
Co-degree density of hypergraphs

Dhruv Mubayi ∗

Department of Mathematics, Statistics, and Computer Science

University of Illinois at Chicago

Chicago, IL 60607

Yi Zhao †

Department of Mathematics and Statistics

Georgia State University

Atlanta, GA 30303

November 8, 2006

Abstract

For an r-graph H, let C(H) = minS d(S), where the minimum is taken over all (r− 1)-sets
of vertices of H, and d(S) is the number of vertices v such that S ∪ {v} is an edge of H.
Given a family F of r-graphs, the co-degree Turán number co-ex(n,F) is the maximum of
C(H) among all r-graphs H which contain no member of F as a subhypergraph. Define
the co-degree density of a family F to be

γ(F) = lim supn→∞
co-ex(n,F)

n
.

When r ≥ 3, non-zero values of γ(F) are known for very few finite r-graphs families F .
Nevertheless, our main result implies that the possible values of γ(F) form a dense set
in [0, 1). The corresponding problem in terms of the classical Turán density is an old
question of Erdős (the jump constant conjecture), which was partially answered by Frankl
and Rödl [14]. We also prove the existence, by explicit construction, of finite F satisfying
0 < γ(F) < minF∈F γ(F ). This is parallel to recent results on the Turán density by
Balogh [1], and by the first author and Pikhurko [23].

1. Introduction

All hypergraphs discussed in this paper are finite and have no multiple edges. An r-graph H

(for r ≥ 2) is a hypergraph whose edges all have size r. Write V (H) and E(H) for the vertex
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set and edge set of H, respectively, with e(H) = |E(H)|. The notation Hn indicates that
|V (Hn)| = n.

1.1. The Turán problem and co-degree problem

Given a family F of r-graphs, the r-graph Gn is F-free if it contains no member of F as a (not
necessarily induced) subhypergraph. The Turán number ex(n,F) is the maximum of e(Gn)
over all F-free r-graphs Gn. The limit limn→∞ ex(n,F)/

(
n
r

)
exists by a standard averaging

argument of Katona-Nemetz-Simonovits [18], and is often called the Turán density and written
π(F).

Classical extremal graph theory began with Turán’s theorem, which determines ex(n, F ) (and
therefore π(F )) when F is a complete graph. The celebrated Erdős-Simonovits-Stone theorem
(ESS) [10, 12] generalizes Turán’s theorem. It states that for any graph F with chromatic
number χ(F ), and any ε > 0, there exists N > 0 such that every graph Gn with n > N and
e(G) ≥ (1 + ε)(1 − 1

χ(F )−1)
(
n
2

)
contains a copy of F . It is easy to see that ESS implies that

π(F) = minF∈F 1− 1
χ(F )−1 for any graph family F .

Although the Turán problems study the largest size of graphs not containing certain subgraphs,
Turán’s theorem and ESS can also be viewed as theorems on the largest possible minimum
degree of such graphs. For example, letting δ(G) denote minimum degree in a graph G, ESS
is equivalent to the following statement:

For any graph F and ε > 0, there exists N > 0 such that any graph Gn with n > N and
δ(Gn) ≥ (1 + ε)(1− 1

χ(F )−1)n contains a copy of F .

To see this, we first note that an n-vertex graph with minimum degree cn has at least c
(
n
2

)

edges. On the other hand, given a graph Gn with (c + ε)
(
n
2

)
edges (fixed c, ε > 0 and large n),

we can delete its vertices of small degrees obtaining a subgraph G′ on m ≥ ε1/2n vertices with
minimum degree at least cm (see, e.g., [2] p. 121 for details).

In this paper we investigate a corresponding extremal problem on hypergraphs. We must first
clarify how to define degree in hypergraphs. If we consider the usual degree d(v) of a vertex v,
defined as the number of edges containing v, then (as indicated above) the minimum degree
problem is again essentially equivalent to the Turán problem, which is well-studied and known
to be extremely hard (see, e.g., [16] for a survey). Therefore we consider another generalization
of degree to hypergraphs, called co-degree. Given an r-graph G and a set S ⊂ V (G) with
|S| = r − 1, we denote by N(S) or NG(S) the set of v ∈ V (G) such that S ∪ {v} ∈ E(G).
The co-degree of S is d(S) = dG(S) = |N(S)|. When S = {v1, . . . , vr−1}, we abuse notation by
writing N(v1, . . . , vr−1) and d(v1, . . . , vr−1). Let C(G) = min{d(S) : S ⊂ V (G), |S| = r − 1}
denote the minimum co-degree in G, and let c(G) = C(G)/|V (G)|.
Co-degree in hypergraphs seems to be the natural extension of degree in graphs for many
problems. Two examples are the recent results of Kühn-Osthus [20] and Rödl-Ruciński-
Szemerédi [26] who extended Dirac’s theorem on Hamilton cycles to 3-graphs, and results by
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the same sets of authors [21, 25] on the minimum co-degree threshold guaranteeing a perfect
matching in r-graphs.

The purpose of this paper is to show that, for hypergraphs, the co-degree extremal problem
exhibits some different phenomena than the classical Turán problem. Since co-degree reduces
to degree when the uniformity r = 2, our results on co-degree (for all r ≥ 2) will also reveal
some similarities in the graph and hypergraph cases.

Definition 1.1. Let F be a family of r-graphs. The co-degree Turán number co-ex(n,F) is
the maximum of C(Gn) over all F-free r-graphs Gn. The co-degree density of F is

γ(F) := lim supn→∞
co-ex(n,F)

n
.

Remark. Strictly speaking, one should divide by n− (r − 1) instead of n in the definition of
γ(F). However, since r is fixed and n → ∞, this will not change any of our results on γ(F),
and so we prefer the technically simpler version above.

The argument in [18] shows that ex(n,F)/
(
n
r

)
is non-increasing in n, and therefore one obtains

that π(F) = limn→∞ ex(n,F)/
(
n
r

)
exists. Although we could not prove that co-ex(n,F)/n (or

co-ex(n,F)/(n− r + 1)) is non-increasing, we do prove that limn→∞ co-ex(n,F)/n exists.

