
On Restricted Edge-Colorings of Bicliques

Dhruv Mubayi∗ Douglas B. West†

June 11, 2005

Dedicated to Daniel J. Kleitman on the occasion of his 65th birthday.

Abstract

We investigate the minimum and maximum number of colors in edge-colorings of Kn,n such

that every copy of Kp,p receives at least q and at most q′ colors. Along the way we improve

the bounds on some bipartite Turán numbers.

1 Introduction

Our problem is a generalization of a reinterpretation of the bipartite analogue of the classical

Ramsey problem. The bipartite Ramsey number bk(H) is the minimum n such that every k-

coloring of E(Kn,n) yields a monochromatic copy of the bipartite graph H. Like the classical

Ramsey numbers, these are hard to determine. Chvátal [6] and Beineke-Schwenk [4] proved that

bk(Kp,q) ≤ (q − 1)kp + O(kp−1). Some exact results for the case p = 2 appear in [4] (see also [5]

for recent progress on an assymetric version of this problem).

An alternative approach is to fix n and ask for the minimum k such that some k-coloring of

E(Kn,n) yields no monochromatic H. More generally, we require that every copy of H receives

at least q colors. A further generalization considers edge-colorings of a graph G. The resulting

global minimum number of colors has been denoted r(G, H, q); in our problem, G = Kn,n. The

problem was explored by Axenovich, Füredi, and Mubayi [3]; the case where G and H are cliques

was studied by Erdős and Gyárfás [9].

We could also ask for the maximum number of colors in a coloring of E(Kn,n) such that every

copy of H receives at most q′ colors. Interchanging minimum and maximum and reversing the
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inequality in the constraints makes this problem fundamentally different from classical coloring

problems. Such maximization problems were introduced as “anti-Ramsey problems” by Erdős,

Simonovits, and Sós [11].

We study a common generalization of the Ramsey and anti-Ramsey problems.

Definition 1.1 An (H; q, q′)-coloring of G is a coloring of E(G) such that every copy of H in

G receives at least q and at most q′ distinct colors on its edges. The minimum and maximum

number of colors in an (H; q, q′)-coloring of G are denoted by r(G, H; q, q′) and R(G, H; q, q′),

respectively.

Understanding these restricted generalized Ramsey numbers is a huge project; the numbers

bk(K2,p) form a small special case. The restricted generalized Ramsey problem is itself a special

case of constrained hypergraph coloring. In a rather general model, we color the vertices of a

hypergraph, with each edge having a constraint set for the number of colors used on it; we study

the global numbers of colors that permit such colorings (see [16]). In our problem, the vertex set

of the hypergraph is the edge set of Kn,n, the edges are the copies of the edge sets of H, and we

study only the extreme global feasible numbers of colors.

In this paper we study (Kp,p; q, q′)-colorings of Kn,n, with particular attention to p = 2 and

to the case (p, q) = (3, 1). Before listing our results, we mention several known results on the

classical Ramsey special case. Here always q′ = e(H), and we consider the lower bound on the

global number of colors forced by the local lower bound q; thus we use the earlier notation in this

discussion.

Axenovich, Füredi, and Mubayi [3] studied r(Kn,n,K2,p, q). The lower bound r(Kn,n,K2,2, 2) ≥
(1 + o(1))

√
n follows directly from the asymptotic maximum size n3/2 of a subgraph of Kn,n not

containing C4 (Kővári–Sós–Turán [17]). A result due to Chung and Graham [7] and to Irving

[15] implies that this is asymptotically the correct value of r(Kn,n, C4, 2). A different proof of

this appears in [3]. More generally, [3] uses algebraic techniques to prove for t > 0 that both

r(Kn,n,K2,t+1, 2) and r(Kn,K2,t+1, 2) are asymptotic to
√

n/t as n →∞.

The asymptotic value of r(Kn,n, C4, 3) remains open. The bounds 2n/3 ≤ r(Kn,n, C4, 3) ≤
n + 1 appear in [3]. When n is odd or in {4, 12, 60}, the upper bound was improved to n.

Determining lim r(Kn,n, C4, 3)/n seems difficult.

For each fixed p, [3] determines the smallest q = q(p) such that the growth of r(Kn,n,Kp,p, q)

reaches various thresholds in terms of n, including linear, quadratic, n2−O(n), and n2−O(1). A

general upper bound is given using the Local Lemma. These results parallel those of Erdős and

Gyárfás [9] for r(Kn,Kp, q). A result of Alon, Rónyai, and Szabó [1] yields r(Kn,n,K3,3, 2) ∼ n1/3,

and [3] determines r(Kn,n,K3,3, 8) exactly.
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Axenovich and Kündgen [2] studied the analogue of our problem for cliques. They determined

threshold values of (p, q, q′) for various asymptotic behaviors for R(Kn,Kp; q, q′) in terms of n.

In an edge-coloring of G, a copy of H is monochromatic if its edges all have the same color and

polychromatic if they all have distinct colors. We say that a vertex is monochromatic or polychro-

matic if the set of its incident edges is monochromatic or polychromatic, respectively. A natural

problem with nontrivial values of both q and q′ considers edge-colorings with no monochromatic

copy of H and no polychromatic copy of H. This makes r(Kn,n, C4; 2, 3) and R(Kn,n, C4; 2, 3)

particularly interesting. Although we determine the latter exactly (see Table 1), our upper and

lower bounds for the former differ by a factor of 3.

