NQ(NA——j)N—lA—NQ—sN
< AT,
Each event A, ; is determined by the colors assigned to the vertices in N;(u)U{u}. Each

event B, y is determined by the colors assigned to the vertices in Ty (u) U {u}. Thus

A, ; depends on:

e Events of the form A,; where N;(u) N N;(v) # 0. There are at most

(AN IAFTw) < (A)(K?A) < AV

=1

such events.

e Events of the form BUH, where N;(u) NV (Ty(v)) 7é (Z) Since |N;(u)| < jA and
V(T (v,H))| < NAG=T , there are at most (j )]H\Ak T < A such events.

Also, B, u depends on:

1

e Events of the form A, ; where V(T4 (u))NN;(v) # (). There at most (K2A)NA®1T <

AV such events.

e Events of the form B, g, where V(Ty(u)) NV (Ty(v)) # 0. There are at most
|H|N2A2% < AN such events.

Since the probability of each event is at most A73", the Local Lemma implies that there

exists a coloring of V(G) with r colors so that none of the events A, ; or B, gy occur.

Fix a color, and consider the subhypergraph G’ induced by the vertices which received
that color. For each u € V(G') and each H € H, let K(u, H) be a minimum sized
transversal of 7" (u, H). Create a simple graph W on V(G’) with edge set {{u,v} :u €
V(G"),v € K(u,H) for some H € H}. Consider any subgraph of W on n’ vertices.

14



Since no event B, y occurs, the number of edges in this subgraph is at most n/|H|(N —
1)?(c/a)™; it therefore contains a vertex with degree at most 2|H|(N — 1)%(c/a)V.
W is therefore 2|H|(N — 1)?(c/a)™-degenerate and can thus be properly colored with
2|H|(N — 1)?(c/a) + 1 new colors. Since each of the K(u, H) is a transversal, the
subhypergraph induced by each of these new colors is H-free. Repeating this for each

of the original r colors results in a partition of F' into at most
rHI(N = 1)*(c/a)¥ +1) = O(AFT7)

parts, where each part is H-free and has maximum j-degree at most 2AU *1)%}]-. O

5.2 Step 2: f < A€

When f < A€ we use the same random halving argument as in [1]. We recursively
divide the hypergraph into two parts until we obtain a set of hypergraphs, each with
maximum degree small enough to apply Lemma 15. The halving step is accomplished

with Lemma 17, while Proposition 18 is used to analyze the recursion.

Proposition 16. Let G be a rank k, (A, 2w, ..., 2w)-sparse hypergraph. Then for any
h—|A]|

A CV(G) and h > |A|, G contains at most 2PVTWT A1 connected hypergraphs on

h vertices which contain A, where T = 2".

Proof. Starting with any edge that intersects A, we try to greedily grow a connected
subgraph which contains A and h— |A| other vertices. At step i, we add an edge of size j;
which contains [; > 1 vertices already in the subgraph and a; > 0 vertices in A which are
not already in the subgraph. There are at most 2"A}, ;. ., choices for this edge. Since
one edge is added at every step, this process terminates after at most 7' = 2" steps,
resulting in a total of 2T HiT:1 Aj, 1.+a; subgraphs containing A. Since at each step we
add j; — (I; + a;) vertices outside of A to the subgraph, S>1, j; — (I; + a;) = h — |A].

Thus

T T
Ji=(itas) h—]A|
QhTHAjl-,li—i-ai < (DT T HA e = QDT T AT
i=1 i=1

]

Lemma 17. Let G be a rank k hypergraph, and let H be a finite family of fixed, connected
hypergraphs. Suppose that G is (A, 2ws, . . ., 2wy)-sparse, where w; = wj(A) = A°Y) for
all 2 < j < k. Then for A sufficiently large, there exists a partition of V(G) into two
subhypergraphs Gy and Gy such that

1

e Foreachi=1,2 and 1 <1< j <k, we have Aj;(G;) < Aj(G)/277 + AT

15



v(H)—1

e For eachi=1,2 and H € H, we have Ap(G;) < Ap(G) /20~ 4 A7 %

Proof. Let N = maxpgey v(H). Color the vertices of G uniformly at random with
the colors 1 and 2. For each A C V(G), let d;(A) denote the j-degree of A in the

subhypergraph induced by the minimum color of a vertex in A.