Proposition 1.2. γ(F) = lim
n→∞ co-ex(n,F)/n for all r-graph families F .

1.2. Comparing γ and π

It is easy to see that γ(F) = π(F) for every graph family F . The situation for r-graphs when
r ≥ 3 is more complicated. There exists an r-graph F for which π(F ) and γ(F ) differ almost
by 1. For example, fix r = 3 and k ≥ 3, and let F be the 3-graph obtained from a complete
graph on k vertices by enlarging each edge with a new (distinct) vertex. Then a simple greedy
procedure shows that co-ex(n, F ) ≤ (

k
2

)
+ k− 2 and thus γ(F ) = 0. On the other hand, let Gn

be the 3-graph whose vertices are equally partitioned into k − 1 sets and whose edges are the
triples intersecting each partition set in at most one vertex. Clearly Gn does not contain F ,
and since e(Gn) ≥ (k−2)(k−3)

(k−1)2

(
n
3

)
, we conclude that π(F ) → 1 as k →∞.

In the opposite direction, for every even r ≥ 4, there is an r-graph whose π and γ values are
the same. Let T (2k) be the 2k-graph obtained by letting P1, P2, P3 be pairwise disjoint sets
of size k and taking as edges the three sets Pi ∪ Pj with i 6= j. Frankl [13] determined that
π(T (2k)) = 1/2 (see also [19, 28]). Since the extremal configuration given in [13] has minimum
co-degree n/2− o(n), we conclude that γ(T (2k)) = 1/2 = π(T (2k)).

There are a few 3-graphs whose γ values are known or even conjectured. The only known
nontrivial examples are the Fano plane F and some hypergraphs closely resembling F. The
first author recently [22] proved that γ(F) = 1/2, in contrast to a well-known result of de Caen
and Füredi [6] that π(F) = 3/4. Let K3

4 denote the complete 3-graph on 4 vertices. It was
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conjectured by Czygrinow and Nagle [7] that γ(K3
4 ) = 1/2 while the famous Turán Conjecture

[29] claims that π(K3
4 ) = 5/9.

As far as we know, all 3-graphs Gn providing lower bounds for π satisfy that e(Gn)/
(
n
3

)
>

C(Gn)/n + α for some fixed α > 0 and all large n. For example, the well-known construction
of Turán forbidding K3

4 has about 5
9

(
n
3

)
edges but its minimum co-degree is only n

3 . Hence it
is an interesting problem to determine if 0 < γ(F ) = π(F ) for any 3-graph F .

1.3. Our results

One fundamental result in extremal hypergraph theory is the so called supersaturation phe-
nomenon, discovered by Brown, Erdős and Simonovits [11]. An indication of its usefulness is
that when applied to graphs, it is essentially equivalent to ESS.

As Proposition 1.4 below shows, the supersaturation phenomenon also holds for γ.

Definition 1.3. Let `, n be positive integers and let F be an r-graph on [h]. The blow-up
F (`) is the h-partite r-graph (V, E) with V = V1 ∪ V2 ∪ · · · ∪ Vh, every |Vi| = ` and E =
{{vi1 , vi2 , . . . , vir} : vij ∈ Vij , {i1, i2, . . . , ir} ∈ E(F )}.

For example, blowing up one r-set creates a complete r-partite r-graph Kr
r (`).

Proposition 1.4. (Supersaturation) Let F be an r-graph on f vertices. For any ε > 0,
there exists δ = δ(ε) > 0 and N such that every r-graph Gn with n > N and c(Gn) > γ(F ) + ε

contains δ
(
n
f

)
copies of F . Consequently, for every positive integer `, γ(F ) = γ(F (`)).

For each r ≥ 2, let
Πr = {π(F) : F is a family of r-graphs}.

Then ESS implies that Π2 = {0, 1
2 , 2

3 , . . . , k−1
k , . . . }. The well-ordered property of Π2 leads one

to the following definition [5, 14, 27] (although there are several equivalent formulations): a real
number 0 ≤ a < 1 is called a jump for r if there exists δ > 0, such that no family of r-graphs F
satisfies π(F) ∈ (a, a+δ). The set Π2 shows that every real number in [0, 1) is a jump for r = 2.
Erdős conjectured [9] that this is also the case for r ≥ 3 and offered $1000 for its solution.
By supersaturation we have π(Kr

r (`)) = 0. This, together with liml→∞ e(Kr
r (`))/

(
`r
r

)
= r!/rr

implies that no F satisfies π(F) ∈ (0, r!/rr). Thus every α ∈ [0, r!/rr) is a jump for r ≥ 3.
A striking result of Frankl and Rödl [14] showed that 1− 1/`r−1 is not a jump for r ≥ 3 and
` > 2r, thus disproving Erdős’ conjecture. However, one may still ask whether other numbers
in [r!/rr, 1) are jumps for r ≥ 3. For example, whether 2/9 is a jump for r = 3 is a well-known
open problem (Erdős actually considered this as the main part of his original conjecture). A
recent result of Frankl, et al. [15] showed that 5r!

2rr is not a jump for r ≥ 3 and described an
infinite sequence of non-jumps for r = 3.

The analogous problem for multigraphs with edge-multiplicity at most q was first considered
by Brown, Erdős and Simonovits. They conjectured [3] that all numbers in [0, q) are jumps
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and verified [4] it for q = 2 (ESS confirms the q = 1 case). Later Rödl and Sidorenko [27]
disproved their conjecture by finding infinitely many non-jumps in [3, q) for q ≥ 4.

In this paper we consider the same problem for γ. For r ≥ 2, let

Γr = {γ(F) : F is a family of r-graphs}.

Note that Γr ⊆ [0, 1) because γ(F) < 1 for every family F of finite r-graphs. Since γ(F) = π(F)
for all graph families F , we have Γ2 = {0, 1

2 , 2
3 , . . . , k−1

k , . . . }. However, Γr behaves differently
for r ≥ 3.