We assume throughout that n ≥ p ≥ 2. Note that every (H; q, q′)-coloring is also an (H; r, r′)-

coloring when r ≤ q ≤ q′ ≤ r′. Table 1 summarizes the results when p = 2. The table suggests

the natural question of which values between the minimum and the maximum are achievable; we

have not addressed this.

Table 1

p; q, q′ r(Kn,n,Kp,p; q, q′) R(Kn,n,Kp,p; q, q′) reference

2; 1, 1 1 1 trivial

2; 1, 2 1 n Theorem 3.2

2; 1, 3 1 2n− 1 Proposition 3.3

2; 1, 4 1 n2 trivial

2; 2, 4 (1 + o(1))
√

n n2 [17, 7]

2; 3, 4 2n/3 ≤ r ≤ n + 1 n2 [3]

2; 4, 4 n2 n2 trivial

2; 2, 2 n (for n ≥ 5) n Theorem 6.1

2; 2, 3 n/3− 11 < r ≤ n− 3 2n− 1 Thm. 7.3, Prop. 2.4, Cor. 7.1

2; 3, 3 (undefined for n ≥ 5) (undefined for n ≥ 5) Theorem 6.3

The avoidance of monochromatic or polychromatic fixed subgraphs is related to Turán num-

bers. Given a family F of graphs, the Turán number ex(G,F) is the maximum number of edges in

a subgraph of G containing no member of F ; most often F consists of a single graph. By the pi-

geonhole principle, every edge-coloring of G with no monochromatic H uses at least e(G)/ex(G, H)

colors. From the other direction, Erdős, Simonovits, and Sós [11] observed that an edge-coloring

of G with no polychromatic H uses at most ex(G, H) colors.

In Section 4, we obtain new bounds on bipartite Turán numbers for the graph H(r, l) obtained

from Kr,r by deleting the edges of a copy of Kl,l. For 1 ≤ l ≤ r/2, we prove that ex(Hn,n,H(r, l)) ≤
r1/tn2−1/t+(t−1)n, where t = r−l. We also prove that ex(Kn,n,K3,3−E(P3)) = (

√
2+o(1))n3/2,
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where P3 denotes the path with three vertices. These results are of independent interest.

We apply these results in Section 5 to obtain bounds on R(Kn,n,K3,3; 1, q′) for 6 ≤ q′ ≤ 8. For

3 ≤ q′ ≤ 5, we determine the values exactly via direct combinatorial arguments. These results

are listed in Table 2.

Table 2

q′ R(Kn,n,K3,3; 1, q′) reference

1 1 trivial

2 2 trivial

3 n Theorem 3.2

4 n + 1 Theorem 5.5

5 2n− 1 Theorem 3.5

6 Ω(n4/3) ≤ R ≤ O(n3/2) Theorem 5.4

7 n3/2 + Ω(n4/3) ≤ R ≤ (1.61)n3/2 + O(n) Theorem 5.4

8 Ω(n3/2) < R ≤ O(n5/3) Theorem 5.4

9 n2 trivial

Section 6 discusses “uniform” colorings for the case p = 2, where every copy of C4 must have

the same number of colors on it. When this number is 2, the global number of colors can only

be n (for n ≥ 5). When this number is 3, there is no such coloring. In Section 7, we study the

edge-colorings of Kn,n having no monochromatic C4 and no polychromatic C4.

We begin in Section 2 with several explicit constructions, mostly for general p. In Section 3

we prove that one of these constructions is optimal for various of the anti-Ramsey problems. Our

results for general p are summarized in Table 3.

Table 3
condition result reference

1 ≤ q ≤ p R(Kn,n,Kp,p; q, p) = n Theorem 3.2

q ≤ p R(Kn,n,Kp,p; q, 2p− 1) = 2n− 1 Theorem 3.5

0 ≤ s < p R(Kn,n,Kp,p; p, sp + p− s) ≥ sn + n− s Proposition 2.1

1 ≤ s < p R(Kn,n,Kp,p; p, sp) ≥ sn Proposition 2.2

2 ≤ q ≤ p r(Kn,n,Kp,p; q, 2p− 1) ≤ d n
b(p−1)/(q−1)ce Proposition 2.3

2 Constructions

Throughout this paper we use X and Y to designate the partite sets of Kn,n. Our first construction

is optimal for some values of p, q, q′. The subsequent constructions in this section are the best we
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know for some values of the parameters, but we have not shown them to be optimal anywhere.

Proposition 2.1 For 0 ≤ s < p, there is a (Kp,p; p, sp + p− s)-coloring of Kn,n with sn + n− s

colors.

Proof: For i ≤ n− s, let the ith vertex of X be monochromatic with color i. Let the remaining

s vertices of X be polychromatic, using all distinct colors. This uses sn+n− s colors. Since each

copy of Kp,p has p vertices in X, it has at least p colors on its edges. The number of colors is

maximized by using all the polychromatic vertices; such copies of Kp,p receive sp+p−s colors.

When s = 0, we obtain a (Kp,p; p, p)-coloring of Kn,n with n colors. When s = 1, we obtain

a (Kp,p; p, 2p− 1)-coloring of Kn,n with 2n− 1 colors. Corollary 7.1, Proposition 3.3, and Theo-

rems 3.2, 3.5, and 6.1 show that these constructions are optimal in various cases. When s > 1,

we obtain new lower bounds on the maximum number of colors. Our second construction is also

good for this purpose when the number of colors on each Kp,p is bounded by a multiple of p.

