Set systems with union and intersection constraints

Dhruv Mubayi * Reshma Ramadurai [†]

October 15, 2008

Abstract

Let $2 \leq d \leq k$ be fixed and *n* be sufficiently large. Suppose that \mathcal{G} is a collection of *k*-element subsets of an *n*-element set, and $|\mathcal{G}| > \binom{n-1}{k-1}$. Then \mathcal{G} contains *d* sets with union of size at most 2k and empty intersection. This extends the Erdős-Ko-Rado theorem and verifies a conjecture of the first author for large *n*.

1 Introduction

A *d*-cluster of *k*-element sets (henceforth *k*-sets) is a collection of *d* sets with union of size at most 2k and empty intersection. The seminal Erdős-Ko-Rado theorem [3] states that the maximum size of a family of *k*-sets of $[n] = \{1, \ldots, n\}$ which contains no 2-cluster is $\binom{n-1}{k-1}$ (note that a 2-cluster comprises two disjoint sets). Katona asked the corresponding question when d = 3. Frankl and Füredi [4] showed that the answer is again $\binom{n-1}{k-1}$ as long as *n* is sufficiently large, and conjectured that this holds for all $n \ge 3k/2$. The first author [8] recently proved their conjecture, and generalized it still further by introducing the concept of a *d*-cluster (the word *d*-cluster to describe this particular set of configurations is due to Chen, Liu and Wang [1]). A star is a collection of sets that all contain a fixed element.

Conjecture 1. ([8]) Let $2 \le d \le k$ and $n \ge kd/(d-1)$. Suppose that \mathcal{G} is a collection of k-sets of [n] containing no d-cluster. Then $|\mathcal{G}| \le {\binom{n-1}{k-1}}$. Moreover, if $d \ge 3$ and equality holds, then \mathcal{G} is a star.

The first author [7] recently proved that for fixed $2 \le d \le k$ we have $|\mathcal{G}| \le (1 + o(1)) \binom{n-1}{k-1}$ as $n \to \infty$. Regarding exact results we have already observed that Conjecture 1 holds for d = 2 and d = 3. The only other known case for Conjecture 1 is when d = k, where it follows from an old result of Chvátal [2] (this was recently observed in [1]).

There has been further progress when one or more of the parameters is large. In [7], it is proved that Conjecture 1 holds for d = 4 and large n, while Keevash and the first author [6] recently proved Conjecture 1 in a different range of n, namely when k/n and n/2 - k are both bounded away from zero. This includes the case n = ck where c is a fixed constant greater than 2.

In this paper we provide further evidence for Conjecture 1 by proving it for all $2 \le d \le k$ as long as n is sufficiently large.

^{*}Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, Illinois 60607, USA; research partially supported by NSF grant DMS 0653946 E-mail: mubayi@math.uic.edu

[†]Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213-3890

Theorem 1. Fix $2 \leq d \leq k$ and let n be sufficiently large. Suppose that \mathcal{G} is a family of k-sets of [n] that contains no d-cluster. Then $|\mathcal{G}| \leq {\binom{n-1}{k-1}}$, and equality holds if and only if \mathcal{G} is a star.

Our proof of Theorem 1 is based on the stability approach pioneered by Erdős and Simonovits (see [9]). In [7], this method is used to prove the case d = 4 and here we add some new ideas (see Section 3) to extend those arguments. Recently Füredi and Ozkahya [5] have also proved Theorem 1. Their proof uses the delta system method, which is a completely different approach.

2 Preliminaries

Suppose \mathcal{G} is a collection of subsets of [n] and $x \in [n]$. The degree $d_{\mathcal{G}}(x)$ is the number of sets of \mathcal{G} that contain x. The sets $A \subset [n] - \{x\}$ with $A \cup \{x\} \in \mathcal{G}$ fall into two families: $L_x(\mathcal{G})$ consists of those A for which there is some $y \neq x$ for which $A \cup \{y\}$ is also in \mathcal{G} ; $S_x(\mathcal{G})$ consists of those A for which $A \cup \{y\} \in \mathcal{G}$ implies that y = x. Note that $d_{\mathcal{G}}(x) = |L_x(\mathcal{G})| + |S_x(\mathcal{G})|$.

