Set systems with union and intersection constraints

Dhruv Mubayi * Reshma Ramadurai ${ }^{\dagger}$

October 15, 2008

Abstract

Let $2 \leq d \leq k$ be fixed and n be sufficiently large. Suppose that \mathcal{G} is a collection of k-element subsets of an n-element set, and $|\mathcal{G}|>\binom{n-1}{k-1}$. Then \mathcal{G} contains d sets with union of size at most $2 k$ and empty intersection. This extends the Erdős-Ko-Rado theorem and verifies a conjecture of the first author for large n.

1 Introduction

A d-cluster of k-element sets (henceforth k-sets) is a collection of d sets with union of size at most $2 k$ and empty intersection. The seminal Erdős-Ko-Rado theorem [3] states that the maximum size of a family of k-sets of $[n]=\{1, \ldots, n\}$ which contains no 2-cluster is $\binom{n-1}{k-1}$ (note that a 2 -cluster comprises two disjoint sets). Katona asked the corresponding question when $d=3$. Frankl and Füredi [4] showed that the answer is again $\binom{n-1}{k-1}$ as long as n is sufficiently large, and conjectured that this holds for all $n \geq 3 k / 2$. The first author [8] recently proved their conjecture, and generalized it still further by introducing the concept of a d-cluster (the word d-cluster to describe this particular set of configurations is due to Chen, Liu and Wang [1]). A star is a collection of sets that all contain a fixed element.

Conjecture 1. ([8]) Let $2 \leq d \leq k$ and $n \geq k d /(d-1)$. Suppose that \mathcal{G} is a collection of k-sets of $[n]$ containing no d-cluster. Then $|\mathcal{G}| \leq\binom{ n-1}{k-1}$. Moreover, if $d \geq 3$ and equality holds, then \mathcal{G} is a star.

The first author [7] recently proved that for fixed $2 \leq d \leq k$ we have $|\mathcal{G}| \leq(1+o(1))\binom{n-1}{k-1}$ as $n \rightarrow \infty$. Regarding exact results we have already observed that Conjecture 1 holds for $d=2$ and $d=3$. The only other known case for Conjecture 1 is when $d=k$, where it follows from an old result of Chvátal [2] (this was recently observed in [1]).

There has been further progress when one or more of the parameters is large. In [7], it is proved that Conjecture 1 holds for $d=4$ and large n, while Keevash and the first author [6] recently proved Conjecture 1 in a different range of n, namely when k / n and $n / 2-k$ are both bounded away from zero. This includes the case $n=c k$ where c is a fixed constant greater than 2.

In this paper we provide further evidence for Conjecture 1 by proving it for all $2 \leq d \leq k$ as long as n is sufficiently large.

[^0]Theorem 1. Fix $2 \leq d \leq k$ and let n be sufficiently large. Suppose that \mathcal{G} is a family of k-sets of $[n]$ that contains no d-cluster. Then $|\mathcal{G}| \leq\binom{ n-1}{k-1}$, and equality holds if and only if \mathcal{G} is a star.

Our proof of Theorem 1 is based on the stability approach pioneered by Erdős and Simonovits (see [9]). In [7], this method is used to prove the case $d=4$ and here we add some new ideas (see Section 3) to extend those arguments. Recently Füredi and Ozkahya [5] have also proved Theorem 1. Their proof uses the delta system method, which is a completely different approach.

2 Preliminaries

Suppose \mathcal{G} is a collection of subsets of $[n]$ and $x \in[n]$. The degree $d_{\mathcal{G}}(x)$ is the number of sets of \mathcal{G} that contain x. The sets $A \subset[n]-\{x\}$ with $A \cup\{x\} \in \mathcal{G}$ fall into two families: $L_{x}(\mathcal{G})$ consists of those A for which there is some $y \neq x$ for which $A \cup\{y\}$ is also in $\mathcal{G} ; S_{x}(\mathcal{G})$ consists of those A for which $A \cup\{y\} \in \mathcal{G}$ implies that $y=x$. Note that $d_{\mathcal{G}}(x)=\left|L_{x}(\mathcal{G})\right|+\left|S_{x}(\mathcal{G})\right|$.
We need the following lemma proved in [7] (see also [6]). We will present the short proof for completeness.