For each H € H, choose vy € V(H) such that Ay,,(G) = Ay(G). For each
u € V(G), define a (v(H) — 1)-uniform hypergraph

Ty(u) ={V(A) —u:ACGwith A=, H and ¢(u) = vy}
Also, for each H € H, let
Ty(u) ={A € Ty(u) : Yv € A, v receives the same color as u}.

Define the following bad events:

e (U4 : For each A C V(G) with d;(A) > 0, Ca; denotes the event

i=lAl_ 1

d;(A) > Aj1a(G) /2714 4 AT R,

e B, u: For each H € H, B, iy denotes the event

v(H)—1

Ty (u)| > Ap(G)/2°H) 1 4 A™x

1
T "2k,
We use Theorem 11 to bound the probability of each event. The random variable

d;(A) is determined by the colors of the vertices in N;(A). If v € N;(A), changing v’s
color affects d’;(A) by at most d;j(AU{v}) < Ajjaj41. Also,

Y GAUD? S Ajan(G) Y di(AU{e}) < A jaa(G)jd;(A)

UEN]'(A) ’UENj(A)

< JA 1 A41(G) A 4(G)

< AT W2,
Consequently, Theorem 11 and w;(A) = A°M imply

2j—2|A|—1

Pr[Ca;] <Prd;(A) > Aja(G) /27714 + (4§ AT 7 w?2N log A)'/?]
< 26—4N10gA

< AN

Let Ty (u,v) denote the set of copies of H in GG containing both u and v. The random
variable |T};(u)| is determined by the colors of the vertices in V(T (u)). Changing the
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color of v € V(Tx(u)) affects |T’ ( )| by at most |7 (u,v)|, which, by Proposition 16
(with |A] = 2), is at most WA , where w = 2@(H)+12° maxk leU(H) Ae),
Note also that Proposition 16 (with |A| = 1) implies | Ty (u)| < wA 51 T Since
> [Talw o)’ <wA ™S 37 [Tyuv)]
veV (T (u,H)) veV (T (u,H))

v(H)—2
S wA T 0(H)| T (u)|

v(H)—2 | v(H)—-1

<v(H)A &1 TR 2

2v(H)-3

= v(H)A™ T W%

21)(H) 3

Pr[B,.g] < Pr[Ti(u) > Ap /2~ 4+ (v(H)A™#+=T w?2Nlog A)Y/?]
< 2674N log A
< AT3N,

The event Cy ; is determined by the colors of the vertices in N;(A) U A. The event B, u
is determined by the colors of the vertices in T (u) U {u}. Thus Cy ; depends on:

e Events of the form Cp;, where N;j(A) N N;(B) # 0. A vertex u € N;(A) is in at
most iA2% sets N;(B), so there are at most (jA)k?A2% < A?N such events.

e Events of the form B, y, where N;(A) NV (Ty(u)) # 0. Since |V(Ty(u))| <
NAFT, there are at most (A)|[H|NAFT < A2V such events.

,_.

Also, B, u depends on:

e Events of the form B, p/, were V(T (u)) NV (Ty/(v)) # 0. There are at most
|’H|N2A2% < A%V such events.

o Events of the form Cy ;, were N;(A) NV (Ty(u)) # (. There are most
(NAFT)(k2A2%) < AN such events.

Since the probability of each event is at most A™3¥, the Local Lemma implies that there
exists a 2-coloring of V(G) such that no event Cy ; or B, y holds. O

Proposition 18. Let a,b,m > 1 be fixed and sy = dg/bg for g > 0. Suppose that the

sequences d; and s; have nitial values dy and sg and satisfy

dy m a m
dyoy = —+d1 1/ /b—1/

9b
Then there exists D > 0 such that

and Sy = §+d

dy < 2dg2™ O and s < d a/b +da/b 1/(2m)

for all dy > D.
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Proof. Note that for any constant ¢, as dy — oo,
m—1 m
m _ _ i i/ ma_ bt
(c+dg/™27tmym = 27+ ( ,)cm W = dg27 + o(dy) < 2dp27"
N

To prove the first inequality, we will thus prove by induction the tighter bound (for D
sufficiently large)

2b 1/
d, < d mo —bt/m m
This is clear for dy, so assume the bound for d;. Then
d 1— 1/ 1 2b 1/ 1 2b 2b 1/ —b
d d, " T d ™M (e ———— ™2 t/mym
t+1 — + = 2b(m+ t ) = 2b(m+m(2b/m_1) + )