We need the following lemma proved in [7] (see also [6]). We will present the short proof for completeness.

Lemma 1. Suppose $n > k \ge d \ge 2$, \mathcal{G} is a collection of k-sets of [n] and $x \in [n]$. If $L_x(\mathcal{G})$ contains a (d-1)-cluster then \mathcal{G} contains a d-cluster.

Proof. Suppose that $L_x(\mathcal{G})$ contains the (d-1)-cluster A_1, \dots, A_{d-1} . There exists $y \neq x$ such that $B_d = A_1 \cup \{y\} \in \mathcal{G}$. Let $B_i = A_i \cup \{x\}$ for $i \in [d-1]$. Since A_1, \dots, A_{d-1} forms a (d-1)-cluster, $\bigcap_{i=1}^{d-1} A_i = \emptyset$, and so $\bigcap_{i=1}^{d-1} B_i = \{x\}$. As $x \notin B_d$, we conclude that $\bigcap_{i=1}^{d} B_i = \emptyset$. Also, $|\bigcup_{i=1}^{d} B_i| \leq |\bigcup_{i=1}^{d-1} A_i| + |\{x,y\}| \leq 2(k-1) + 2 = 2k$. Consequently, B_1, \dots, B_d is a d-cluster in \mathcal{G} .

The other crucial tool is the following stability result proved in [7].

Theorem 2. (Stability) Fix $2 \le d \le k$. For every $\epsilon > 0$, there exists $\delta > 0$ and n_0 such that the following holds for all $n > n_0$: Suppose that \mathcal{G} is a collection of k-sets of [n] containing no d-cluster. If $|\mathcal{G}| \ge (1-\delta)\binom{n-1}{k-1}$, then there exists an $x \in [n]$ such that the number of k-sets omitting x is at most $\epsilon \binom{n-1}{k-1}$. In particular, this implies that $|\mathcal{G}| \le 2\binom{n-1}{k-1}$ for sufficiently large n.

3 A bound for bipartite families

In order to prove the main result in the next section, we need some estimates on various subfamilies with a certain bipartite structure. The crucial lemma below provides this. Although we need it only for $p \ge 3$, we will prove it for $p \ge 1$ in order to facilitate an induction argument. This was pointed out to us by a referee.

Lemma 2. Fix $2 \le d \le k$, $1 \le p \le k$, and $k < b \le n/2$ with n sufficiently large. Suppose that [n] has partition $B \cup C$, b = |B|, c = |C| and \mathcal{F} is a collection of k-sets of [n] such that $|A \cap B| = p$ for every $A \in \mathcal{F}$. If \mathcal{F} contains no d-cluster, then $|\mathcal{F}| \le kb^{p-1}c^{k-p}$.

Proof. We proceed by induction on d. First suppose that d = 2, so \mathcal{F} is an intersecting family. Let $S \in \mathcal{F}$. Then every set in \mathcal{F} has a point in $S \cap B$ or a point in $S \cap C$. Consequently, $|\mathcal{F}| \leq pb^{p-1}c^{k-p} + (k-p)b^pc^{k-p-1}$ if p < k and $|\mathcal{F}| \leq kb^{k-1}$ if p = k. Since $b \leq c$, in either case we obtain $|\mathcal{F}| \leq kb^{p-1}c^{k-p}$ as desired.

For the induction step, assume that $d \ge 3$. Suppose for a contradiction, that $|\mathcal{F}| > kb^{p-1}c^{k-p}$. Then

$$kb^{p-1}c^{k-p} < |\mathcal{F}| \le \sum_{x \in B} d_{\mathcal{F}}(x) = \sum_{x \in B} |L_x(\mathcal{F})| + \sum_{x \in B} |S_x(\mathcal{F})|.$$