Definition 1.5. Fix r ≥ 2. A real number 0 ≤ α < 1 is called a γ-jump (or jump if the density
is clear from the context) for r if there exists δ = δ(α) > 0, such that every (infinite or finite)
family of r-graphs F satisfies γ(F) 6∈ (α, α + δ).

Theorem 1.6 below completely answers the corresponding jump question for γ. The construc-
tions proving Theorem 1.6 are different from the ones in [15, 14]. One key step in our proof is
that 0 is a not a γ-jump, which again suggests that γ is fundamentally different than π (recall
that 0 is indeed a jump in terms of π).

Theorem 1.6. Fix r ≥ 3. Then no α ∈ [0, 1) is a γ-jump. In particular, Γr is dense in [0, 1).

We believe that Theorem 1.6 can be strengthened to show that Γr = [0, 1) for each r ≥ 3.
The missing step for the following conjecture is a compactness property for γ. Note that, in
particular, Conjecture 1.7 clearly implies that Γr = [0, 1).

Conjecture 1.7. Fix r ≥ 3. For every 0 ≤ α < 1 there exists an infinite family F of r-graphs
such that γ(F) = α and all finite families F ′ ⊂ F satisfying γ(F ′) > α.

A family F of r-graphs is called non-principal [1, 23] if its Turán density is strictly less than
the density of each member. When r = 2, ESS implies that no family is non-principal because
π(F) = minF∈F 1 − 1

χ(F )−1 = minF∈F π(F ). Motivated by exploring the difference between
graphs and hypergraphs, the first author and Rödl [24] conjectured that non-principal families
exists for r ≥ 3. Balogh [1] proved this conjecture by constructing a non-principal 3-graph
family with finitely many members. The first author and Pikhurko [23] extended this result
by constructing, for each r ≥ 3, a non-principal r-graph family of size two. One might suspect
that a similar result holds for γ. Our final theorem shows this to be the case. Its proof is
similar but more complicated than the corresponding statement for π.

Theorem 1.8. Fix r ≥ 3. Then there is a finite family F of r-graphs such that 0 < γ(F) <

minF∈F γ(F ).

The rest of the paper is organized as follows. We prove Propositions 1.2 and 1.4 in Section 2,
Theorem 1.6 in Section 3 and Theorem 1.8 in Section 4. In the last section we give some
concluding remarks and open problems.
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2. Supersaturation

Our goal in this section is to prove Propositions 1.2 and 1.4. Our main tool (Lemma 2.1 below)
is a useful technical result used in this section and in the proof of Theorem 1.8.

Let a, λ > 0 with a + λ < 1. Suppose that S ⊆ [n] = {1, . . . , n} and |S| ≥ (a + λ)n. Then a
result on the hypergeometric distribution (see, e.g., [17] page 29) says that

∣∣∣∣
{

M ∈
(

[n]
m

)
: |M ∩ S| ≤ am

}∣∣∣∣ ≤
(

n

m

)
e
− λ2m

3(a+λ) ≤
(

n

m

)
e−λ2m/3. (1)

For a hypergraph H and a subset S ⊂ V (H), we denote by H[S] the subhypergraph of H

induced by the set S. For positive integers r < n, let [n] = {1, . . . , n} and
(
[n]
r

)
be the family

of all subsets of [n] of size r.

Lemma 2.1. Fix r ≥ 2. Given ε, α > 0 with α + ε < 1, let M(ε) be the smallest integer such
that every m > M(ε) satisfies m ≥ 2(r−1)

ε and
(

m
r−1

)
e−ε2(m−r+1)/12 ≤ 1

2 . If n ≥ m ≥ M(ε) and
G is an r-graph on [n] with c(G) ≥ α + ε, then the number of m-sets S satisfying c(G[S]) > α

is at least 1
2

(
n
m

)
. In particular, every r-graph Hn (n ≥ m) contains a subhypergraph H ′

m with
c(H ′

m) > c(Hn)− ε.

Proof. Given an (r − 1)-set T of [n], we call an m-set S of [n] bad for T if T ⊂ S and
|N(T ) ∩ S| ≤ αm. We call an m-set S bad if it is bad for some T . Let Φ denote the number
of bad m-sets, and let ΦT be the number of m-sets that are bad for T . We need to show that
Φ ≤ 1

2

(
n
m

)
. Clearly

Φ ≤
∑

T∈( [n]
r−1)

ΦT =
∑

T∈( [n]
r−1)

∣∣∣∣
{

S′ ∈
(

[n] \ T

m− (r − 1)

)
: |N(T ) ∩ S′| ≤ αm

}∣∣∣∣ .

Now α + ε < 1 and m ≥ 2(r−1)
ε imply that the summand above is upper bounded by

∣∣∣∣
{

S′ ∈
(

[n] \ T

m− r + 1

)
: |N(T ) ∩ S′| ≤

(
α +

ε

2

)
(m− r + 1)

}∣∣∣∣ .

Applying (1) with a = α + ε/2 and λ = ε/2 yields

ΦT ≤
(

n− r + 1
m− r + 1

)
e−(ε/2)2(m−r+1)/3.

Finally, we apply the hypothesis
(

m
r−1

)
e−ε2(m−r+1)/12 ≤ 1

2 to obtain

Φ ≤
(

n

r − 1

)(
n− r + 1
m− r + 1

)
e−(ε/2)2(m−r+1)/3 =

(
n

m

)(
m

r − 1

)
e−ε2(m−r+1)/12 ≤ 1

2

(
n

m

)
.

Its immediate consequence, Corollary 2.2, is needed for Proposition 1.2 and in Section 3.1. Call
a hypergraph nontrivial if it contains at least one edge, and a family of hypergraphs nontrivial
it contains at least one nontrivial member.
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Corollary 2.2. For any 0 < ε < 1, define M(ε) as in Lemma 2.1. Then for every n > m ≥
M(ε) and every non-trivial family F of r-graphs,

co-ex(n,F)
n

− co-ex(m,F)
m

< ε.