Proposition 2.2 For 1 ≤ s ≤ p, there is a (Kp,p; p, sp)-coloring of Kn,n with sn colors.

Proof: Partition Y into s nonempty sets. Partition the set of sn colors into s sets of size n.

Let each vertex in Y be polychromatic, with the vertices in the ith block in Y being incident to

edges with the ith set of colors. On each copy of Kp,p, the number of colors used is p times the

number of blocks in Y that have contributed vertices.

Our next construction treats the partite sets symmetrically. We use an equivalent matrix

formulation, treating edge-colorings of Kn,n as integer n-by-n matrices. To encode a (Kp,p; q, q′)-

coloring of Kn,n, each p-by-p submatrix receives at least q and at most q′ labels.

Proposition 2.3 For 2 ≤ q ≤ p, there is a (Kp,p; q, 2p − 1)-coloring of Kn,n with dn/te colors,

where t = bp−1
q−1c.

Proof: Let m = dn/te. Partition X into sets X1, . . . , Xm and Y into sets Y1, . . . , Ym, where

each set has size t or t− 1. Give edge xy the color max{i, j}, where x ∈ Xi and y ∈ Yj .

Every selection of p vertices from X or from Y contains vertices from at least q distinct

blocks of the partition, since dp/te ≥ p/p−1
q−1 > q − 1. Let xi1 , . . . , xiq and yj1 , . . . , yjq be vertices

from distinct blocks of the partitions, with i1 < · · · < iq and j1 < · · · < jq. The colors on

{xilyjl
: 1 ≤ l ≤ q} are distinct, because a < c and b < d imply max{a, b} < max{c, d}. Thus

every copy of Kp,p receives at least q colors.
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Given a copy H of Kp,p, let U be the set of blocks in {X1, . . . , Xm} ∪ {Y1, . . . , Ym} that each

contain at least one vertex of H. The number of colors on H is less than |U |, because each color

used is the index of a block in U , and the least such index, j, is used as a color only if both Xj

and Yj are in U . Since |U | ≤ 2p, at most 2p− 1 colors appear on H.

The construction of Proposition 2.3 is not helpful when maximizing the number of colors in

a (p, 2p − 1)-coloring, since it uses n colors and Proposition 2.1 with s = 1 uses 2n − 1 colors.

When q = p = 2, Proposition 2.3 also does not use as few colors as Proposition 2.4. Nevertheless,

for 2 ≤ q < p it uses the fewest colors among the constructions we know. Table 3 summarizes the

bounds provided by these constructions.

Propositions 2.1 and 2.3 each yield r(Kn,n, C4; 2, 3) ≤ n. We improve this bound by using a

special 3-edge-coloring of K6,6. This construction is still far from the lower bound that we later

prove in Section 6. We describe the construction in the matrix format.

Proposition 2.4 r(Kn,n, C4; 2, 3) ≤ n− 3 for n ≥ 6.

Proof: We construct an n-by-n matrix with no monochromatic or polychromatic 2-by-2 sub-

matrix. When min{i, j} ≤ n − 6, put min{i, j} in position (i, j). This leaves a 6-by-6 matrix in

the lower right. Using three additional labels, we fill this with the matrix below.

b c a a a a

c a b b b b

a b c c c c

a b c b c a

a b c c a b

a b c a b c

Within this matrix, no color completes a 2-by-2 submatrix, and only three colors are used. If

a 2-by-2 submatrix has a row or a column among the first n − 6, then its first row or column is

constant, and its second adds at least one additional color. This considers all cases.

3 The Anti-Ramsey Case: General Results

In this section, we complete our results for (Kp,p; 1, q′)-colorings when p = 2 and prove some

results for general p. Always r(G, H; 1, q′) = 1, and R(G, H; 1, e(H)) = e(G), so for p = 2 it

remains to determine R(Kn,n, C4; 1, q′) for q′ = 2 and q′ = 3. When a vertex v is incident to an
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edge with color i, we say simply that v is incident with color i or that color i appears at v. The

next lemma is used both here and in Section 6.

Lemma 3.1 In a (Kp,p; 1, p)-coloring of Kn,n, let S be a set of vertices that is incident with at

least p colors. If |S| < p, then S is incident with all colors used.

Proof: Suppose that some edge e has a color not incident with any vertex of S. By the

pigeonhole principle, some vertex v in S is incident with at least two colors. Let x be the

endpoint of e adjacent to v. Let vw be an edge incident to v whose color is not on vx.

We have now selected three colors on a subgraph induced by two vertices from each partite

set. Only two of the colors named are incident with S. Hence we may choose p − 2 additional

colors incident with S, adding one edge for each color added. From each partite set we use at

most p−2 additional vertices, so the edges with these p+1 colors are contained in a copy of Kp,p.

In the special case p = 2, this says that a vertex incident with at least two colors in a (C4; 1, 2)-

coloring of Kn,n is incident with all colors used.

Theorem 3.2 R(Kn,n,Kp,p; q, p) = n for n ≥ p ≥ 2 and 1 ≤ q ≤ p.

Proof: The lower bound follows from Proposition 2.1 with s = 0. To prove the upper bound,

consider a coloring with more than n colors. Since n ≥ p, we may select p edges with distinct

colors. If they form a matching, consider an edge joining two of them. If its color agrees with the

color of some selected edge, we let it replace that selected edge. Otherwise, we let it replace an

arbitrary selected edge.

