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Abstract

Let 2 ≤ d ≤ k be fixed and n be sufficiently large. Suppose that G is a collection of
k-element subsets of an n-element set, and |G| > (

n−1
k−1

)
. Then G contains d sets with union

of size at most 2k and empty intersection. This extends the Erdős-Ko-Rado theorem and
verifies a conjecture of the first author for large n.

1 Introduction

A d-cluster of k-element sets (henceforth k-sets) is a collection of d sets with union of size
at most 2k and empty intersection. The seminal Erdős-Ko-Rado theorem [3] states that the
maximum size of a family of k-sets of [n] = {1, . . . , n} which contains no 2-cluster is

(
n−1
k−1

)
(note

that a 2-cluster comprises two disjoint sets). Katona asked the corresponding question when
d = 3. Frankl and Füredi [4] showed that the answer is again

(
n−1
k−1

)
as long as n is sufficiently

large, and conjectured that this holds for all n ≥ 3k/2. The first author [8] recently proved
their conjecture, and generalized it still further by introducing the concept of a d-cluster (the
word d-cluster to describe this particular set of configurations is due to Chen, Liu and Wang
[1]). A star is a collection of sets that all contain a fixed element.

Conjecture 1. ([8]) Let 2 ≤ d ≤ k and n ≥ kd/(d − 1). Suppose that G is a collection of
k-sets of [n] containing no d-cluster. Then |G| ≤ (

n−1
k−1

)
. Moreover, if d ≥ 3 and equality holds,

then G is a star.

The first author [7] recently proved that for fixed 2 ≤ d ≤ k we have |G| ≤ (1 + o(1))
(
n−1
k−1

)
as

n →∞. Regarding exact results we have already observed that Conjecture 1 holds for d = 2
and d = 3. The only other known case for Conjecture 1 is when d = k, where it follows from
an old result of Chvátal [2] (this was recently observed in [1]).

There has been further progress when one or more of the parameters is large. In [7], it is
proved that Conjecture 1 holds for d = 4 and large n, while Keevash and the first author [6]
recently proved Conjecture 1 in a different range of n, namely when k/n and n/2−k are both
bounded away from zero. This includes the case n = ck where c is a fixed constant greater
than 2.

In this paper we provide further evidence for Conjecture 1 by proving it for all 2 ≤ d ≤ k as
long as n is sufficiently large.
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Theorem 1. Fix 2 ≤ d ≤ k and let n be sufficiently large. Suppose that G is a family of
k-sets of [n] that contains no d-cluster. Then |G| ≤ (

n−1
k−1

)
, and equality holds if and only if G

is a star.

Our proof of Theorem 1 is based on the stability approach pioneered by Erdős and Simonovits
(see [9]). In [7], this method is used to prove the case d = 4 and here we add some new
ideas (see Section 3) to extend those arguments. Recently Füredi and Ozkahya [5] have also
proved Theorem 1. Their proof uses the delta system method, which is a completely different
approach.

2 Preliminaries

Suppose G is a collection of subsets of [n] and x ∈ [n]. The degree dG(x) is the number of sets
of G that contain x. The sets A ⊂ [n] − {x} with A ∪ {x} ∈ G fall into two families: Lx(G)
consists of those A for which there is some y 6= x for which A∪{y} is also in G; Sx(G) consists
of those A for which A ∪ {y} ∈ G implies that y = x. Note that dG(x) = |Lx(G)|+ |Sx(G)|.
We need the following lemma proved in [7] (see also [6]). We will present the short proof for
completeness.

Lemma 1. Suppose n > k ≥ d ≥ 2, G is a collection of k-sets of [n] and x ∈ [n]. If Lx(G)
contains a (d− 1)-cluster then G contains a d-cluster.