Proof. Since F is nontrivial, there is an F-free r-graph Hn with C(Hn) = co-ex(n,F). By
Lemma 2.1, Hn contains a subhypergraph H ′

m with c(H ′
m) > c(Hn) − ε. Since H ′

m is F-free,
c(H ′

m) ≤ co-ex(m,F)/m and the desired inequality follows.

Proof of Proposition 1.2. Let an = co-ex(n,F)/n. Corollary 2.2 says that for every
n > m ≥ M(ε), we have an − am < ε. Since an ≥ 0 for every n, it is easy to see that lim

n→∞ an

exists and equals to lim infn→∞ an.

Proof of Proposition 1.4. The proof follows the arguments of Erdős and Simonovits for π,
with a suitable application of Lemma 2.1. We sketch the main steps below.

Let α = γ(F ) and f = |V (F )|. For each positive n, let Gn be an r-graph with C(Gn) > (α+ε)n.
By Lemma 2.1, there exists an integer m, such that for n ≥ m at least 1

2

(
n
m

)
induced subgraphs

of Gn on m vertices have minimum co-degree at least (α + ε/2)m. Since γ(F ) = α and m is
sufficiently large, each of these subgraphs contains a copy of F . Consider an f -uniform graph
G′ on V (Gn) whose edges are f -sets S in which G[S] ⊇ F . Then

e(G′) ≥ 1
2

(
n
m

)
(

n−f
m−f

) =
1

2
(
m
f

)
(

n

f

)
= δ

(
n

f

)
.

A result of Erdős [8] implies that for each L, there is a sufficiently large n such that K =
Kf

f (L) ⊆ G′. Furthermore, each edge e = (v1, v2, . . . , vf ) ∈ E(K) corresponds to an embedding
of F and the mapping of [f ] = V (F ) to v1, v2, . . . , vf is regarded as a permutation ρe of [f ]. A
result in Ramsey theory says that if L is large enough, then we can always find K′ = Kf

f (`) ⊆ K
such that all `f edges in K′ follow the same permutation. This implies that for n sufficiently
large the induced subgraph G[V (K′)] contains a copy of F (`). Therefore γ(F ) = γ(F (`)).

3. Jumps

Unless stated otherwise, when we say jump we mean γ-jump. We begin by giving three
equivalent definitions for jumps.

Proposition 3.1. Fix r ≥ 2. Let 0 ≤ α < 1, 0 < δ ≤ 1 − α. The following statements are
equivalent.

S1: Every family of r-graphs F satisfies γ(F) 6∈ (α, α + δ).

S2: Every finite family of r-graphs F satisfies γ(F) 6∈ (α, α + δ).
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S3: For every ε > 0 and every M ≥ r − 1, there exists an integer N such that, for every
r-graph Gn with n > N and C(Gn) ≥ (α + ε)n, we can find a subhypergraph G′

m ⊆ Gn

with C(G′
m) ≥ (α + δ − ε)m for some m > M (Note that the order of quantifiers above is

∀ε,M ∃N ∀n > N ∃m > M).

Remark. In terms of π, a slightly stronger statement than S3 was stated in the abstract of [14].
There the factor α+δ−ε was replaced by α+δ, and the quantification ∀M ≥ r−1, ∃m > M, G′

m

was replaced by ∀M ≥ r−1, ∃G′
M . The stronger statement was valid in that context because of

the monotonicity of ex(n,F)/
(
n
r

)
. As mentioned in the introduction, we could not prove that

co-ex(n,F)/n is monotone, hence we have the different but essentially equivalent statement
S3.

In Section 3.1 we prove Proposition 3.1. The proof of Theorem 1.6 is then divided into two
cases: α = 0 (Section 3.2) and 0 < α < 1 (Section 3.3).

Let us briefly compare our proof with those on π-jumps [14, 15]. Fix a density of r-graphs Gn,
either the normalized co-degree c(Gn) or the edge density e(Gn)/

(
n
3

)
. All of these proofs show

that α ∈ [0, 1) is not a jump in terms of this density by definition S3 or its equivalent form.
Roughly speaking, for every δ > 0, we construct a sequence of r-graphs {Gn} (n = n(i) →∞
as i →∞) such that

1. the density of Gn is slightly greater than α,

2. any reasonably large subgraph of Gn has density less than α + δ.

To satisfy the first property above, one can obtain Gn from any r-graph of density α by adding
some extra edges. Hence the main task is to verify the second property for the choice of Gn.
For π, this is only known when Gn has the structure as described in [14, 15]. When r = 3,
the essential part of this structure is a 3-graph Hm with vertex set V = ∪`−1

i=0Vi, where ` ≥ 3
and Vi ∩ Vj = ∅ for i 6= j. Its edge set consists of all triples of the vertices from three different
Vi’s and all {a, b, c} with a ∈ Vi, b, c ∈ Vj for j = i + 1, . . . , i + t (mod `) for some fixed t < `.
Note that their actual Gn is a blow-up of H∗

m, which is Hm plus some extra edges. It is easy
to see that the edge density, |E(Hm)|/(

m
3

)
, is about 1− 3

` + 3t+2
`2

. For appropriate choices of `

and t, we obtain all known non-π-jumps for r = 3. In contrast, our construction for γ is more
general: we construct Gn satisfying the above two properties for all rational α ∈ [0, 1). This, of
course, is due to the nature of co-degree conditions; it does not suggest any new construction
for non-π-jumps.

3.1. Proof of Proposition 3.1

We need the following so-called Continuity property (which holds for π as shown in [5, 27]).

Lemma 3.2. Let F be a family of r-graphs. For every ε > 0, there exists a finite family
F ′ ⊆ F with γ(F) ≤ γ(F ′) ≤ γ(F) + ε.
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Proof. Trivially γ(F) ≤ γ(F ′) for any F ′ ⊆ F , so we only need to show that γ(F ′) ≤ γ(F)+ε

for some finite family F ′ ⊆ F . Set γ = γ(F) and choose m = m(ε) such that

1. co-ex(m,F)
m < γ + ε

2 and

2. m > M( ε
2), where M(ε) is defined as in Corollary 2.2.