The result is a set S of size at most p − 1 in one partite set, say X, that is incident with at

least p colors. By Lemma 3.1, S is incident with all colors. Since the number of colors exceeds n

and p, there exist two edges xy, x′y with distinct colors where x, x′ ∈ S and y ∈ Y . Choose p− 1

edges of other colors incident with S. This adds at most p− 1 vertices of Y , so these edges lie in

a copy of Kp,p with at least p + 1 colors.

We next give a short proof that R(Kn,n,Kp,p; 1, 2p− 1) = 2n− 1 when p = 2. The subsequent

generalization also proves this, but the simplicity of this argument for p = 2 is worth recording.

This idea was used by Erdős, Simonovits, and Sós [11] to observe that R(Kn, C3; 1, 2) = n− 1.

Proposition 3.3 R(Kn,n, C4; 1, 3) = 2n− 1 for n ≥ 2.

Proof: The lower bound is provided by Proposition 2.1 with s = 1. For the upper bound, we

prove that every coloring of E(Kn,n) with at least 2n colors has a polychromatic 4-cycle.
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Pick an edge of each color, and call the resulting subgraph H. Since H has at least as many

edges as vertices, it has a shortest cycle C. Any chord of C in Kn,n creates a shorter cycle with

distinct colors using one of the paths on C between its endpoints. Thus C is a 4-cycle.

Lemma 3.4 When m, n ≥ 3, every m-by-n matrix using at most m + n distinct labels as entries

has a row or column whose deletion eliminates at most one label. When m 6= n, there is such a

line (row or column) of the shorter length.

Proof: First consider the case m = n. Consider the pairs consisting of a label and a line such

that the label appears only in that line. We obtain the desired line unless every line appears in

at least two pairs, which yields at least 2(m + n) pairs.

On the other hand, every label appears in at most one such pair, unless the label appears only

once in the matrix, in which case it appears in two pairs. Thus the number of pairs is at most

2(m + n), with equality only if there are m + n labels and each appears only once in the matrix.

Hence we are finished unless there are exactly m + n labels, each appearing exactly once.

This requires m + n = mn, which we rewrite as 1 = (m− 1)(n− 1), which has only the solution

m = n = 2 among positive integers.

The case m 6= n is simpler. We may assume that m > n and consider only rows. A label

is eliminated by deleting a row only if it is restricted to that row, so every label appears in at

most one pair. Hence there are at most m + n pairs. Since m + n < 2m, the pigeonhole principle

implies that some row deletion eliminates at most one label.

Theorem 3.5 R(Kn,n,Kp,p; q, 2p− 1) = 2n− 1 when n ≥ p ≥ 2 and q ≤ p.

Proof: The lower bound is provided by Proposition 2.1 with s = 1. For the upper bound, we

use the matrix formulation to prove more generally that R(Km,n,Kp,p; 1, 2p − 1) ≤ m + n − 1

when m, n ≥ p.

We prove by induction on m + n that an m-by-n matrix containing at least m + n distinct

colors has a p-by-p submatrix containing at least 2p distinct colors. The claim is trivial when

m = n = p.

For m + n > 2p, we combine colors to obtain an m-by-n matrix with exactly m + n colors.

It suffices to prove the claim for this matrix. Using Lemma 3.4, we delete one row or column,

retaining at least p rows and p columns and m + n − 1 colors. By the induction hypothesis, we

find within this submatrix a p-by-p submatrix having at least 2p colors.

8



4 Bipartite Turán numbers

In this section, we prove new bounds for some bipartite Turán numbers. We apply them in the

next section to prove bounds on R(Kn,n,K3,3; 1, q′) for 6 ≤ q′ ≤ 8. We use K3,3 − P3 to mean

K3,3−E(P3), which is well-defined since the automorphism group of K3,3 is transitive on copies of

P3. The previous best upper bound on ex(Kn,n,K3,3 − P3) was O(n3/2) by a more general result

of Erdős [8]. We sharpen this below.

Theorem 4.1

√
2 n3/2 −O(n4/3) ≤ ex(Kn,n,K3,3 − P3) ≤

√
2 n3/2 + n/2.

Proof: The lower bound follows from the lower bound on ex(Kn,n,K2,3) due to Füredi [12].

For the upper bound, we proceed by induction on n. The bound is trivial for n ≤ 3, so we may

assume that n > 3.

Consider G ⊆ Kn,n with e(G) >
√

2n3/2 + n/2. We show that G contains K3,3 − P3. By the

standard counting argument as in [17], G contains two copies of K2,3 with the independent 3-sets

in opposite partite sets of G. Let x and y be vertices of these two independent 3-sets.

If x or y has degree at least three, then it lies in a copy of K3,3 − P3 in G. Hence we may

assume that both have degree exactly two. Let G′ = G− {x, y}. We have G′ ⊆ Kn−1,n−1, and it

is easy to verify that for n ≥ 4,

e(G′) = e(G)− 4 > (
√

2n3/2 + n/2)− 4 >
√

2(n− 1)3/2 + (n− 1)/2.

By the induction hypothesis, G′ contains a copy of K3,3 − P3.

For r > l, let H(r, l) denote the bipartite graph obtained from Kr,r by deleting the edges of a

copy of Kl,l. Our result for ex(Kn,n,H(r, l)) is proved by a slight modification of an argument of

Füredi and West [14], which in turn sharpened a result of Erdős [8] on ex(Kn,H(r, l)).