A typical set in $S_x(\mathcal{F})$ has p-1 points in B and k-p points in C, and is not counted by any other $S_y(\mathcal{F})$ with $y \neq x$. Therefore $\sum_{x \in B} |S_x(\mathcal{F})| \leq b^{p-1}c^{k-p}$ and we have

$$\sum_{x \in B} |L_x(\mathcal{F})| > (k-1)b^{p-1}c^{k-p}.$$

First suppose that p = 1. Then we have $\sum_{x \in B} |L_x(\mathcal{F})| > (k-1)c^{k-1}$ and so there exists $w \in B$ for which

$$|L_w(\mathcal{F})| > (k-1)\frac{c^{k-1}}{b} \ge (k-1)c^{k-2} > 2\binom{c-1}{k-2}$$

Now Theorem 2 (applied with $2 \le d-1 \le k-1$) implies that $L_w(\mathcal{F})$ contains a (d-1)-cluster, since we have assumed that $c \ge n/2$ is sufficiently large. Lemma 1 then gives that \mathcal{F} contains a *d*-cluster which is a contradiction.

Now suppose that $p \geq 2$. Again we find $w \in B$ for which $|L_w(\mathcal{F})| > (k-1)b^{p-2}c^{k-p}$. By Lemma 1, $L_w(\mathcal{F})$ contains no (d-1)-cluster, so by the induction hypothesis (replacing d with d-1, p with p-1, k with k-1, b with b-1, and n with n-1), we obtain the contradiction $|L_w(\mathcal{F})| \leq (k-1)b^{p-2}c^{k-p}$.

4 Proof of Theorem 1

In this section we complete the proof of Theorem 1. At one point the argument is identical to that in [7], and we refer the reader there for the details.

Proof of Theorem 1. We assume that $k \ge d \ge 3$ since d = 2 follows from the Erdős-Ko-Rado Theorem. Choose *n* sufficiently large that all statements in the following proof requiring this hold.

Suppose that \mathcal{G} is a collection of k-sets of [n] containing no d-cluster with $|\mathcal{G}| = \binom{n-1}{k-1}$. We will show that \mathcal{G} is a star. Since a star is a maximal family with no d-cluster, this proves the required bound on $|\mathcal{G}|$, with the characterization of equality as well. Let $\mathcal{G} - x$ be the collection of sets in \mathcal{G} that omit x. By Theorem 2, there exists $x \in [n]$ such that $m := |\mathcal{G} - x| < \epsilon \binom{n-1}{k-1}$ with $\epsilon < (12k^2)^{-k}$. If m = 0, then \mathcal{G} is a star and we are done, hence we may assume that m > 0. Let

$$\mathcal{G}_x = \{E \subset [n] : |E| = k - 1 \text{ and } E \cup \{x\} \in \mathcal{G}\}.$$

Claim 1. There are pairwise disjoint (k-2)-sets $S_1, S_2, S_3 \subset [n] - \{x\}$ such that for each i

$$d_{\mathcal{G}_x}(S_i) = |\{y \in [n] : S_i \cup \{x, y\} \in \mathcal{G}\}| \ge n - k + 1 - \frac{2km}{\binom{n-1}{k-2}}.$$

Proof. See the corresponding claim in [7].

By Claim 1, for each i,

$$|\{y \in [n] : S_i \cup \{x, y\} \notin \mathcal{G}\}| < k + \frac{2km}{\binom{n-1}{k-2}}.$$

Let

$$B = \{ y \in [n] : S_i \cup \{x, y\} \notin \mathcal{G} \text{ for some } i \}.$$

Then $|B| < 3k + 6km/\binom{n-1}{k-2}$. By adding points arbitrarily to B, we may assume that $|B| = 3k + \lfloor 6km/\binom{n-1}{k-2} \rfloor$. Since $m \ge 1$, we may suppose that there exists $S \in \mathcal{G} - x$. For each choice of a (k-2)-set $S' \subset [n] - \{x\} - S$ one of the k-sets $S' \cup \{x, y\}$ where $y \in S$ must be absent from \mathcal{G} , otherwise we obtain a d-cluster using d-1 of these sets and S. This immediately yields $m \ge \binom{n-k-1}{k-2} > \frac{1}{2} \binom{n-1}{k-2}$. Consequently,

$$|B| = 3k + \left\lfloor \frac{6km}{\binom{n-1}{k-2}} \right\rfloor < \frac{12km}{\binom{n-1}{k-2}} < \frac{12k\binom{n-1}{k-1}}{\binom{n-1}{k-2}} < 12k\epsilon n < \frac{n-1}{2}.$$