Let F ′ be the set of members of F on at most m vertices. Then co-ex(m,F) = co-ex(m,F ′).
Now we apply Corollary 2.2 to derive that for every n > m,

co-ex(n,F ′)
n

<
co-ex(m,F ′)

m
+

ε

2
=

co-ex(m,F)
m

+
ε

2
< γ +

ε

2
+

ε

2
= γ + ε.

Therefore γ(F ′) = limn→∞
co-ex(n,F ′)

n ≤ γ + ε.

Proof of Proposition 3.1.

Trivially S1 ⇒ S2. We will show S2 ⇒ S1, S3 ⇒ S1 and S1 ⇒ S3.

S2 ⇒ S1. Assume that there exists δ > 0, such that no finite family of r-graphs F satisfies
γ(F) ∈ (α, α + δ). Suppose that S1 does not hold, i.e., there exists a family of r-graphs F
satisfying γ(F) ∈ (α, α+ δ). Let 0 < ε < α+ δ−γ(F). We apply Lemma 3.2 to obtain a finite
family F ′ ⊆ F with γ(F ′) ≤ γ(F) + ε < α + δ, a contradiction.

S3 ⇒ S1. Suppose that S3 holds. We will show that no family of r-graphs F satisfies
γ(F) ∈ (α, α + δ). Suppose instead, that there exist a family F satisfying γ(F) = α + b for
some 0 < b < δ. Set ε0 = min{ b

2 , δ−b
2 }. Then there exists N1 = N1(ε) so that the following

two statements hold:

D1: For every n > N1, there exists an F-free hypergraph Hn with c(Hn) ≥ α + ε0.

D2: Every hypergraph Gm with m > N1 and c(Gm) ≥ α + b + ε0 contain a member of F .

By S3 (with ε = ε0, M = N1), we may find an n such that the F-free hypergraph Hn in
D1 contains an m-vertex subhypergraph G′

m with c(G′
m) ≥ α + δ − ε0 > α + b + ε0 for some

m > N1. This contradicts D2 because Gm ⊂ Hn is F-free.

S1 ⇒ S3. Suppose that S1 holds but S3 does not. If S3 is false for ε > 0, then it is also
false for ε′ < ε. Consequently, we may assume that there exist 0 < ε < δ, M ≥ r − 1, and a
sequence of hypergraphs Hni (ni →∞ as i →∞) such that

P1: c(Hni) ≥ α + ε,

P2: c(H ′
m) < α + δ − ε for every subhypergraph H ′

m ⊆ Hni with m > M .

Let F = {G : G 6⊆ Hni for any i}. Note that F is nonempty because P2 implies that Km 6⊆ Hni

for every i, thus Km ∈ F (for every m > M). Then co-ex(ni,F) ≥ (α+ε)ni for every i because
Hni is F-free. Thus γ(F) ≥ α + ε. From S1, we know that γ(F) ≥ α + δ. Hence for every
natural number m > M , there exists an F-free hypergraph Gm with c(Gm) ≥ α + δ− ε. Since
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Gm is F-free, there exists some ni such that Gm ⊆ Hni (otherwise Gm itself is a member of
F). But this clearly contradicts P2.

3.2. Proof of Theorem 1.6 for α = 0

Using Statement S3 in Proposition 3.1, the following shows that 0 is not a jump for r. For
every δ > 0, there exist ε0 > 0 and M0 > 0, such that for every ` ≥ r − 1, there exist n > `

and an r-graph Gn satisfying

(1) C(Gn) ≥ ε0n,

(2) C(G′
m) < (δ − ε0)m for every G′

m ⊂ Gn with m > M0.

Remark. Note again that the order of quantifiers in the theorem is

∀ δ ∃ ε0, M0 ∀ ` ∃n > `, Gn ∀G′
m,m > M0

The following special r-graph is important to our proof.

Definition 3.3. B(`, t, r) is the r-graph (V, E) in which V = V0 ∪ V1 ∪ · · · ∪ Vt−1, Vi ∩ Vj = ∅
for all i 6= j, |Vi| = ` for all i, and E comprises all S ∈ (

V
r

)
with |S ∩ Vi| ≤ r − 2 for all i.

Fix δ ∈ (0, 1). Let

ε0 =
δ

3
, M0 =

3(r − 1)
δ

, and t =
⌊

1
ε0

⌋
. (2)

Therefore ε0 < 1/3 and t ≥ 3.

For every ` ≥ r−1, set n = t`. Starting from the r-graph B(`, t, r), we add to the edge set the r-
sets with r−1 vertices in Vi and one vertex in Vi+1 for all i (here Vt = V0). Denote the resulting
r-graph by Gn. It is easy to see that C(Gn) ≥ ε0n. In fact, given an (r−1)-set R ⊂ V (Gn), let
Ri = R∩Vi. If |{i : Ri 6= ∅}| = 1, i.e., R ⊂ Vi for some i, then N(R) = Vi+1 and d(R) = ` ≥ ε0n.
Otherwise, the definition of B(l, t, r) implies that d(R) ≥ (t − 2)` ≥ ` ≥ ε0t` = ε0n when
|{i : Ri 6= ∅}| = 2, and d(R) ≥ n− (r − 1) > ε0n when |{i : Ri 6= ∅}| ≥ 3.

To complete the proof, we show that

For every m-set S with m > M0, G′ = Gn[S] satisfies C(G′) < (δ − ε0)m. (?)