In the proof, we extend
(
x
t

)
to nonnegative real x for each nonnegative integer t. We take(

x
0

)
= 1 for all real x ≥ 0. When t ≥ 1, we take

(
x
t

)
= 0 for 0 ≤ x < t − 1, and for x ≥ t − 1 we

view
(
x
t

)
as the real polynomial x(x− 1) . . . (x− t + 1)/t! of degree t in x. The resulting functions

are convex, and thus
m∑

i=1

(
xi

t

)
≥ m

(∑
xi/m

t

)
. (1)

We will also use the following simple lemma, which was proved and applied by Füredi [13] to

a related problem.
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Lemma 4.2 ([13]) If n, t ≥ 1 are integers and c, x0, x1, . . . , xt ≥ 0 are real numbers, then∑
1≤i≤n

(
xi

t

)
≤ c

(
x0

t

)
implies

∑
1≤i≤n

xi ≤ x0c
1/tn1−1/t + (t− 1)n.

Theorem 4.3 Given integers r, l with 1 ≤ l < r, let c be the smallest real number such that(
c
t

)
≥ 2

(
r−1

t

)
, where t = r − l. Then

ex(Kn,n,H(r, l)) ≤ c1/tn2−1/t + (t− 1)n.

Proof: Given Kn,n with bipartition X, Y , let G be a subgraph that does not contain H(r, l).

We bound e = |E(G)|. Let d(x) denote the degree of a vertex x, and for A ⊂ V (G) let d(A)

denote the number of common neighbors of A.

Let Z be the number of copies of Kt,t in G. We form such a subgraph by choosing a t-set

A ⊆ X and choosing t of its common neighbors in Y . Thus Z =
∑

A∈(X
t )

(
d(A)

t

)
.

We first find a lower bound on Z. By (1),∑
A∈(X

t )

(
d(A)

t

)
≥

(
n

t

)(∑
d(A)/

(
n
t

)
t

)
.

Since d(A) counts the stars with leaf set A, the total
∑

d(A) is the number of stars with t edges

whose centers lie in Y . These can alternatively be counted by choosing t neighbors for each choice

of the central vertex in Y . Applying (1) to the resulting sum yields∑
d(A) =

∑
y∈Y

(
d(y)

t

)
≥ n

(∑
d(y)/n

t

)
.

Together, these computations yield

Z ≥
(

n

t

)(
n
(
e/n
t

)
/
(
n
t

)
t

)
(2)

We next find an upper bound on Z. Let A = {A ∈
(
X
t

)
∪

(
Y
t

)
: d(A) ≥ r}. Our main

observation is that a copy of Kt,t with partite sets A,B cannot have both A,B ∈ A. Such a copy,

together with edges to l common neighbors of A and to l common neighbors of B, would form

a copy of H(r, l). Consequently, every copy of Kt,t has at least one of its partite sets outside A.

Hence

Z ≤ 2
(

n

t

)(
r − 1

t

)
≤

(
n

t

)(
c

t

)
(3)

Comparing (2) and (3) yields

n

(
e/n

t

)
/

(
n

t

)
≤ c.

With x0 = n and x1 = · · · = xn = e/n, Lemma 4.2 now yields the bound claimed.
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Corollary 4.4 If α is the positive root of x2 − x− 4 = 0, and β =
√

α = 1.60048.., then
√

2 n3/2 −O(n4/3) ≤ ex(Kn,n,H(3, 1)) ≤ β n3/2 + n.

For 1 ≤ l ≤ r/2 and t = r − l,

ex(Kn,n,H(r, l)) ≤ r1/tn2−1/t + (t− 1)n.

Proof: The upper bounds follow directly from Theorem 4.3 using 2 ≤
(
α
2

)
and using 2

(
r−1
r−l

)
≤(

r
r−l

)
for 1 ≤ l ≤ r/2.

For the lower bound, we observe that K2,3 ⊆ H(3, 1) and use the lower bound for ex(Kn,n,K2,3)

due to Füredi [12].

5 The Anti-Ramsey Case when p = 3

In this section, we study the numbers R(Kn,n,K3,3; 1, q′). For 6 ≤ q′ ≤ 8, we relate these to

Turán numbers via simple observations and then apply the bounds of Section 4. Subsequently,

we determine the exact value when q′ = 4 by combinatorial argument. The values for q′ = 3 and

q′ = 5 were determined in Theorems 3.2 and 3.5.

The observations we use to relate anti-Ramsey numbers and Turán numbers generalize some

notions of Erdős, Simonovits, and Sós [11]. Special cases of some of these were applied by

Axenovich and Kündgen [2].

Lemma 5.1 Let t = minF⊆F e(F )− 1. If every copy in G of each graph in F belongs to a copy

of H in G, then R(G, H; 1, t) ≤ ex(G,F).

Proof: If an edge-coloring of G has a polychromatic subgraph in F , then a copy of H containing

that subgraph has at least t + 1 colors. Choosing one edge of each color in a coloring with no

polychromatic graph in F thus limits the number of colors to ex(G,F).

Lemma 5.2 If t = 1 + ex(H,F), then R(G, H; 1, t) > ex(G,F).

Proof: Let G′ be a subgraph of G having ex(G,F) edges and containing no graph in F . Color

the edges in G′ with distinct colors, and let the remaining edges of G have a single additional color.