Lemma 1. Suppose $n>k \geq d \geq 2, \mathcal{G}$ is a collection of k-sets of $[n]$ and $x \in[n]$. If $L_{x}(\mathcal{G})$ contains a (d-1)-cluster then \mathcal{G} contains a d-cluster.

Proof. Suppose that $L_{x}(\mathcal{G})$ contains the $(d-1)$-cluster A_{1}, \cdots, A_{d-1}. There exists $y \neq x$ such that $B_{d}=A_{1} \cup\{y\} \in \mathcal{G}$. Let $B_{i}=A_{i} \cup\{x\}$ for $i \in[d-1]$. Since A_{1}, \ldots, A_{d-1} forms a ($d-1$)-cluster, $\cap_{i=1}^{d-1} A_{i}=\emptyset$, and so $\cap_{i=1}^{d-1} B_{i}=\{x\}$. As $x \notin B_{d}$, we conclude that $\cap_{i=1}^{d} B_{i}=\emptyset$. Also, $\left|\cup_{i=1}^{d} B_{i}\right| \leq\left|\cup_{i=1}^{d-1} A_{i}\right|+|\{x, y\}| \leq 2(k-1)+2=2 k$. Consequently, B_{1}, \cdots, B_{d} is a d-cluster in \mathcal{G}.

The other crucial tool is the following stability result proved in [7].
Theorem 2. (Stability) Fix $2 \leq d \leq k$. For every $\epsilon>0$, there exists $\delta>0$ and n_{0} such that the following holds for all $n>n_{0}$: Suppose that \mathcal{G} is a collection of k-sets of $[n]$ containing no d-cluster. If $|\mathcal{G}| \geq(1-\delta)\binom{n-1}{k-1}$, then there exists an $x \in[n]$ such that the number of k-sets omitting x is at most $\epsilon\binom{n-1}{k-1}$. In particular, this implies that $|\mathcal{G}| \leq 2\binom{n-1}{k-1}$ for sufficiently large n.

3 A bound for bipartite families

In order to prove the main result in the next section, we need some estimates on various subfamilies with a certain bipartite structure. The crucial lemma below provides this. Although we need it only for $p \geq 3$, we will prove it for $p \geq 1$ in order to facilitate an induction argument. This was pointed out to us by a referee.

Lemma 2. Fix $2 \leq d \leq k, 1 \leq p \leq k$, and $k<b \leq n / 2$ with n sufficiently large. Suppose that $[n]$ has partition $B \cup C, b=|B|, c=|C|$ and \mathcal{F} is a collection of k-sets of $[n]$ such that $|A \cap B|=p$ for every $A \in \mathcal{F}$. If \mathcal{F} contains no d-cluster, then $|\mathcal{F}| \leq k b^{p-1} c^{k-p}$.

Proof. We proceed by induction on d. First suppose that $d=2$, so \mathcal{F} is an intersecting family. Let $S \in \mathcal{F}$. Then every set in \mathcal{F} has a point in $S \cap B$ or a point in $S \cap C$. Consequently, $|\mathcal{F}| \leq p b^{p-1} c^{k-p}+(k-p) b^{p} c^{k-p-1}$ if $p<k$ and $|\mathcal{F}| \leq k b^{k-1}$ if $p=k$. Since $b \leq c$, in either case we obtain $|\mathcal{F}| \leq k b^{p-1} c^{k-p}$ as desired.

For the induction step, assume that $d \geq 3$. Suppose for a contradiction, that $|\mathcal{F}|>k b^{p-1} c^{k-p}$. Then

$$
k b^{p-1} c^{k-p}<|\mathcal{F}| \leq \sum_{x \in B} d_{\mathcal{F}}(x)=\sum_{x \in B}\left|L_{x}(\mathcal{F})\right|+\sum_{x \in B}\left|S_{x}(\mathcal{F})\right| .
$$

A typical set in $S_{x}(\mathcal{F})$ has $p-1$ points in B and $k-p$ points in C, and is not counted by any other $S_{y}(\mathcal{F})$ with $y \neq x$. Therefore $\sum_{x \in B}\left|S_{x}(\mathcal{F})\right| \leq b^{p-1} c^{k-p}$ and we have

$$
\sum_{x \in B}\left|L_{x}(\mathcal{F})\right|>(k-1) b^{p-1} c^{k-p}
$$

First suppose that $p=1$. Then we have $\sum_{x \in B}\left|L_{x}(\mathcal{F})\right|>(k-1) c^{k-1}$ and so there exists $w \in B$ for which

$$
\left|L_{w}(\mathcal{F})\right|>(k-1) \frac{c^{k-1}}{b} \geq(k-1) c^{k-2}>2\binom{c-1}{k-2}
$$