Proof. Suppose that Lx(G) contains the (d − 1)-cluster A1, · · · , Ad−1. There exists y 6= x

such that Bd = A1 ∪ {y} ∈ G. Let Bi = Ai ∪ {x} for i ∈ [d − 1]. Since A1, . . . , Ad−1 forms a
(d− 1)-cluster, ∩d−1

i=1 Ai = ∅, and so ∩d−1
i=1 Bi = {x}. As x 6∈ Bd, we conclude that ∩d

i=1Bi = ∅.
Also, | ∪d

i=1 Bi| ≤ | ∪d−1
i=1 Ai| + |{x, y}| ≤ 2(k − 1) + 2 = 2k. Consequently, B1, · · · , Bd is a

d-cluster in G.

The other crucial tool is the following stability result proved in [7].

Theorem 2. (Stability) Fix 2 ≤ d ≤ k. For every ε > 0, there exists δ > 0 and n0 such that
the following holds for all n > n0: Suppose that G is a collection of k-sets of [n] containing
no d-cluster. If |G| ≥ (1− δ)

(
n−1
k−1

)
, then there exists an x ∈ [n] such that the number of k-sets

omitting x is at most ε
(
n−1
k−1

)
. In particular, this implies that |G| ≤ 2

(
n−1
k−1

)
for sufficiently large

n.

3 A bound for bipartite families

In order to prove the main result in the next section, we need some estimates on various
subfamilies with a certain bipartite structure. The crucial lemma below provides this. Al-
though we need it only for p ≥ 3, we will prove it for p ≥ 1 in order to facilitate an induction
argument. This was pointed out to us by a referee.

Lemma 2. Fix 2 ≤ d ≤ k, 1 ≤ p ≤ k, and k < b ≤ n/2 with n sufficiently large. Suppose
that [n] has partition B ∪ C, b = |B|, c = |C| and F is a collection of k-sets of [n] such that
|A ∩B| = p for every A ∈ F . If F contains no d-cluster, then |F| ≤ kbp−1ck−p.
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Proof. We proceed by induction on d. First suppose that d = 2, so F is an intersecting family.
Let S ∈ F . Then every set in F has a point in S ∩ B or a point in S ∩ C. Consequently,
|F| ≤ pbp−1ck−p + (k − p)bpck−p−1 if p < k and |F| ≤ kbk−1 if p = k. Since b ≤ c, in either
case we obtain |F| ≤ kbp−1ck−p as desired.

For the induction step, assume that d ≥ 3. Suppose for a contradiction, that |F| > kbp−1ck−p.
Then

kbp−1ck−p < |F| ≤
∑

x∈B

dF (x) =
∑

x∈B

|Lx(F)|+
∑

x∈B

|Sx(F)|.

A typical set in Sx(F) has p− 1 points in B and k− p points in C, and is not counted by any
other Sy(F) with y 6= x. Therefore

∑
x∈B |Sx(F)| ≤ bp−1ck−p and we have

∑

x∈B

|Lx(F)| > (k − 1)bp−1ck−p.

First suppose that p = 1. Then we have
∑

x∈B |Lx(F)| > (k − 1)ck−1 and so there exists
w ∈ B for which

|Lw(F)| > (k − 1)
ck−1

b
≥ (k − 1)ck−2 > 2

(
c− 1
k − 2

)
.

Now Theorem 2 (applied with 2 ≤ d−1 ≤ k−1) implies that Lw(F) contains a (d−1)-cluster,
since we have assumed that c ≥ n/2 is sufficiently large. Lemma 1 then gives that F contains
a d-cluster which is a contradiction.

Now suppose that p ≥ 2. Again we find w ∈ B for which |Lw(F)| > (k − 1)bp−2ck−p. By
Lemma 1, Lw(F) contains no (d− 1)-cluster, so by the induction hypothesis (replacing d with
d− 1, p with p− 1, k with k− 1, b with b− 1, and n with n− 1), we obtain the contradiction
|Lw(F)| ≤ (k − 1)bp−2ck−p.

4 Proof of Theorem 1

In this section we complete the proof of Theorem 1. At one point the argument is identical
to that in [7], and we refer the reader there for the details.