A copy of H with more than t colors has more than ex(H,F) of them in G′. This forces some

subgraph in F to appear in G′, which by construction is impossible. Hence we have constructed

an (H; 1, t)-coloring of G.
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Corollary 5.3 If H is edge-transitive, then R(G, H; 1, e(H) − 1) > ex(G, H − e), where H − e

denotes the graph obtained from H by deleting an edge.

Proof: ex(H,H − e) = e(H)− 2.

Theorem 5.4

Ω(n4/3) ≤ ex(Kn,n, {C4, C6}) < R(Kn,n,K3,3; 1, 6) ≤ ex(Kn,n,K3,3 − P3) ≤ O(n3/2),

n3/2 + Ω(n4/3) ≤ ex(Kn,n, C4) < R(Kn,n,K3,3; 1, 7) ≤ ex(Kn,n,K3,3 − e) ≤ (1.61) n3/2 + n,

Ω(n3/2) ≤ ex(Kn,n,K3,3 − e) < R(Kn,n,K3,3; 1, 8) ≤ ex(Kn,n,K3,3) ≤ O(n5/3).

Proof: The inner upper bounds follow from Lemma 5.1, since K3,3 − P3, K3,3 − e, and K3,3

have 7, 8, and 9 edges, respectively. The first two inner lower bounds follow from Lemma 5.2,

since ex(K3,3, {C4, C6}) = 5 (6 edges force a cycle in a 6-vertex graph) and ex(K3,3, C4) = 6 (6

edges force a cycle; if it is not a 4-cycle, then a 7th edge yields a chord of C6). The third inner

lower bound follows from Corollary 5.3, since K3,3 is edge-transitive.

The outer bounds primarily use known results. Wenger [18] proved that ex(Kn,n, {C4, C6}) ≥
Ω(n4/3). Theorem 4.1 yields ex(Kn,n,K3,3 − P3) ≤ O(n3/2). The lower bound on ex(Kn,n, C4)

is by Erdős, Rényi, and Sós [10], and the upper bound on ex(Kn,n,K3,3) is by Kővári, Sós, and

Turán [17] (refined by Füredi [13]). The bounds on ex(Kn,n,K3,3−e) come from Corollary 4.4.

With the results from Section 3, only one entry in Table 2 remains to be proved. We obtain

a general construction for R(Kn,n,Kp,p; 1, p + 1) ≥ n + 1 and prove optimality when p = 3.

Theorem 5.5 R(Kn,n,K3,3; 1, 4) = n + 1.

Proof: For the lower bound, we use a polychromatic perfect matching and give all other edges

a single additional color. Since Kp,p has only p vertices in each partite set, each copy of Kp,p

receives at most p + 1 colors.

For the upper bound when p = 3, consider a (K3,3; 1, 4)-coloring with the most colors. Let

G be a subgraph consisting of one edge of each color. We show first that every component of

G is a tree having a partite set with at most two vertices. If G has a 4-cycle, then the K3,3

containing it and one edge of another color has five colors. If G contains a tree with three vertices

in each partite set (such as a path of five edges from any cycle of length at least 6), then the

K3,3 encompassing these five edges has at least five colors. Hence G is a forest that satisfies the

condition claimed.
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We now choose G to maximize the size of a largest component C. Among the partite sets X

and Y , let X be the one having at most two vertices of C. Let x be a vertex of X in C, with

neighbors y1, . . . , ys in C. If C is not a star, then let x∗ be the other vertex of X in C, with

neighbors ys, . . . , yt in C, where t ≥ s.

If G does not have two edges outside C with a common endpoint in Y , then every vertex of

Y has degree at most one in G, except that ys may have degree 2. This limits G to n + 1 edges.

It thus suffices to prove that no two edges of G outside C have a common endpoint in Y .

Suppose that zy and z′y are two such edges. If for all 1 ≤ i ≤ t the color on zyi appears in C at

yi, then we can replace an edge at each yi (to x or x∗) with an edge to z to obtain G′ having a

larger component than C.

Hence some zyi has different color from the edge at yi in C. If this color is not on an edge at

ys that cuts C into nontrivial components, then we change G to enlarge C by adding the path

yi, z, y, z′ and dropping the possible edge of C that has the same color as yiz.

Hence we may assume that C is not a star (both x and x∗ are defined), and that for some

i 6= s, the color c on zyi appears at ys in C. Let w ∈ {x, x∗} be the common neighbor of yi and

ys in C. Let P be the polychromatic path z′, y, z, yi, w. If c appears at ys not on ysw or if w

has degree at least 3 in C, then P extends with another edge from w to yield a K3,3 having five

colors. Hence ysw has color c and w has degree two in C.

Note that since P has four edges, the choice of G yields t ≥ 3. Let w′ be the vertex of {x, x∗}
other than w. Since t ≥ 3, we can choose yj ∈ NC(w′)−NC(w). To avoid enlarging C or adding

a fifth color to a K3,3 containing P , the color on yjz must appear in both C and P . The only

such color is c, but now z′, y, z, yj , w
′, ys is a polychromatic P6.

By this analysis, there is no pair of edges such as zy and z′y, and the claim follows.

6 Uniform colorings

In this section, we study edge-colorings of E(Kn,n) in which every copy of C4 receives exactly q

colors. When q = 1, the entire Kn,n must be monochromatic. When q = 4, the entire Kn,n must

be polychromatic. It remains to consider q = 2 and q = 3.

Theorem 6.1 When n ≥ 5, every (C4; 2, 2)-coloring of Kn,n uses exactly n colors, and for 2 ≤
n ≤ 4 at most n colors are used.

