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Abstract

Let 2 < d < k be fixed and n be sufficiently large. Suppose that G is a collection of
k-element subsets of an n-element set, and |G| > (Zj) Then G contains d sets with union
of size at most 2k and empty intersection. This extends the Erdos-Ko-Rado theorem and
verifies a conjecture of the first author for large n.

1 Introduction

A d-cluster of k-element sets (henceforth k-sets) is a collection of d sets with union of size
at most 2k and empty intersection. The seminal Erdés-Ko-Rado theorem [3] states that the
maximum size of a family of k-sets of [n] = {1,...,n} which contains no 2-cluster is (Zj) (note
that a 2-cluster comprises two disjoint sets). Katona asked the corresponding question when
d = 3. Frankl and Fiiredi [4] showed that the answer is again (Zj) as long as n is sufficiently
large, and conjectured that this holds for all n > 3k/2. The first author [8] recently proved
their conjecture, and generalized it still further by introducing the concept of a d-cluster (the
word d-cluster to describe this particular set of configurations is due to Chen, Liu and Wang

[1]). A star is a collection of sets that all contain a fixed element.

Conjecture 1. ([8]) Let 2 < d < k and n > kd/(d — 1). Suppose that G is a collection of
k-sets of [n] containing no d-cluster. Then |G| < (Z:}) Moreover, if d > 3 and equality holds,
then G is a star.

The first author [7] recently proved that for fixed 2 < d < k we have |G| < (14 o(1)) (Zj) as
n — 0o. Regarding exact results we have already observed that Conjecture 1 holds for d = 2
and d = 3. The only other known case for Conjecture 1 is when d = k, where it follows from
an old result of Chvétal [2] (this was recently observed in [1]).

There has been further progress when one or more of the parameters is large. In [7], it is
proved that Conjecture 1 holds for d = 4 and large n, while Keevash and the first author [6]
recently proved Conjecture 1 in a different range of n, namely when k/n and n/2 — k are both
bounded away from zero. This includes the case n = ck where c is a fixed constant greater
than 2.

In this paper we provide further evidence for Conjecture 1 by proving it for all 2 < d < k as
long as n is sufficiently large.
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Theorem 1. Fix 2 < d < k and let n be sufficiently large. Suppose that G is a family of
k-sets of [n] that contains no d-cluster. Then |G| < (Zj), and equality holds if and only if G
15 a star.

Our proof of Theorem 1 is based on the stability approach pioneered by Erdés and Simonovits
(see [9]). In [7], this method is used to prove the case d = 4 and here we add some new
ideas (see Section 3) to extend those arguments. Recently Fiiredi and Ozkahya [5] have also
proved Theorem 1. Their proof uses the delta system method, which is a completely different
approach.

2 Preliminaries

Suppose G is a collection of subsets of [n] and x € [n]. The degree dg(z) is the number of sets
of G that contain z. The sets A C [n] — {z} with AU {z} € G fall into two families: L;(G)
consists of those A for which there is some y # = for which AU{y} is also in G; S;(G) consists
of those A for which AU {y} € G implies that y = . Note that dg(x) = |Ly(G)| + |Sz(G)|.

We need the following lemma proved in [7] (see also [6]). We will present the short proof for
completeness.

Lemma 1. Suppose n > k > d > 2, G is a collection of k-sets of [n] and x € [n]. If Ly(G)
contains a (d — 1)-cluster then G contains a d-cluster.

Proof. Suppose that L;(G) contains the (d — 1)-cluster Ay, -, A4g_1. There exists y # z
such that By = A1 U{y} € G. Let B; = A; U{x} for i € [d — 1]. Since Ay,...,Aq—1 forms a
(d — 1)-cluster, N~} 4; = 0, and so N’=\'B; = {x}. As = ¢ By, we conclude that N¢_, B; = 0.
Also, |UL, By| < Uil Ayl + {z,y}| < 2(k — 1) + 2 = 2k. Consequently, By,---, By is a
d-cluster in G. ]

The other crucial tool is the following stability result proved in [7].

Theorem 2. (Stability) Fiz 2 < d < k. For every e > 0, there ezists § > 0 and ng such that
the following holds for all n > ng: Suppose that G is a collection of k-sets of [n] containing
no d-cluster. If |G| > (1 —9) (Z:i), then there exists an x € [n| such that the number of k-sets
omitting x is at most G(Zj) In particular, this implies that |G| < 2(2:}) for sufficiently large
n.

3 A bound for bipartite families

In order to prove the main result in the next section, we need some estimates on various
subfamilies with a certain bipartite structure. The crucial lemma below provides this. Al-
though we need it only for p > 3, we will prove it for p > 1 in order to facilitate an induction
argument. This was pointed out to us by a referee.

Lemma 2. Fiz 2 <d <k, 1 <p<k, and k < b < n/2 with n sufficiently large. Suppose
that [n] has partition BUC, b = |B|,c = |C| and F is a collection of k-sets of [n] such that
|AN B| = p for every A € F. If F contains no d-cluster, then |F| < kbP~1cFP.