Now define, for each $i \in \{0, \ldots, k\}$,

$$\mathcal{T}_i = \{T \in \mathcal{G} - x : |T \cap B| = i\}.$$

Note that $\mathcal{T}_0 \cup \cdots \cup \mathcal{T}_k$ is a partition of $\mathcal{G} - x$. First we show that $\mathcal{T}_0 = \mathcal{T}_1 = \mathcal{T}_2 = \emptyset$. Observe that $S_i \subset B$ for i = 1, 2, 3. If $S \in \mathcal{T}_0 \cup \mathcal{T}_1 \cup \mathcal{T}_2$, then there is an *i* for which $S_i \cap S = \emptyset$. Choose $d - 2 \leq k - 2$ elements $y_1, \ldots, y_{d-2} \in S - B$ and $y \in [n] - (B \cup \{x\} \cup S)$. Now the d - 2 sets $S_i \cup \{x, y_j\}$ (for all *j*) together with *S* and $S_i \cup \{x, y\}$ form a *d*-cluster in \mathcal{G} , which is a contradiction. Therefore, $\mathcal{T}_0 \cup \mathcal{T}_1 \cup \mathcal{T}_2 = \emptyset$.

Since $\mathcal{G} - x = \bigcup_{i=3}^{k} \mathcal{T}_i$, we may assume that $|\mathcal{T}_p| \ge m/(k-2)$ for some $3 \le p \le k$. Applying Lemma 2 with $C = [n] - \{x\} - B$ (and b = |B|, c = |C|; noting that k < b < (n-1)/2), we obtain

$$\frac{m}{k-2} \le |\mathcal{T}_p| \le kb^{p-1}c^{k-p} < k\left(\frac{12km}{\binom{n-1}{k-2}}\right)^{p-1}n^{k-p}.$$

Simplifying, we obtain

$$m^{p-2} > {\binom{n-1}{k-2}}^{p-1} \frac{1}{n^{k-p}k(k-2)(12k)^{p-1}}.$$

Then, since $m < \epsilon \binom{n-1}{k-1} < \epsilon n \binom{n-1}{k-2}$, we have

$$\epsilon \ge \epsilon^{p-2} > \frac{\binom{n-1}{k-2}}{n^{k-2}k(k-2)(12k)^{p-1}} \ge \frac{((n-k)/n)^{k-2}}{(k-2)!k(k-2)(12k)^{p-1}} > (12k^2)^{-k}$$

for sufficiently large n. This contradicts the choice of ϵ and completes the proof.

5 Acknowledgments

The authors thank the referees for their careful reading of the paper and for pointing out an error in the original proof of Lemma 2.

References

- [1] W. Chen, J. Liu, L. Wang, Families of Sets with Intersecting Clusters, submitted
- [2] V. Chvátal, An extremal set-intersection theorem, J. London Math. Soc. 9 (1974/75), 355–359.
- [3] P. Erdős, H. Ko, R. Rado, Intersection theorems for systems of finite sets, Quart. J. Math. Oxford Ser. 12 (1961) 313–320.
- [4] P. Frankl, Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3 (1983), 341–349.
- [5] Z. Füredi, L. Ozkahya, An intersection theorem with small unions, submitted
- [6] P. Keevash, D. Mubayi, Set systems without a simplex or a cluster, *Combinatorica*, to appear
- [7] D. Mubayi, An intersection theorem for four sets, Adv. Math. 215 (2007), no. 2, 601–615.
- [8] D. Mubayi, Erdős-Ko-Rado for three sets, J. Combin. Theory Ser. A, 113 (2006), 547– 550.
- M. Simonovits, A method for solving extremal problems in graph theory, stability problems. 1968 Theory of Graphs (Proc. Colloq., Tihany, 1966) pp. 279–319, Academic Press, New York.