2b 1
_ d /m b(t+1)/m\m
(m(2b/ m—1) i )
For the second inequality, we first prove by induction s;y1 = % + ZZ:O zf—;,g, where

x=2%and y = a/b— 1/m. This is clear for ¢t = 0, so assume the bound for s;. Then

t

dj

t—1
Y
Sy So 1 d So
Yy k y
Sp1 = — +df = +—E —— 4 d] = 4
T t g — pt—1-F t pttl ( )

completing the induction. Using dj, < 2d27% and a — by = b/m > 0,
t Qdo)y 9(t+1)(a—by)

4V (2dp)Y < o 2d0
(a—by)
Z pt—Fk < It Z(Qby - Z 2 e pt Qa—by _ 1

k=0 k=0

(2d0>y2(t+1)(a—by)—at

By definition of d;, d; > dp27". Using this with (4) and with (5),

(thth)y2a—by—tby

—at (Qdo)yZa—by—tby ﬂ a/b
Sy < 8927 " + Sbm 1 Sso(do) o 1
d dy2y+a—by
< da/b tya/b t
90"t
a/b—1/m a—
_ da/b dt/ / Y+ by
¢ 2b/m — 1
< da/b + da/b 1/( 2m)
where the last inequality assumes
9y+a—by -
dy > D > ( Som T
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Proof of Lemma 7. Define sequences

d 1-L
dt+1=—2 Lo4d, *
Tjli+1 = QJJ’Z’; dk R A<i<j<k
SH ufoL_ L
8H,t+1:m+dtkl 2k,H€H,
v(H)—1

where dy = A, 7,0 = Ai%lle(A) and spo = A"FT /P Since rio < QA%wj(A),
we may apply Lemma 17 to G to obtain hypergraphs G ; and G 2, each with maximum
degree at most dy = 71,1, maximum (j,[)-degree at most r;;1, and maximum H-degree
at most sy ;. We apply this halving step a total of T times, where 7' = [ - log, fiﬁl&k}
and N = maxycy v(H). Specifically, at each step, we apply Lemma 17 (with parameters
dy = Tk, Tjit, Sme) to each of the hypergraphs Gy, ..., Gat. Since wj(A) = o),

and for ¢t < T,
D)1 log. 20
d, > dg2~ 0T > o2 (k=1)(1+ 557 logz 7ank) _ 9=k pANK (6)

w;(A) = df(l). Also, recall that f is sufficiently large, so by (6), we may assume that if
t < T, then d, is sufficiently large to apply Proposition 18. Thus Proposition 18 (with
each r;;, in the role of s¢, ¢ = w;j(A),b=k —1,a = j — [, and m = 2k) implies
J=L =l 1 J=L
rigg < df 7 wi(A) +df T < 2di T wi(A).
Thus each Gy; is (dy, 2wa, . . ., 2wy, )-sparse, so we may apply Lemma 17 to obtain 2¢+!
new hypergraphs G111, ..., Geyq 2041 such that each Gy ; has maximum degree d;;1 =
Tk1t+1, Maximum (7, 1)-degree 7;; 441, and maximum H-degree sp 1. In the final step,
we obtain 27 hypergraphs Gr;,...,Gpar, each with maximum degree dp, maximum

(7,1)-degree r;; 7 and maximum H-degree sy . By Proposition 18,
dp < 2dy2~ DT < pANE - ok pINE

and .

e < 205wy (A) < (2PN Ely(a),
Proposition 18 (with each sy ¢ in the role of sy, g = 1/f*"H) b=k —1,a = v(H) — 1,
and m = 2k) also yields
'U(H) 1 v(H)fliL
SHT < d k—1 /fv _'_difl 4k
< (fINEYER D g (RS
< oY et

v(H)—1 v(H)

:2(f4Nk) k—1 4Nk

'U(H) 1 v(H)

(2kf4Nk) INE
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We may therefore apply Lemma 15 (with A = 2% f4VF o (A), and € = ﬁ) to par-
tition each of the hypergraphs Gr,...,Gror into O(f4Nk(T£1_ﬁ)) parts such that
the hypergraph induced by each part is H-free and has maximum j-degree at most
2(2kf4Nk)ﬁwj < 2% fi=1y; for each 1 < j < k. Summing over each of the 27 hyper-
graphs, this results in a total of

Nk

2TO(FE ) < T R (1) = o(aF )

H-free hypergraphs, each with maximum j-degree at most 2% fi=1w;(A).
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