Proof: Proposition 2.1 with s = 0 provides such a coloring. Since every (C4; 2, 2)-coloring is a

(C4; 1, 2)-coloring and R(Kn,n, C4; 1, 2) = n, every such coloring uses at most n colors.
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We must show that for n ≥ 5, at least n colors are needed. We argue first that at least three

colors must be used. Otherwise, consider the restriction to a copy G of K5,5 with partite sets

A,B. By the pigeonhole principle, one color is used at least 13 times; we call it blue. Let di be

the number of blue edges in G incident to the ith vertex of A. That vertex is a common neighbor

via blue for
(
di
2

)
pairs of vertices in B, which must be at most

(
5
2

)
= 10 to avoid a monochromatic

C4. Since
∑

di ≥ 13, convexity of the quadratic yields

11 =
(

3
2

)
+

(
3
2

)
+

(
3
2

)
+

(
2
2

)
+

(
2
2

)
≤

5∑
i=1

(
di

2

)
≤ 10,

which is impossible.

Lemma 3.1 implies that every color appears at each vertex where at least two colors appear,

so every vertex is monochromatic or receives all colors. If two of the latter are adjacent, then

since each is incident with at least three colors we have a polychromatic path of three edges. The

edge between its endpoints completes a 4-cycle with at least three colors.

Hence in one partite set all the vertices are monochromatic. If two are incident with the same

color, then we have a monochromatic C4. Otherwise, we have n distinct colors used, as claimed.

Corollary 6.2 R(Kn,n, C4; 2, 2) = n, and r(Kn,n, C4; 2, 2) =

n for n ≥ 5

2 for 2 ≤ n ≤ 4

Proof: The proof of Theorem 6.1 yields these results except for the 2-edge-coloring when

2 ≤ n ≤ 4. For this, we use one color on a Hamiltonian cycle in K4,4 and the second color

on the complementary cycle. Since each color class is an 8-cycle, there is no monochromatic 4-

cycle, and only two colors are used. For n < 4, we simply delete vertices from this construction.

Perhaps surprisingly, it is generally impossible to have exactly three colors on every 4-cycle.

Theorem 6.3 If n ≥ 5, then Kn,n has no (C4; 3, 3)-coloring.

Proof: We use the matrix formulation. Every 2-by-2 submatrix of our n-by-n matrix must have

exactly three labels.

We show first that if n ≥ 4, then some label is repeated in some row or column. Otherwise,

we may assume by symmetry that the first two positions are 0,1 in the first row and 1,2 in the

second row. We cannot use 1 again in the first two columns. Since we can’t repeat a label in a

row, every subsequent row must have both 0 and 2 in the first two columns. With n ≥ 4, this

yields repetitions in the first two columns.
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Thus we may assume that the first row starts with 0,0. Each subsequent row must have

distinct labels in the first two positions. Furthermore, these pairs in any two of the rows have

exactly one common element. The only ways to do this are with three pairs chosen from three

elements or with all pairs sharing a common element. The first case limits the matrix to four rows

(and is achievable). Hence we may assume that all pairs share a common element. Furthermore,

when n ≥ 4 that common element in the next three pairs must appear in the same column twice.

The argument of the preceding paragraph implies that whenever an element is repeated in

a row, there is an element repeated in one of the two columns containing the repetition, and it

appears in every row of those two columns other than the original row. Furthermore, the same

statement holds with “row” and “column” interchanged.

Thus when we start with a 0,0 repetition, we obtain a 1,1 repetition, and from the 1,1 repetition

we obtain a repetition parallel to the original one. This repetition cannot use 0, because it would

place three 0s in a 2-by-2 submatrix containing the original repetition. This leaves us with the

two cases listed below.

0 0 a

1 2 2

1 b c

0 0 a d

1 e 2 2

1 2 b c

In Case 1, the first two rows force a = 1. Now the first row and column prevent 0 and 1 from

appearing as b or c. Since b, c are different from each other and 0,1, they form a polychromatic

submatrix with the first row.

In Case 2, the first two rows force a and d to be 0 and 1. After this the first and third rows force

{b, c} ∩ {0, 1} = ∅. Since the second row forces b 6= c, we have a, b, c, d forming a polychromatic

submatrix.

We have obtained a contradiction in all cases when n > 4.

Proposition 6.4 r(K3,3, C4; 3, 3) = 3 and r(K4,4, C4; 3, 3) = 5, and also R(K3,3, C4; 3, 3) =

R(K4,4, C4; 3, 3) = 5.

Proof: For n ≥ 2, each C4 receives three colors, so at least three colors are used. For n = 3,

this is achievable using a 3-by-3 Latin square. When n = 3, a coloring with five colors appears

as the upper right 3-by-3 submatrix of the coloring below, and Proposition 3.3 implies that using

six colors always yields a polychromatic copy of C4.

Now let n = 4. We require three colors in every 2 by 2 submatrix. The first part of the

proof of Theorem 6.3 shows that there must be a repetition in some row or column. If there is
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a constant row, say 0000, then another row must have four other distinct colors, say 1234. If a

sixth color appears elsewhere, then it forces the three other columns to repeat from the row with

1234, and now we have a C4 with 2 colors. Hence when there is a constant row or column, the

total number of colors must be five. Below we exhibit such a coloring.