Suppose that (?) does not hold. Then C(G′) = C(Gn[S]) ≥ (δ − ε0)m = 2ε0m for some m-set
S. Let Si = S ∩Vi for all i. Since m > M0 ≥ (r−1)/ε0 ≥ (r−1)t, by the pigeonhole principle,
there is an i0 and an (r − 1)-set R0 ⊂ Si0 . Because dG′(R0) ≥ 2ε0m and N(R0) ⊂ Vi0+1, we
have |Si0+1| ≥ 2ε0m. Since 2ε0m > r− 1, we may repeat this argument to i0 + 1 and conclude
|Si| ≥ 2ε0m for all i. But this yields the contradiction m ≥ t 2ε0m ≥ (1/ε0 − 1) 2ε0m > m

(using the fact ε0 < 1/3).
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3.3. Proof of Theorem 1.6 for 0 < α < 1

Since the set of rational numbers is dense in the reals, it suffices to show that α = a/b is not
a jump for every two positive integers a < b. As in the α = 0 case, we will show that the
negation of S3 holds for every δ > 0.

Given δ > 0, let ε0,M0, t be as in (2). Set

ε =
ε0

b
and M = max

{
rb2

(δ − ε0)a
,

M0 + rb

δ − ε0
, M0b

}
.

For every integer ` ≥ r − 1, set n = t`b. Let D be the directed graph on {0, 1, . . . , b− 1} with
E(D) = {(i, j) : j = i + 1, . . . , i + a}. The indices in this subsection are mod b unless stated
differently. Let Gt` be the r-graph constructed in Section 3.2. Let H = (V,E) be the n-vertex
r-graph obtained from B(t`, b, r) by adding

• edges within each Vi so that H[Vi] ∼= Gt`, and

• all edges with r − 1 vertices in Vi and one vertex in Vj whenever (i, j) ∈ E(D).

We claim that C(H) ≥ (a/b + ε)n. To see this, pick an (r − 1)-set R ⊂ V . If R ⊂ Vi for some
i, then R ∪ {v} ∈ E for every v ∈ ⋃a

j=1 Vi+j , and dH[Vi](R) ≥ ε0t` because H[Vi] ∼= Gt`. Thus

dHn(R) ≥ a|Vi|+ ε0t` = (a + ε0)t` = (a/b + ε)n.

Next suppose that maxi |R ∩ Vi| < r − 1. We consider three cases: a = b − 1, a = b − 2 and
a ≤ b− 3. If a = b− 1, then the edges of H[Vi] together with the edges of B(t`, b, r) yield

dHn(R) ≥ n− (r − 1) ≥ n− ` = (b− 1)t` + t`− ` > (b− 1)t` + ε0t` = (a/b + ε)n,

where the third inequality holds because t > ε0t + 1. Following a similar reasoning, when
a = b− 2, we have

dHn(R) ≥ n− t`− (r − 1) ≥ n− t`− ` > (b− 2)t` + ε0t` = (a/b + ε)n,

and when a ≤ b− 3, the edges of B(t`, b, r) yield

dHn(R) ≥ n− 2t`− (r − 1) ≥ n− 2t`− ` > (b− 3)t` + ε0t` ≥ (a/b + ε)n.

Let S ∈ (
V
m

)
with m > M and H ′ = H[S]. Our goal is to show that C(H ′) < (a/b + δ − ε)m,

i.e., there exists an (r − 1)-set R ⊂ S such that dH′(R) < (a/b + δ − ε)m.

Let Si = S ∩ Vi for all i. We first claim that there exists i0, such that |Si0 | ≥ r − 1 and

i0+a∑

j=i0+1

|Sj | < a

b
m + rb. (3)
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In fact, if
∑i+a

j=i+1 |Sj | > a
b m for all i, then by averaging, we obtain |S| > d(ba

b m)/ae ≥ m,
a contradiction. Next, assume that

∑i+a
j=i+1 |Sj | ≤ a

b m but |Si| ≤ r − 2 for some i. Without
loss of generality, let i = 0, so

∑a
j=1 |Sj | ≤ a

b m and |S0| ≤ r − 2. Let i0 be the largest integer
less than b such that |Si0 | ≥ r − 1 (such i0 exists because |S| = m > M > (r − 2)b). Then∑i0+a

j=i0+1 |Sj | ≤
∑b−1

j=i0+1 |Sj |+ |S0|+
∑a

j=1 |Sj | ≤ (r − 2)b + a
b m and (3) follows.

Let R be an (r−1)-subset of Si0 . We will show that dH′(R) < (a/b+δ−ε0)m < (a/b+δ−ε)m.
If |Si0 | > M0, then H[Vi0 ] ∼= Gt` and (?) implies that dH′[Si0

](R) < (δ − ε0)|Si0 |. Otherwise
dH′[Si0

](R) ≤ |Si0 | ≤ M0.

If |Si0 | ≥ (1− a
b )m, then b ≥ a + 1 and m ≥ bM0 yield |Si0 | ≥ m

b > M0. Therefore

dH′(R) < (δ − ε0)|Si0 |+ (m− |Si0 |) < (δ − ε0)m +
a

b
m.

Otherwise, m− |Si0 | > a
b m > rb

δ−ε0
, since m > rb2

(δ−ε0)a . Consequently

(δ − ε0)|Si0 |+ rb < (δ − ε0)m. (4)

By the structure of D, we know that all the neighbors of R in H ′[S \ Si0 ] are in Sj , for
j = i0+1, . . . , i0+a (mod b). Applying (3), we therefore obtain dH′[S\Si0

](R) ≤ ∑i0+a
j=i0+1 |Sj | <

a
b m + rb, and hence

dH′(R) = dH′[Si0
](R) + dH′[S\Si0

](R)

< max{M0, (δ − ε0)|Si0 |}+
a

b
m + rb

= max{M0 + rb, (δ − ε0)|Si0 |+ rb}+
a

b
m

The hypothesis m > M0+rb
δ−ε0

implies that M0 + rb < (δ− ε0)m, and together with (4), we again
derive that dH′(R) < (δ − ε0)m + a

b m.

4. Non-Principality

In this section, we prove Theorem 1.8 by an explicit construction. An r-graph G is called
2-colorable (or with chromatic number two) if V (G) can be partitioned into two disjoint sets
A and B such that neither A nor B contains any edge. The main idea in our proof is to find
γ0 < 1

2 and a 2-colorable r-graph F with γ(F ) ≥ 1
2 such that every 2-colorable r-graph Hn

with c(Hn) ≥ γ0 contains F as a subgraph.