Proof. We proceed by induction on d. First suppose that d = 2, so F is an intersecting family.
Let S € F. Then every set in F has a point in SN B or a point in .S N C. Consequently,
|F| < pbP~Lck=P + (kK — p)bPck—P~1if p < k and |F| < kb*~! if p = k. Since b < ¢, in either
case we obtain |F| < kbP~1cF~P as desired.

For the induction step, assume that d > 3. Suppose for a contradiction, that |F| > kbP~ck=P,
Then
KPP < |F| < dp(@) =Y |La(F) + D [Se(F)]-

reB zeB zeB

A typical set in S, (F) has p— 1 points in B and k — p points in C, and is not counted by any
other Sy (F) with y # x. Therefore " |Sz(F)| < bP~1c*P and we have

D Le(F)| > (k= Hpr P,

zeB

First suppose that p = 1. Then we have Y. 5 |Ly(F)| > (k — 1)c* ! and so there exists

w € B for which
Ck—l

—1
L k-1 > (k-1 2>2( 07 ).
L) > (b= 1) 5 = (b= 12 > ()
Now Theorem 2 (applied with 2 < d—1 < k—1) implies that L,,(F) contains a (d— 1)-cluster,
since we have assumed that ¢ > n/2 is sufficiently large. Lemma 1 then gives that F contains

a d-cluster which is a contradiction.

Now suppose that p > 2. Again we find w € B for which |L,(F)| > (k — 1)bP~2c~P. By
Lemma 1, L,,(F) contains no (d — 1)-cluster, so by the induction hypothesis (replacing d with
d—1, p with p—1, k with £ — 1, b with b — 1, and n with n — 1), we obtain the contradiction
| L (F)| < (k — 1)bP~2ckP, O

4 Proof of Theorem 1

In this section we complete the proof of Theorem 1. At one point the argument is identical
to that in [7], and we refer the reader there for the details.

Proof of Theorem 1. We assume that &k > d > 3 since d = 2 follows from the Erd&s-Ko-
Rado Theorem. Choose n sufficiently large that all statements in the following proof requiring
this hold.

Suppose that G is a collection of k-sets of [n| containing no d-cluster with |G| = (Zj) We
will show that G is a star. Since a star is a maximal family with no d-cluster, this proves the
required bound on |G|, with the characterization of equality as well. Let G —z be the collection
of sets in G that omit z. By Theorem 2, there exists 2 € [n] such that m := |G — z| < E(Zj)
with € < (12k%)7%. If m = 0, then G is a star and we are done, hence we may assume that
m > 0. Let

Go={ECn]:|E|=k—1and EU{z} € G}.

Claim 1. There are pairwise disjoint (k — 2)-sets Sy, So,S3 C [n] — {z} such that for each i
2km

dg,(Si)) =y €n]: Siu{z,yt €G} Z2n—k+1— —.
(i)



Proof. See the corresponding claim in [7]. O

By Claim 1, for each 4,

el 5i0 (0 € 9)1 < b+ o
k—2
Let
B={y€[n]:S;U{z,y} &G for some i}.
Then |B| < 3k + 6km/ (Z:;) By adding points arbitrarily to B, we may assume that |B| =
3k + |6km/ (Z:;)J Since m > 1, we may suppose that there exists S € G — x. For each choice
of a (k—2)-set S’ C [n] — {x} — S one of the k-sets S’ U {x,y} where y € S must be absent

from G, otherwise we obtain a d-cluster using d — 1 of these sets and S. This immediately
yields m > (”;ﬁgl) > %(Z:;) Consequently,

12 12ke(01 -1
s |t D

Py i < < 12ken < ——.
(2] G2 () 2
Now define, for each i € {0,...,k},

Ti={TeG—uz:|TNB| =i}

Note that To U --- U7} is a partition of G — z. First we show that 7g = 77 = 75 = (). Observe
that S; C Bfori=1,2,3. If S € TgoU7; U75, then there is an ¢ for which S; NS = (. Choose
d—2 < k—2elements y1,...,ys—2 € S—Band y € [n] — (BU{z} US). Now the d — 2
sets S; U {z,y;} (for all j) together with S and S; U {z,y} form a d-cluster in G, which is a
contradiction. Therefore, 7o U 73 U 75 = ().

Since G — z = UF_,T;, we may assume that |7,| > m/(k — 2) for some 3 < p < k. Applying
Lemma 2 with C' = [n] — {z} — B (and b = |B|,c¢ = |C|; noting that k < b < (n —1)/2), we
obtain
p—1
% < || < kbPLFP <k (%) nkp,
k—2
Simplifying, we obtain

2 (M1 p-1 1
k—2) nFvk(k—2)(12k)p 1

Then, since m < E(Zj) < en(g:%), we have
n—1
- - —k)/n)* 2 -
S (P2 (k 2) > ((n 19%2)k
€2 > - 2) (10T 2 (k= 2)k(k — 2y a2k~ (U2
for sufficiently large n. This contradicts the choice of € and completes the proof. ]
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