Suppose that there is no constant row or column. As in Theorem 6.3, the remainder of the

two columns containing a row repetition consists of three pairs from a triple or three pairs with

a common element. Using these observations, a short case analysis (which we omit here) shows

that every (C4; 3, 3)-coloring of K4,4 uses exactly five colors.

0 0 0 0

1 2 3 4

2 3 1 4

3 1 2 4

7 (C4; 2, 3)-colorings

For (C4; 2, 3)-colorings of Kn,n, the maximum number of colors is given by our earlier results.

Corollary 7.1 R(Kn,n, C4; 2, 3) = 2n− 1.

Proof: Proposition 2.1 with s = 1 yields a construction with 2n−1 colors. Since every (C4; 2, 3)-

coloring is a (C4; 1, 3)-coloring, the upper bound follows from Proposition 3.3.

Determining r(Kn,n, C4; 2, 3) is much more difficult. The construction in Proposition 2.4

yields r(Kn,n, C4; 2, 3) ≤ n − 3 for n ≥ 6. On the other hand, a (C4; 2, 3)-coloring is also a

(C4; 2, 4)-coloring. Since r(Kn,n, C4; 2, 4) ≥ (1 + o(1))
√

n, the same lower bound holds also for

r(Kn,n, C4; 2, 3).

Nevertheless, the known (C4; 2, 4)-colorings of Kn,n with O(
√

n ) colors have the property

that many C4’s receive all distinct colors; thus they are not (C4; 2, 3)-colorings. Our final result

improves the lower bound for r(Kn,n, C4; 2, 3) from about
√

n to about n/3.

Lemma 7.2 If a (C4; 2, 3)-coloring of Kn,n uses at most (1− 4/t)n− t + 2 colors, then for each

vertex there cannot be two colors that each appear on at least t edges incident to it.

Proof: Suppose that the claim fails at x ∈ X; let red and blue be two colors that each appear

on at least t edges incident to x. A blue [red] neighbor of a vertex is a neighbor of it via an edge

with that color. Let A be a set of t blue neighbors of x, and let B be a set of t red neighbors of x.
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Our first objective is to find vertices in A and B with few red or blue neighbors. For y ∈ A,

let l(y) be the number of blue neighbors of y other than x, and let m(y) be the number of red

neighbors of y. To avoid a blue C4 through x, each vertex of X−{x} must have at most one blue

neighbor in A; thus
∑

y∈A l(y) ≤ n−1. To avoid a red C4, two vertices in A must have at most one

common red neighbor; with X−{x} available as red neighbors we have
∑

y∈A m(y) ≤ n−1+
(

t
2

)
.

Summing the two inequalities and applying the pigeonhole principle yields a vertex v ∈ A with

l(v) + m(v) ≤ 2n−2
t + t−1

2 . Applying the analogous argument to B yields a vertex w ∈ B with at

most 2n−2
t + t−1

2 red or blue neighbors other than x. Including x, fewer than 4n
t + t vertices of X

have red or blue edges to v or w.

Let z be a vertex of X outside this set. Since the path v, x, w already has edges colored red

and blue, and neither zv nor zw has those colors, the edges zv and zw must have the same color

to avoid a polychromatic C4. Furthermore, avoiding a monochromatic C4 through v and w forces

this color to be distinct for distinct choices of z. Thus we must have more than (1 − 4/t)n − t

additional colors besides red and blue.

Theorem 7.3 r(Kn,n, C4; 2, 3) > n/3− 11.

Proof: Consider a (C4; 2, 3)-coloring with fewer colors. Say that a color is plentiful at v if it

occurs on at least n/3 + 2 edges incident to v.

We claim that X contains two vertices with no plentiful color. Otherwise, n−1 > 2(n/3−11)

implies that three vertices have the same plentiful color. The n + 6 edges from these vertices in

this color contain a monochromatic C4.

Let x, z be two vertices of X with no plentiful color. Some y ∈ Y has distinct colors on its

edges to x and z; otherwise, we have a monochromatic C4 because there are fewer than n colors.

Let blue be the color of yx and red the color of yz.

We claim that fewer than 2n/3+13 vertices of Y have red or blue edges to x or z. Since x and

z have no plentiful color, at each of these vertices the color that appears on the largest number

of incident edges appears on fewer than n/3 + 2 incident edges. Because the number of colors is

at most n/3− 4, Lemma 7.2 with t = 6 says that for every vertex there is at most one color that

appears on as many as 6 incident edges. Therefore red and blue appear on fewer than n/3 + 7

edges in total at x, and similarly for z. Thus fewer than 2n/3 + 13 vertices of Y have red or blue

edges to x or z (y was counted twice).

There remain more than n/3 − 13 vertices of Y whose edges to x and z are neither blue nor

red. Let w be such a vertex. Since the path x, y, z already has edges colored red and blue, and

neither wx nor wy has those colors, the edges wx and wy must have the same color to avoid a
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polychromatic C4. Furthermore, avoiding a monochromatic C4 through x and z forces this color

to be distinct for distinct choices of w. Thus we must have more than n/3− 13 additional colors

besides red and blue.
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[1] N. Alon, L. Rónyai, and T. Szabó, Norm-graphs: variations and applications, J. Combin.
Theory Ser. B 76 (1999), no. 2, 280–290

[2] M. Axenovich and A. Kündgen, On a generalized Anti-Ramsey problem, Combinatorica (to
appear)
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[8] P. Erdős, On an extremal problem in graph theory, Colloq. Math. 13 (1964/1965) 251–254
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