Definition 4.1. Kr(t, t) is the r-graph with vertex set V = A ∪B, A ∩B = ∅, |A| = |B| = t,
and edge set {S ∈ (

V
r

)
: |S ∩A| = 1 or |S ∩B| = 1}.

Proposition 4.2. For r ≥ 3, there exists a positive integer ` = `(r) such that γ(Kr(`, `)) ≥ 1
2 .
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Proof. We need to show that for every ε > 0, there exists N > 0 such that for every n > N ,
there exists a Kr(`, `)-free r-graph Hr

n with c(Hr
n) > 1

2 − ε. We obtain Hr
n based on a random

construction of Nagle and Rödl (see [7]). Let R be a random tournament on [n], namely, an
orientation of the complete graph on {1, . . . , n} such that i → j or j → i, each with probability
1/2 for every i < j. Nagle and Rödl define a random 3-graph G3 on [n] such that for all
i < j < k, {i, j, k} ∈ E(G3) if and only if either k → i, i → j or j → i, i → k. By using
standard Chernoff bounds, we have c(G3) > 1

2−ε with positive probability for any fixed ε > 0.
On the other hand, G3 contains no K3

4 because for any i < j < k < t, two of ij, ik, it must
have the same direction. Since K3

4 = K3(2, 2), setting `(3) = 2, G3 gives rise to the desired
H3

n.

For r > 3, we define a random r-graph Gr with vertex set [n] and E(G) = {D ∈ (
[n]
r

)
: D ⊃ T

for some T ∈ E(G3)}. In other words, an r-subset D ⊂ [n] is an edge if and only if D contains
some i < j < k such that either k → i, i → j or j → i, i → k. As before we know that for
any ε > 0, c(Gr) > 1

2 − ε with positive probability. Let ` = 2R3(4, r − 1), where the Ramsey
number R3(4, r− 1) is the smallest m such that any 3-graph on m vertices either contains K3

4

or K̄3
r−1 (the empty 3-graph on r − 1 vertices). We claim that Gr contains no Kr(`, `). That

is, given two disjoint `-subsets A and B of [n], we show that some r-subset S ⊂ A ∪ B with
|S ∩A| = 1 or |S ∩B| = 1 is not an edge of Gr. Without loss of generality, assume that a0 ∈ A

is the smallest elements in A ∪ B. Partition B into B1 and B2, where B1 = {b ∈ B : a0 → b}
and B2 = {b ∈ B : b → a0}. Without loss of generality, assume that |B1| ≥ `/2. Since
|B1| ≥ R3(4, r− 1) and G3 is K3

4 -free, G3[B1] contains a copy of K̄3
r−1 with the vertex set B0.

Together with the definitions of a0 and B1, this implies that {a0}∪B0 contains no edge of G3.
Consequently {a0} ∪B0 is not an edge of Gr.

Proposition 4.3. Let r ≥ 3, ` ≥ r − 1 and ρ = 1
2

(
1− 1

( `
r−1)

+ 1

( `
r−1)21/`

)
< 1

2 . For any

ε > 0 there exists N such that every 2-colorable r-graph Gn with n > N and C(Gn) ≥ (ρ + ε)n
contains a copy of Kr(`, `).

Proof. Suppose to the contrary, that for arbitrarily large n, there exists a 2-colorable r-graph
Gn such that

• C(Gn) = c ≥ (ρ + ε)n, and

• Gn contains no copy of Kr(`, `).

Since Gn is 2-colorable, we may partition V (Gn) into two sets A and B with |A| = a ≤ b = |B|
such that no edges of Gn fall inside A or B. Thus for any X ∈ (

A
r−1

)
, we have N(X) ⊆ B and

the same holds for Y ∈ (
A

r−1

)
. This implies that c ≤ a ≤ b ≤ n− c.

Let X ∈ (
A
`

)
. We first estimate |⋂X′⊆( X

r−1)
N(X ′)|. Since every X ′ ⊂ (

A
r−1

)
has at most b− c

non-neighbors in B, the number of their common neighbors is at least b−(
`

r−1

)
(b−c). Similarly

|⋂Y ′⊆( Y
r−1)

N(Y ′)| ≥ a− (
`

r−1

)
(a− c) for every Y ∈ (

B
`

)
.
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The key to our proof is to estimate Φ, the number of X ∪ Y with X ∈ (
A
`

)
and Y ∈ (

B
`

)
such

that either

• X ′ ∪ {y} ∈ E(Gn) for all X ′ ∈ (
X

r−1

)
and y ∈ Y or

• Y ′ ∪ {x} ∈ E(Gn) for all Y ′ ∈ (
Y

r−1

)
and x ∈ X.

Trivially Φ ≤ (
a
`

)(
b
`

)
. On the other hand, because Gn does not contain Kr(`, `), we have

Φ ≥
∑

X∈(A
`)

(∣∣∣⋂X′⊆( X
r−1)

N(X ′)
∣∣∣

`

)
+

∑

Y ∈(B
` )

(∣∣∣⋂Y ′⊆( Y
r−1)

N(Y ′)
∣∣∣

`

)

≥
(

a

`

)(
b− (

`
r−1

)
(b− c)

`

)
+

(
b

`

)(
a− (

`
r−1

)
(a− c)

`

)

=
(

a

`

)(
ta− (tn− (t + 1)c)

`

)
+

(
b

`

)(
tb− (tn− (t + 1)c)

`

)
,

where t =
(

`
r−1

)− 1 ≥ 0 (equality holds if and only if ` = r − 1).

For fixed t, c, n, define the function f(x) =
(
x
`

)(tx−(tn−(t+1)c)
`

)
for x ∈ [c, n−c]. After rewriting,

f(x) =
∏l−1

i=0(x− i)
∏l−1

i=0(tx− (tn− (t + 1)c)− i)
(l!)2

.