Now Theorem 2 (applied with $2 \leq d-1 \leq k-1$) implies that $L_{w}(\mathcal{F})$ contains a ($d-1$)-cluster, since we have assumed that $c \geq n / 2$ is sufficiently large. Lemma 1 then gives that \mathcal{F} contains a d-cluster which is a contradiction.
Now suppose that $p \geq 2$. Again we find $w \in B$ for which $\left|L_{w}(\mathcal{F})\right|>(k-1) b^{p-2} c^{k-p}$. By Lemma $1, L_{w}(\mathcal{F})$ contains no ($d-1$)-cluster, so by the induction hypothesis (replacing d with $d-1, p$ with $p-1, k$ with $k-1, b$ with $b-1$, and n with $n-1$), we obtain the contradiction $\left|L_{w}(\mathcal{F})\right| \leq(k-1) b^{p-2} c^{k-p}$.

4 Proof of Theorem 1

In this section we complete the proof of Theorem 1. At one point the argument is identical to that in $[7]$, and we refer the reader there for the details.

Proof of Theorem 1. We assume that $k \geq d \geq 3$ since $d=2$ follows from the Erdős-KoRado Theorem. Choose n sufficiently large that all statements in the following proof requiring this hold.
Suppose that \mathcal{G} is a collection of k-sets of $[n]$ containing no d-cluster with $|\mathcal{G}|=\binom{n-1}{k-1}$. We will show that \mathcal{G} is a star. Since a star is a maximal family with no d-cluster, this proves the required bound on $|\mathcal{G}|$, with the characterization of equality as well. Let $\mathcal{G}-x$ be the collection of sets in \mathcal{G} that omit x. By Theorem 2, there exists $x \in[n]$ such that $m:=|\mathcal{G}-x|<\epsilon\binom{n-1}{k-1}$ with $\epsilon<\left(12 k^{2}\right)^{-k}$. If $m=0$, then \mathcal{G} is a star and we are done, hence we may assume that $m>0$. Let

$$
\mathcal{G}_{x}=\{E \subset[n]:|E|=k-1 \text { and } E \cup\{x\} \in \mathcal{G}\} .
$$

Claim 1. There are pairwise disjoint $(k-2)$-sets $S_{1}, S_{2}, S_{3} \subset[n]-\{x\}$ such that for each i

$$
d_{\mathcal{G}_{x}}\left(S_{i}\right)=\left|\left\{y \in[n]: S_{i} \cup\{x, y\} \in \mathcal{G}\right\}\right| \geq n-k+1-\frac{2 k m}{\binom{n-1}{k-2}} .
$$

Proof. See the corresponding claim in [7].
By Claim 1, for each i,

$$
\left|\left\{y \in[n]: S_{i} \cup\{x, y\} \notin \mathcal{G}\right\}\right|<k+\frac{2 k m}{\binom{n-1}{k-2}} .
$$

Let

$$
B=\left\{y \in[n]: S_{i} \cup\{x, y\} \notin \mathcal{G} \text { for some } i\right\} .
$$

Then $|B|<3 k+6 k m /\binom{n-1}{k-2}$. By adding points arbitrarily to B, we may assume that $|B|=$ $3 k+\left\lfloor 6 k m /\binom{n-1}{k-2}\right\rfloor$. Since $m \geq 1$, we may suppose that there exists $S \in \mathcal{G}-x$. For each choice of a $(k-2)$-set $S^{\prime} \subset[n]-\{x\}-S$ one of the k-sets $S^{\prime} \cup\{x, y\}$ where $y \in S$ must be absent from \mathcal{G}, otherwise we obtain a d-cluster using $d-1$ of these sets and S. This immediately yields $m \geq\binom{ n-k-1}{k-2}>\frac{1}{2}\binom{n-1}{k-2}$. Consequently,

$$
|B|=3 k+\left\lfloor\frac{6 k m}{\binom{n-1}{k-2}}\right\rfloor<\frac{12 k m}{\binom{n-1}{k-2}}<\frac{12 k \epsilon\binom{n-1}{k-1}}{\binom{n-1}{k-2}}<12 k \epsilon n<\frac{n-1}{2} .
$$