Proof of Theorem 1. We assume that k ≥ d ≥ 3 since d = 2 follows from the Erdős-Ko-
Rado Theorem. Choose n sufficiently large that all statements in the following proof requiring
this hold.

Suppose that G is a collection of k-sets of [n] containing no d-cluster with |G| =
(
n−1
k−1

)
. We

will show that G is a star. Since a star is a maximal family with no d-cluster, this proves the
required bound on |G|, with the characterization of equality as well. Let G−x be the collection
of sets in G that omit x. By Theorem 2, there exists x ∈ [n] such that m := |G − x| < ε

(
n−1
k−1

)

with ε < (12k2)−k. If m = 0, then G is a star and we are done, hence we may assume that
m > 0. Let

Gx = {E ⊂ [n] : |E| = k − 1 and E ∪ {x} ∈ G} .

Claim 1. There are pairwise disjoint (k − 2)-sets S1, S2, S3 ⊂ [n]− {x} such that for each i

dGx(Si) = |{y ∈ [n] : Si ∪ {x, y} ∈ G}| ≥ n− k + 1− 2km(
n−1
k−2

) .
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Proof. See the corresponding claim in [7].

By Claim 1, for each i,

|{y ∈ [n] : Si ∪ {x, y} 6∈ G}| < k +
2km(
n−1
k−2

) .

Let
B = {y ∈ [n] : Si ∪ {x, y} 6∈ G for some i}.

Then |B| < 3k + 6km/
(
n−1
k−2

)
. By adding points arbitrarily to B, we may assume that |B| =

3k + b6km/
(
n−1
k−2

)c. Since m ≥ 1, we may suppose that there exists S ∈ G −x. For each choice
of a (k − 2)-set S′ ⊂ [n] − {x} − S one of the k-sets S′ ∪ {x, y} where y ∈ S must be absent
from G, otherwise we obtain a d-cluster using d − 1 of these sets and S. This immediately
yields m ≥ (

n−k−1
k−2

)
> 1

2

(
n−1
k−2

)
. Consequently,

|B| = 3k +

⌊
6km(
n−1
k−2

)
⌋

<
12km(
n−1
k−2

) <
12kε

(
n−1
k−1

)
(
n−1
k−2

) < 12kεn <
n− 1

2
.

Now define, for each i ∈ {0, . . . , k},
Ti = {T ∈ G − x : |T ∩B| = i}.

Note that T0 ∪ · · · ∪ Tk is a partition of G − x. First we show that T0 = T1 = T2 = ∅. Observe
that Si ⊂ B for i = 1, 2, 3. If S ∈ T0 ∪T1 ∪T2, then there is an i for which Si ∩S = ∅. Choose
d − 2 ≤ k − 2 elements y1, . . . , yd−2 ∈ S − B and y ∈ [n] − (B ∪ {x} ∪ S). Now the d − 2
sets Si ∪ {x, yj} (for all j) together with S and Si ∪ {x, y} form a d-cluster in G, which is a
contradiction. Therefore, T0 ∪ T1 ∪ T2 = ∅.
Since G − x = ∪k

i=3Ti, we may assume that |Tp| ≥ m/(k − 2) for some 3 ≤ p ≤ k. Applying
Lemma 2 with C = [n] − {x} − B (and b = |B|, c = |C|; noting that k < b < (n − 1)/2), we
obtain

m

k − 2
≤ |Tp| ≤ kbp−1ck−p < k

(
12km(
n−1
k−2

)
)p−1

nk−p.

Simplifying, we obtain

mp−2 >

(
n− 1
k − 2

)p−1 1
nk−pk(k − 2)(12k)p−1

.

Then, since m < ε
(
n−1
k−1

)
< εn

(
n−1
k−2

)
, we have

ε ≥ εp−2 >

(
n−1
k−2

)

nk−2k(k − 2)(12k)p−1
≥ ((n− k)/n)k−2

(k − 2)!k(k − 2)(12k)p−1
> (12k2)−k

for sufficiently large n. This contradicts the choice of ε and completes the proof.
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