We claim that the second derivative f ′′(x) ≥ 0 for x ∈ [c, n − c]. By differentiation, this
claim holds as long as each term in the products in the numerator is nonnegative and has
nonnegative derivative. Since n is sufficiently large, x − l + 1 ≥ c − l + 1 > 0 so each term
in the first product is positive. To show the same for each term in the second product, it
suffices to show that tc ≥ tn − (t + 1)c + (` − 1). Since c > ρn, it is enough to show that
1
2

(
1− 1

t+1 + 1
21/`(t+1)

)
> t

2t+1 . This holds since

1
2

(
1− 1

t + 1
+

1
21/`(t + 1)

)
>

1
2

(
1− 1

t + 1
+

1
2(t + 1)

)
>

1
2

(
1− 1

2t + 1

)
=

t

2t + 1
.

The derivatives of the terms are 1 and t, which are both nonnegative. We therefore conclude
that f ′′(x) ≥ 0 and consequently f(x) is convex on [c, n− c]. Hence

Φ ≥ f(a) + f(b) ≥ 2f

(
a + b

2

)
= 2f (n/2) = 2

(
n/2
`

)(
(t + 1)c− tn/2

`

)
.

On the other hand, since ln
(
x
l

)
is a concave function, we have Φ ≤ (

a
l

)(
b
l

) ≤ (n/2
l

)2
. Putting

the lower and upper bounds for Φ together yields

2
(

n/2
`

)(
(t + 1)c− tn/2

`

)
≤

(
n/2
`

)2

,
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But this implies that as n →∞,

c ≤ n

2

(
1− 1

t + 1
+

1
(t + 1)21/`

)
+ o(n) =

n

2

(
1− 1(

`
r−1

) +
1(

`
r−1

)
21/`

)
+ o(n) = ρn + o(n),

contradicting the assumption that c ≥ (ρ + ε)n.

Proof of Theorem 1.8. Let ` = `(r) be as in Proposition 4.2 and ρ as in Proposition 4.3.
For any 0 < ε < 1

2 − ρ we will construct a finite family F of r-graphs such that

1
4
≤ γ(F) ≤ ρ + ε <

1
2
≤ min

F∈F
γ(F ). (5)

Let m = max{M(ε/2), N(ε/2)}+ 1, where M is the threshold function in Lemma 2.1 and N

is the threshold function in Proposition 4.3. Let F0 be the family of r-graphs on at most m

vertices which are not 2-colorable. We observe that minF∈F0 γ(F ) ≥ γ(F0) ≥ 1/2. In fact, for
any n, the following r-graph Gn is 2-colorable and satisfies C(Gn) = bn/2c: V (Gn) contains
two disjoint vertex sets A and B of sizes differing by at most 1, E(Gn) contains all the edges
intersecting both A and B.

We now show that (5) holds for F = F0 ∪ {Kr(`, `)}. Proposition 4.2 says that γ(Kr(`, `)) ≥
1/2. Together with minF∈F0 γ(F ) ≥ 1/2, we conclude that minF∈F γ(F ) ≥ 1/2. On the other
hand, we claim that 1

4 ≤ γ(F) ≤ ρ + ε and thus (5) follows.

To see that γ(F) ≥ 1
4 , let Hr

n be the Kr(`, `)-free r-graph as in the proof of Proposition 4.2.
We randomly partition V (Hr

n) into two almost equal parts and remove all the edges within
each part. The resulting r-graph H̃r

n is also Kr(`, `)-free and satisfies C(H̃r
n) ≥ n

4 − o(n) with
positive probability. Hence γ(F) ≥ 1

4 .

To see that γ(F) ≤ ρ + ε, let Gn be an r-graph with n > m and C(Gn) ≥ (ρ + ε)n. By
Lemma 2.1, Gn has a subgraph G′

m with C(G′
m) ≥ (ρ + ε/2)m. If G′

m is not 2-colorable,
then G′

m itself is a member of F . Otherwise, since m > N(ε/2) and C(G′
m) ≥ (ρ + ε/2)m,

Proposition 4.3 guarantees that G′
m contains a copy of Kr(`, `). Therefore G always contains

a member of F as a subgraph. Consequently co-ex(n,F) ≤ (ρ + ε)n for all n > m and thus
γ(F) ≤ ρ + ε.

5. Concluding Remarks and open problems

• Theorem 1.6 and Proposition 3.1 together imply that the set {γ(F) : F is a finite family}
is dense on [0, 1), i.e., for all 0 ≤ α < β < 1, there exists a finite family of r-graphs such
that γ(F) ∈ (α, β). It would be interesting to describe the set {γ(F ) : F is an r-graph}.
For example, does Theorem 1.6 still hold when F in Definition 1.5 is replaced by a single
r-graph F? This question is also related to the principality: if there exist 0 ≤ α < β < 1
such that γ(F ) 6∈ (α, β) for every r-graph F , then every finite family F with γ(F) ∈ (α, β)
(such F exists by Theorem 1.6 and Proposition 3.1) is non-principal.
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• We have mentioned the problem of verifying γ(K3
4 ) < π(K3

4 ) in our introduction. Ap-
plying Proposition 4.3 with r = 3 and ` = 2, we obtain that every 2-colorable 3-graph
Gn with c(Gn) > 1

2
√

2
(and large n) contains a copy of K3

4 . Is this constant 1
2
√

2
sharp

here? From (5) we know it can not be reduced to a number smaller than 1/4.

• Parallel to the situation for π, it would be interesting to construct two r-graphs F1, F2

such that 0 < γ({F1, F2}) < min{γ(F1), γ(F2)} (Sudakov pointed out that such a con-
struction for even r ≥ 4 can be obtained by following the ideas in [23]).

Acknowledgment: The authors thank the referees for their careful reading, and for suggest-
ing an idea that greatly simplified and shortened the proof of Proposition 4.2.
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[26] V. Rödl, A. Ruciński, E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs,
Combin. Probab. Comput. 15 (2006), no. 1-2, 229–251.

17
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