Now define, for each $i \in\{0, \ldots, k\}$,

$$
\mathcal{T}_{i}=\{T \in \mathcal{G}-x:|T \cap B|=i\} .
$$

Note that $\mathcal{T}_{0} \cup \cdots \cup \mathcal{T}_{k}$ is a partition of $\mathcal{G}-x$. First we show that $\mathcal{T}_{0}=\mathcal{T}_{1}=\mathcal{T}_{2}=\emptyset$. Observe that $S_{i} \subset B$ for $i=1,2,3$. If $S \in \mathcal{T}_{0} \cup \mathcal{T}_{1} \cup \mathcal{T}_{2}$, then there is an i for which $S_{i} \cap S=\emptyset$. Choose $d-2 \leq k-2$ elements $y_{1}, \ldots, y_{d-2} \in S-B$ and $y \in[n]-(B \cup\{x\} \cup S)$. Now the $d-2$ sets $S_{i} \cup\left\{x, y_{j}\right\}$ (for all j) together with S and $S_{i} \cup\{x, y\}$ form a d-cluster in \mathcal{G}, which is a contradiction. Therefore, $\mathcal{T}_{0} \cup \mathcal{T}_{1} \cup \mathcal{T}_{2}=\emptyset$.
Since $\mathcal{G}-x=\cup_{i=3}^{k} \mathcal{T}_{i}$, we may assume that $\left|\mathcal{T}_{p}\right| \geq m /(k-2)$ for some $3 \leq p \leq k$. Applying Lemma 2 with $C=[n]-\{x\}-B$ (and $b=|B|, c=|C|$; noting that $k<b<(n-1) / 2)$, we obtain

$$
\frac{m}{k-2} \leq\left|\mathcal{T}_{p}\right| \leq k b^{p-1} c^{k-p}<k\left(\frac{12 k m}{\binom{n-1}{k-2}}\right)^{p-1} n^{k-p}
$$

Simplifying, we obtain

$$
m^{p-2}>\binom{n-1}{k-2}^{p-1} \frac{1}{n^{k-p} k(k-2)(12 k)^{p-1}} .
$$

Then, since $m<\epsilon\binom{n-1}{k-1}<\epsilon n\binom{n-1}{k-2}$, we have

$$
\epsilon \geq \epsilon^{p-2}>\frac{\binom{n-1}{k-2}}{n^{k-2} k(k-2)(12 k)^{p-1}} \geq \frac{((n-k) / n)^{k-2}}{(k-2)!k(k-2)(12 k)^{p-1}}>\left(12 k^{2}\right)^{-k}
$$

for sufficiently large n. This contradicts the choice of ϵ and completes the proof.

5 Acknowledgments

The authors thank the referees for their careful reading of the paper and for pointing out an error in the original proof of Lemma 2.

References

[1] W. Chen, J. Liu, L. Wang, Families of Sets with Intersecting Clusters, submitted
[2] V. Chvátal, An extremal set-intersection theorem, J. London Math. Soc. 9 (1974/75), 355-359.
[3] P. Erdős, H. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961) 313-320.
[4] P. Frankl, Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983), 341-349.
[5] Z. Füredi, L. Ozkahya, An intersection theorem with small unions, submitted
[6] P. Keevash, D. Mubayi, Set systems without a simplex or a cluster, Combinatorica, to appear
[7] D. Mubayi, An intersection theorem for four sets, Adv. Math. 215 (2007), no. 2, 601-615.
[8] D. Mubayi, Erdős-Ko-Rado for three sets, J. Combin. Theory Ser. A, 113 (2006), 547550.
[9] M. Simonovits, A method for solving extremal problems in graph theory, stability problems. 1968 Theory of Graphs (Proc. Colloq., Tihany, 1966) pp. 279-319, Academic Press, New York.

[^0]: *Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, Illinois 60607, USA; research partially supported by NSF grant DMS 0653946 E-mail: mubayi@math.uic.edu
 ${ }^{\dagger}$ Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890

